(maxima.info)Functions and Variables for Series


Next: Introduction to Fourier series Prev: Introduction to Series Up: Sums Products and Series
Enter node , (file) or (file)node

28.3 Functions and Variables for Series
=======================================

 -- Option variable: cauchysum
     Default value: 'false'

     When multiplying together sums with 'inf' as their upper limit, if
     'sumexpand' is 'true' and 'cauchysum' is 'true' then the Cauchy
     product will be used rather than the usual product.  In the Cauchy
     product the index of the inner summation is a function of the index
     of the outer one rather than varying independently.

     Example:

          (%i1) sumexpand: false$
          (%i2) cauchysum: false$
          (%i3) s: sum (f(i), i, 0, inf) * sum (g(j), j, 0, inf);
                                inf         inf
                                ====        ====
                                \           \
          (%o3)                ( >    f(i))  >    g(j)
                                /           /
                                ====        ====
                                i = 0       j = 0
          (%i4) sumexpand: true$
          (%i5) cauchysum: true$
          (%i6) expand(s,0,0);
                           inf     i1
                           ====   ====
                           \      \
          (%o6)             >      >     g(i1 - i2) f(i2)
                           /      /
                           ====   ====
                           i1 = 0 i2 = 0

 -- Function: deftaylor (<f_1>(<x_1>), <expr_1>, ..., <f_n>(<x_n>),
          <expr_n>)

     For each function <f_i> of one variable <x_i>, 'deftaylor' defines
     <expr_i> as the Taylor series about zero.  <expr_i> is typically a
     polynomial in <x_i> or a summation; more general expressions are
     accepted by 'deftaylor' without complaint.

     'powerseries (<f_i>(<x_i>), <x_i>, 0)' returns the series defined
     by 'deftaylor'.

     'deftaylor' returns a list of the functions <f_1>, ..., <f_n>.
     'deftaylor' evaluates its arguments.

     Example:

          (%i1) deftaylor (f(x), x^2 + sum(x^i/(2^i*i!^2), i, 4, inf));
          (%o1)                          [f]
          (%i2) powerseries (f(x), x, 0);
                                inf
                                ====      i1
                                \        x         2
          (%o2)                  >     -------- + x
                                /       i1    2
                                ====   2   i1!
                                i1 = 4
          (%i3) taylor (exp (sqrt (f(x))), x, 0, 4);
                                2         3          4
                               x    3073 x    12817 x
          (%o3)/T/     1 + x + -- + ------- + -------- + . . .
                               2     18432     307200

 -- Option variable: maxtayorder
     Default value: 'true'

     When 'maxtayorder' is 'true', then during algebraic manipulation of
     (truncated) Taylor series, 'taylor' tries to retain as many terms
     as are known to be correct.

 -- Function: niceindices (<expr>)

     Renames the indices of sums and products in <expr>.  'niceindices'
     attempts to rename each index to the value of 'niceindicespref[1]',
     unless that name appears in the summand or multiplicand, in which
     case 'niceindices' tries the succeeding elements of
     'niceindicespref' in turn, until an unused variable is found.  If
     the entire list is exhausted, additional indices are constructed by
     appending integers to the value of 'niceindicespref[1]', e.g.,
     'i0', 'i1', 'i2', ...

     'niceindices' returns an expression.  'niceindices' evaluates its
     argument.

     Example:

          (%i1) niceindicespref;
          (%o1)                  [i, j, k, l, m, n]
          (%i2) product (sum (f (foo + i*j*bar), foo, 1, inf), bar, 1, inf);
                           inf    inf
                          /===\   ====
                           ! !    \
          (%o2)            ! !     >      f(bar i j + foo)
                           ! !    /
                          bar = 1 ====
                                  foo = 1
          (%i3) niceindices (%);
                               inf  inf
                              /===\ ====
                               ! !  \
          (%o3)                ! !   >    f(i j l + k)
                               ! !  /
                              l = 1 ====
                                    k = 1

 -- Option variable: niceindicespref
     Default value: '[i, j, k, l, m, n]'

     'niceindicespref' is the list from which 'niceindices' takes the
     names of indices for sums and products.

     The elements of 'niceindicespref' are typically names of variables,
     although that is not enforced by 'niceindices'.

     Example:

          (%i1) niceindicespref: [p, q, r, s, t, u]$
          (%i2) product (sum (f (foo + i*j*bar), foo, 1, inf), bar, 1, inf);
                           inf    inf
                          /===\   ====
                           ! !    \
          (%o2)            ! !     >      f(bar i j + foo)
                           ! !    /
                          bar = 1 ====
                                  foo = 1
          (%i3) niceindices (%);
                               inf  inf
                              /===\ ====
                               ! !  \
          (%o3)                ! !   >    f(i j q + p)
                               ! !  /
                              q = 1 ====
                                    p = 1

 -- Function: nusum (<expr>, <x>, <i_0>, <i_1>)

     Carries out indefinite hypergeometric summation of <expr> with
     respect to <x> using a decision procedure due to R.W. Gosper.
     <expr> and the result must be expressible as products of integer
     powers, factorials, binomials, and rational functions.

     The terms "definite" and "indefinite summation" are used
     analogously to "definite" and "indefinite integration".  To sum
     indefinitely means to give a symbolic result for the sum over
     intervals of variable length, not just e.g.  0 to inf.  Thus, since
     there is no formula for the general partial sum of the binomial
     series, 'nusum' can't do it.

     'nusum' and 'unsum' know a little about sums and differences of
     finite products.  See also 'unsum'.

     Examples:

          (%i1) nusum (n*n!, n, 0, n);

          Dependent equations eliminated:  (1)
          (%o1)                     (n + 1)! - 1
          (%i2) nusum (n^4*4^n/binomial(2*n,n), n, 0, n);
                               4        3       2              n
                2 (n + 1) (63 n  + 112 n  + 18 n  - 22 n + 3) 4      2
          (%o2) ------------------------------------------------ - ------
                              693 binomial(2 n, n)                 3 11 7
          (%i3) unsum (%, n);
                                        4  n
                                       n  4
          (%o3)                   ----------------
                                  binomial(2 n, n)
          (%i4) unsum (prod (i^2, i, 1, n), n);
                              n - 1
                              /===\
                               ! !   2
          (%o4)              ( ! !  i ) (n - 1) (n + 1)
                               ! !
                              i = 1
          (%i5) nusum (%, n, 1, n);

          Dependent equations eliminated:  (2 3)
                                      n
                                    /===\
                                     ! !   2
          (%o5)                      ! !  i  - 1
                                     ! !
                                    i = 1

 -- Function: pade (<taylor_series>, <numer_deg_bound>,
          <denom_deg_bound>)

     Returns a list of all rational functions which have the given
     Taylor series expansion where the sum of the degrees of the
     numerator and the denominator is less than or equal to the
     truncation level of the power series, i.e.  are "best"
     approximants, and which additionally satisfy the specified degree
     bounds.

     <taylor_series> is a univariate Taylor series.  <numer_deg_bound>
     and <denom_deg_bound> are positive integers specifying degree
     bounds on the numerator and denominator.

     <taylor_series> can also be a Laurent series, and the degree bounds
     can be 'inf' which causes all rational functions whose total degree
     is less than or equal to the length of the power series to be
     returned.  Total degree is defined as '<numer_deg_bound> +
     <denom_deg_bound>'.  Length of a power series is defined as
     '"truncation level" + 1 - min(0, "order of series")'.

          (%i1) taylor (1 + x + x^2 + x^3, x, 0, 3);
                                        2    3
          (%o1)/T/             1 + x + x  + x  + . . .
          (%i2) pade (%, 1, 1);
                                           1
          (%o2)                       [- -----]
                                         x - 1
          (%i3) t: taylor(-(83787*x^10 - 45552*x^9 - 187296*x^8
                             + 387072*x^7 + 86016*x^6 - 1507328*x^5
                             + 1966080*x^4 + 4194304*x^3 - 25165824*x^2
                             + 67108864*x - 134217728)
                 /134217728, x, 0, 10);
                              2    3       4       5       6        7
                       x   3 x    x    15 x    23 x    21 x    189 x
          (%o3)/T/ 1 - - + ---- - -- - ----- + ----- - ----- - ------
                       2    16    32   1024    2048    32768   65536

                                            8         9          10
                                      5853 x    2847 x    83787 x
                                    + ------- + ------- - --------- + . . .
                                      4194304   8388608   134217728
          (%i4) pade (t, 4, 4);
          (%o4)                          []

     There is no rational function of degree 4 numerator/denominator,
     with this power series expansion.  You must in general have degree
     of the numerator and degree of the denominator adding up to at
     least the degree of the power series, in order to have enough
     unknown coefficients to solve.

          (%i5) pade (t, 5, 5);
                               5                4                 3
          (%o5) [- (520256329 x  - 96719020632 x  - 489651410240 x

                            2
           - 1619100813312 x  - 2176885157888 x - 2386516803584)

                         5                 4                  3
          /(47041365435 x  + 381702613848 x  + 1360678489152 x

                            2
           + 2856700692480 x  + 3370143559680 x + 2386516803584)]

 -- Function: powerseries (<expr>, <x>, <a>)

     Returns the general form of the power series expansion for <expr>
     in the variable <x> about the point <a> (which may be 'inf' for
     infinity):
                     inf
                     ====
                     \               n
                      >    b  (x - a)
                     /      n
                     ====
                     n = 0

     If 'powerseries' is unable to expand <expr>, 'taylor' may give the
     first several terms of the series.

     When 'verbose' is 'true', 'powerseries' prints progress messages.

          (%i1) verbose: true$
          (%i2) powerseries (log(sin(x)/x), x, 0);
          can't expand
                                           log(sin(x))
          so we'll try again after applying the rule:
                                                  d
                                                / -- (sin(x))
                                                [ dx
                                  log(sin(x)) = i ----------- dx
                                                ]   sin(x)
                                                /
          in the first simplification we have returned:
                                       /
                                       [
                                       i cot(x) dx - log(x)
                                       ]
                                       /
                              inf
                              ====        i1  2 i1             2 i1
                              \      (- 1)   2     bern(2 i1) x
                               >     ------------------------------
                              /                i1 (2 i1)!
                              ====
                              i1 = 1
          (%o2)                -------------------------------------
                                                2

 -- Option variable: psexpand
     Default value: 'false'

     When 'psexpand' is 'true', an extended rational function expression
     is displayed fully expanded.  The switch 'ratexpand' has the same
     effect.

     When 'psexpand' is 'false', a multivariate expression is displayed
     just as in the rational function package.

     When 'psexpand' is 'multi', then terms with the same total degree
     in the variables are grouped together.

 -- Function: revert (<expr>, <x>)
 -- Function: revert2 (<expr>, <x>, <n>)

     These functions return the reversion of <expr>, a Taylor series
     about zero in the variable <x>.  'revert' returns a polynomial of
     degree equal to the highest power in <expr>.  'revert2' returns a
     polynomial of degree <n>, which may be greater than, equal to, or
     less than the degree of <expr>.

     'load ("revert")' loads these functions.

     Examples:

          (%i1) load ("revert")$
          (%i2) t: taylor (exp(x) - 1, x, 0, 6);
                             2    3    4    5     6
                            x    x    x    x     x
          (%o2)/T/      x + -- + -- + -- + --- + --- + . . .
                            2    6    24   120   720
          (%i3) revert (t, x);
                         6       5       4       3       2
                     10 x  - 12 x  + 15 x  - 20 x  + 30 x  - 60 x
          (%o3)/R/ - --------------------------------------------
                                          60
          (%i4) ratexpand (%);
                               6    5    4    3    2
                              x    x    x    x    x
          (%o4)             - -- + -- - -- + -- - -- + x
                              6    5    4    3    2
          (%i5) taylor (log(x+1), x, 0, 6);
                              2    3    4    5    6
                             x    x    x    x    x
          (%o5)/T/       x - -- + -- - -- + -- - -- + . . .
                             2    3    4    5    6
          (%i6) ratsimp (revert (t, x) - taylor (log(x+1), x, 0, 6));
          (%o6)                           0
          (%i7) revert2 (t, x, 4);
                                    4    3    2
                                   x    x    x
          (%o7)                  - -- + -- - -- + x
                                   4    3    2

 -- Function: taylor
          taylor (<expr>, <x>, <a>, <n>)
          taylor (<expr>, [<x_1>, <x_2>, ...], <a>, <n>)
          taylor (<expr>, [<x>, <a>, <n>, 'asymp])
          taylor (<expr>, [<x_1>, <x_2>, ...], [<a_1>, <a_2>, ...],
          [<n_1>, <n_2>, ...])
          taylor (<expr>, [<x_1>, <a_1>, <n_1>], [<x_2>, <a_2>, <n_2>],
          ...)

     'taylor (<expr>, <x>, <a>, <n>)' expands the expression <expr> in a
     truncated Taylor or Laurent series in the variable <x> around the
     point <a>, containing terms through '(<x> - <a>)^<n>'.

     If <expr> is of the form '<f>(<x>)/<g>(<x>)' and '<g>(<x>)' has no
     terms up to degree <n> then 'taylor' attempts to expand '<g>(<x>)'
     up to degree '2 <n>'.  If there are still no nonzero terms,
     'taylor' doubles the degree of the expansion of '<g>(<x>)' so long
     as the degree of the expansion is less than or equal to '<n>
     2^taylordepth'.

     'taylor (<expr>, [<x_1>, <x_2>, ...], <a>, <n>)' returns a
     truncated power series of degree <n> in all variables <x_1>, <x_2>,
     ... about the point '(<a>, <a>, ...)'.

     'taylor (<expr>, [<x_1>, <a_1>, <n_1>], [<x_2>, <a_2>, <n_2>],
     ...)' returns a truncated power series in the variables <x_1>,
     <x_2>, ... about the point '(<a_1>, <a_2>, ...)', truncated at
     <n_1>, <n_2>, ...

     'taylor (<expr>, [<x_1>, <x_2>, ...], [<a_1>, <a_2>, ...], [<n_1>,
     <n_2>, ...])' returns a truncated power series in the variables
     <x_1>, <x_2>, ... about the point '(<a_1>, <a_2>, ...)', truncated
     at <n_1>, <n_2>, ...

     'taylor (<expr>, [<x>, <a>, <n>, 'asymp])' returns an expansion of
     <expr> in negative powers of '<x> - <a>'.  The highest order term
     is '(<x> - <a>)^<-n>'.

     When 'maxtayorder' is 'true', then during algebraic manipulation of
     (truncated) Taylor series, 'taylor' tries to retain as many terms
     as are known to be correct.

     When 'psexpand' is 'true', an extended rational function expression
     is displayed fully expanded.  The switch 'ratexpand' has the same
     effect.  When 'psexpand' is 'false', a multivariate expression is
     displayed just as in the rational function package.  When
     'psexpand' is 'multi', then terms with the same total degree in the
     variables are grouped together.

     See also the 'taylor_logexpand' switch for controlling expansion.

     Examples:

          (%i1) taylor (sqrt (sin(x) + a*x + 1), x, 0, 3);
                                     2             2
                       (a + 1) x   (a  + 2 a + 1) x
          (%o1)/T/ 1 + --------- - -----------------
                           2               8

                                             3      2             3
                                         (3 a  + 9 a  + 9 a - 1) x
                                       + -------------------------- + . . .
                                                     48
          (%i2) %^2;
                                              3
                                             x
          (%o2)/T/           1 + (a + 1) x - -- + . . .
                                             6
          (%i3) taylor (sqrt (x + 1), x, 0, 5);
                                 2    3      4      5
                            x   x    x    5 x    7 x
          (%o3)/T/      1 + - - -- + -- - ---- + ---- + . . .
                            2   8    16   128    256
          (%i4) %^2;
          (%o4)/T/                  1 + x + . . .
          (%i5) product ((1 + x^i)^2.5, i, 1, inf)/(1 + x^2);
                                   inf
                                  /===\
                                   ! !    i     2.5
                                   ! !  (x  + 1)
                                   ! !
                                  i = 1
          (%o5)                   -----------------
                                        2
                                       x  + 1
          (%i6) ev (taylor(%, x,  0, 3), keepfloat);
                                         2           3
          (%o6)/T/    1 + 2.5 x + 3.375 x  + 6.5625 x  + . . .
          (%i7) taylor (1/log (x + 1), x, 0, 3);
                                         2       3
                           1   1   x    x    19 x
          (%o7)/T/         - + - - -- + -- - ----- + . . .
                           x   2   12   24    720
          (%i8) taylor (cos(x) - sec(x), x, 0, 5);
                                          4
                                     2   x
          (%o8)/T/                - x  - -- + . . .
                                         6
          (%i9) taylor ((cos(x) - sec(x))^3, x, 0, 5);
          (%o9)/T/                    0 + . . .
          (%i10) taylor (1/(cos(x) - sec(x))^3, x, 0, 5);
                                                         2          4
                      1     1       11      347    6767 x    15377 x
          (%o10)/T/ - -- + ---- + ------ - ----- - ------- - --------
                       6      4        2   15120   604800    7983360
                      x    2 x    120 x

                                                                    + . . .
          (%i11) taylor (sqrt (1 - k^2*sin(x)^2), x, 0, 6);
                         2  2       4      2   4
                        k  x    (3 k  - 4 k ) x
          (%o11)/T/ 1 - ----- - ----------------
                          2            24

                                              6       4       2   6
                                         (45 k  - 60 k  + 16 k ) x
                                       - -------------------------- + . . .
                                                    720
          (%i12) taylor ((x + 1)^n, x, 0, 4);
                                2       2     3      2         3
                              (n  - n) x    (n  - 3 n  + 2 n) x
          (%o12)/T/ 1 + n x + ----------- + --------------------
                                   2                 6

                                         4      3       2         4
                                       (n  - 6 n  + 11 n  - 6 n) x
                                     + ---------------------------- + . . .
                                                    24
          (%i13) taylor (sin (y + x), x, 0, 3, y, 0, 3);
                         3                 2
                        y                 y
          (%o13)/T/ y - -- + . . . + (1 - -- + . . .) x
                        6                 2

                              3                       2
                         y   y            2      1   y            3
                    + (- - + -- + . . .) x  + (- - + -- + . . .) x  + . . .
                         2   12                  6   12
          (%i14) taylor (sin (y + x), [x, y], 0, 3);
                               3        2      2      3
                              x  + 3 y x  + 3 y  x + y
          (%o14)/T/   y + x - ------------------------- + . . .
                                          6
          (%i15) taylor (1/sin (y + x), x, 0, 3, y, 0, 3);
                    1   y              1    1               1            2
          (%o15)/T/ - + - + . . . + (- -- + - + . . .) x + (-- + . . .) x
                    y   6               2   6                3
                                       y                    y

                                                     1            3
                                                + (- -- + . . .) x  + . . .
                                                      4
                                                     y
          (%i16) taylor (1/sin (y + x), [x, y], 0, 3);
                                       3         2       2        3
                      1     x + y   7 x  + 21 y x  + 21 y  x + 7 y
          (%o16)/T/ ----- + ----- + ------------------------------- + . . .
                    x + y     6                   360

 -- Option variable: taylordepth
     Default value: 3

     If there are still no nonzero terms, 'taylor' doubles the degree of
     the expansion of '<g>(<x>)' so long as the degree of the expansion
     is less than or equal to '<n> 2^taylordepth'.

 -- Function: taylorinfo (<expr>)

     Returns information about the Taylor series <expr>.  The return
     value is a list of lists.  Each list comprises the name of a
     variable, the point of expansion, and the degree of the expansion.

     'taylorinfo' returns 'false' if <expr> is not a Taylor series.

     Example:

          (%i1) taylor ((1 - y^2)/(1 - x), x, 0, 3, [y, a, inf]);
                            2                       2
          (%o1)/T/ - (y - a)  - 2 a (y - a) + (1 - a )

                   2                        2
           + (1 - a  - 2 a (y - a) - (y - a) ) x

                   2                        2   2
           + (1 - a  - 2 a (y - a) - (y - a) ) x

                   2                        2   3
           + (1 - a  - 2 a (y - a) - (y - a) ) x  + . . .
          (%i2) taylorinfo(%);
          (%o2)               [[y, a, inf], [x, 0, 3]]

 -- Function: taylorp (<expr>)

     Returns 'true' if <expr> is a Taylor series, and 'false' otherwise.

 -- Option variable: taylor_logexpand
     Default value: 'true'

     'taylor_logexpand' controls expansions of logarithms in 'taylor'
     series.

     When 'taylor_logexpand' is 'true', all logarithms are expanded
     fully so that zero-recognition problems involving logarithmic
     identities do not disturb the expansion process.  However, this
     scheme is not always mathematically correct since it ignores branch
     information.

     When 'taylor_logexpand' is set to 'false', then the only expansion
     of logarithms that occur is that necessary to obtain a formal power
     series.

 -- Option variable: taylor_order_coefficients
     Default value: 'true'

     'taylor_order_coefficients' controls the ordering of coefficients
     in a Taylor series.

     When 'taylor_order_coefficients' is 'true', coefficients of taylor
     series are ordered canonically.

 -- Function: taylor_simplifier (<expr>)

     Simplifies coefficients of the power series <expr>.  'taylor' calls
     this function.

 -- Option variable: taylor_truncate_polynomials
     Default value: 'true'

     When 'taylor_truncate_polynomials' is 'true', polynomials are
     truncated based upon the input truncation levels.

     Otherwise, polynomials input to 'taylor' are considered to have
     infinite precison.

 -- Function: taytorat (<expr>)

     Converts <expr> from 'taylor' form to canonical rational expression
     (CRE) form.  The effect is the same as 'rat (ratdisrep (<expr>))',
     but faster.

 -- Function: trunc (<expr>)

     Annotates the internal representation of the general expression
     <expr> so that it is displayed as if its sums were truncated Taylor
     series.  <expr> is not otherwise modified.

     Example:

          (%i1) expr: x^2 + x + 1;
                                      2
          (%o1)                      x  + x + 1
          (%i2) trunc (expr);
                                          2
          (%o2)                  1 + x + x  + . . .
          (%i3) is (expr = trunc (expr));
          (%o3)                         true

 -- Function: unsum (<f>, <n>)

     Returns the first backward difference '<f>(<n>) - <f>(<n> - 1)'.
     Thus 'unsum' in a sense is the inverse of 'sum'.

     See also 'nusum'.

     Examples:

          (%i1) g(p) := p*4^n/binomial(2*n,n);
                                               n
                                            p 4
          (%o1)               g(p) := ----------------
                                      binomial(2 n, n)
          (%i2) g(n^4);
                                        4  n
                                       n  4
          (%o2)                   ----------------
                                  binomial(2 n, n)
          (%i3) nusum (%, n, 0, n);
                               4        3       2              n
                2 (n + 1) (63 n  + 112 n  + 18 n  - 22 n + 3) 4      2
          (%o3) ------------------------------------------------ - ------
                              693 binomial(2 n, n)                 3 11 7
          (%i4) unsum (%, n);
                                        4  n
                                       n  4
          (%o4)                   ----------------
                                  binomial(2 n, n)

 -- Option variable: verbose
     Default value: 'false'

     When 'verbose' is 'true', 'powerseries' prints progress messages.


automatically generated by info2www version 1.2.2.9