(maxima.info)Functions and Variables for Symmetries


Prev: Introduction to Symmetries Up: Symmetries
Enter node , (file) or (file)node

30.2 Functions and Variables for Symmetries
===========================================

30.2.1 Changing bases
---------------------

 -- Function: comp2pui (<n>, <L>)
     implements passing from the complete symmetric functions given in
     the list <L> to the elementary symmetric functions from 0 to <n>.
     If the list <L> contains fewer than <n+1> elements, it will be
     completed with formal values of the type <h1>, <h2>, etc.  If the
     first element of the list <L> exists, it specifies the size of the
     alphabet, otherwise the size is set to <n>.

          (%i1) comp2pui (3, [4, g]);
                                  2                    2
          (%o1)    [4, g, 2 h2 - g , 3 h3 - g h2 + g (g  - 2 h2)]

 -- Function: ele2pui (<m>, <L>)
     goes from the elementary symmetric functions to the complete
     functions.  Similar to 'comp2ele' and 'comp2pui'.

     Other functions for changing bases: 'comp2ele'.

 -- Function: ele2comp (<m>, <L>)
     Goes from the elementary symmetric functions to the compete
     functions.  Similar to 'comp2ele' and 'comp2pui'.

     Other functions for changing bases: 'comp2ele'.

 -- Function: elem (<ele>, <sym>, <lvar>)
     decomposes the symmetric polynomial <sym>, in the variables
     contained in the list <lvar>, in terms of the elementary symmetric
     functions given in the list <ele>.  If the first element of <ele>
     is given, it will be the size of the alphabet, otherwise the size
     will be the degree of the polynomial <sym>.  If values are missing
     in the list <ele>, formal values of the type <e1>, <e2>, etc.  will
     be added.  The polynomial <sym> may be given in three different
     forms: contracted ('elem' should then be 1, its default value),
     partitioned ('elem' should be 3), or extended (i.e.  the entire
     polynomial, and 'elem' should then be 2).  The function 'pui' is
     used in the same way.

     On an alphabet of size 3 with <e1>, the first elementary symmetric
     function, with value 7, the symmetric polynomial in 3 variables
     whose contracted form (which here depends on only two of its
     variables) is <x^4-2*x*y> decomposes as follows in elementary
     symmetric functions:

          (%i1) elem ([3, 7], x^4 - 2*x*y, [x, y]);
          (%o1) 7 (e3 - 7 e2 + 7 (49 - e2)) + 21 e3

                                                   + (- 2 (49 - e2) - 2) e2
          (%i2) ratsimp (%);
                                        2
          (%o2)             28 e3 + 2 e2  - 198 e2 + 2401

     Other functions for changing bases: 'comp2ele'.

 -- Function: mon2schur (<L>)
     The list <L> represents the Schur function S_L: we have L = [i_1,
     i_2, ..., i_q], with i_1 <= i_2 <= ... <= i_q.  The Schur function
     S_[i_1, i_2, ..., i_q] is the minor of the infinite matrix h_[i-j],
     i <= 1, j <= 1, consisting of the q first rows and the columns 1 +
     i_1, 2 + i_2, ..., q + i_q.

     This Schur function can be written in terms of monomials by using
     'treinat' and 'kostka'.  The form returned is a symmetric
     polynomial in a contracted representation in the variables
     x_1,x_2,...

          (%i1) mon2schur ([1, 1, 1]);
          (%o1)                       x1 x2 x3
          (%i2) mon2schur ([3]);
                                            2        3
          (%o2)                x1 x2 x3 + x1  x2 + x1
          (%i3) mon2schur ([1, 2]);
                                                2
          (%o3)                  2 x1 x2 x3 + x1  x2

     which means that for 3 variables this gives:

             2 x1 x2 x3 + x1^2 x2 + x2^2 x1 + x1^2 x3 + x3^2 x1
              + x2^2 x3 + x3^2 x2
     Other functions for changing bases: 'comp2ele'.

 -- Function: multi_elem (<l_elem>, <multi_pc>, <l_var>)
     decomposes a multi-symmetric polynomial in the multi-contracted
     form <multi_pc> in the groups of variables contained in the list of
     lists <l_var> in terms of the elementary symmetric functions
     contained in <l_elem>.

          (%i1) multi_elem ([[2, e1, e2], [2, f1, f2]], a*x + a^2 + x^3,
                [[x, y], [a, b]]);
                                                            3
          (%o1)         - 2 f2 + f1 (f1 + e1) - 3 e1 e2 + e1
          (%i2) ratsimp (%);
                                   2                       3
          (%o2)         - 2 f2 + f1  + e1 f1 - 3 e1 e2 + e1

     Other functions for changing bases: 'comp2ele'.

 -- Function: multi_pui
     is to the function 'pui' what the function 'multi_elem' is to the
     function 'elem'.

          (%i1) multi_pui ([[2, p1, p2], [2, t1, t2]], a*x + a^2 + x^3,
                [[x, y], [a, b]]);
                                                      3
                                          3 p1 p2   p1
          (%o1)              t2 + p1 t1 + ------- - ---
                                             2       2

 -- Function: pui (<L>, <sym>, <lvar>)
     decomposes the symmetric polynomial <sym>, in the variables in the
     list <lvar>, in terms of the power functions in the list <L>.  If
     the first element of <L> is given, it will be the size of the
     alphabet, otherwise the size will be the degree of the polynomial
     <sym>.  If values are missing in the list <L>, formal values of the
     type <p1>, <p2> , etc.  will be added.  The polynomial <sym> may be
     given in three different forms: contracted ('elem' should then be
     1, its default value), partitioned ('elem' should be 3), or
     extended (i.e.  the entire polynomial, and 'elem' should then be
     2).  The function 'pui' is used in the same way.

          (%i1) pui;
          (%o1)                           1
          (%i2) pui ([3, a, b], u*x*y*z, [x, y, z]);
                                 2
                             a (a  - b) u   (a b - p3) u
          (%o2)              ------------ - ------------
                                  6              3
          (%i3) ratsimp (%);
                                                 3
                                (2 p3 - 3 a b + a ) u
          (%o3)                 ---------------------
                                          6
     Other functions for changing bases: 'comp2ele'.

 -- Function: pui2comp (<n>, <lpui>)
     renders the list of the first <n> complete functions (with the
     length first) in terms of the power functions given in the list
     <lpui>.  If the list <lpui> is empty, the cardinal is <n>,
     otherwise it is its first element (as in 'comp2ele' and
     'comp2pui').

          (%i1) pui2comp (2, []);
                                                 2
                                          p2 + p1
          (%o1)                   [2, p1, --------]
                                             2
          (%i2) pui2comp (3, [2, a1]);
                                                      2
                                           a1 (p2 + a1 )
                                   2  p3 + ------------- + a1 p2
                            p2 + a1              2
          (%o2)     [2, a1, --------, --------------------------]
                               2                  3
          (%i3) ratsimp (%);
                                      2                     3
                               p2 + a1   2 p3 + 3 a1 p2 + a1
          (%o3)        [2, a1, --------, --------------------]
                                  2               6
     Other functions for changing bases: 'comp2ele'.

 -- Function: pui2ele (<n>, <lpui>)
     effects the passage from power functions to the elementary
     symmetric functions.  If the flag 'pui2ele' is 'girard', it will
     return the list of elementary symmetric functions from 1 to <n>,
     and if the flag is 'close', it will return the <n>-th elementary
     symmetric function.

     Other functions for changing bases: 'comp2ele'.

 -- Function: puireduc (<n>, <lpui>)
     <lpui> is a list whose first element is an integer <m>.  'puireduc'
     gives the first <n> power functions in terms of the first <m>.

          (%i1) puireduc (3, [2]);
                                                   2
                                             p1 (p1  - p2)
          (%o1)          [2, p1, p2, p1 p2 - -------------]
                                                   2
          (%i2) ratsimp (%);
                                                     3
                                         3 p1 p2 - p1
          (%o2)              [2, p1, p2, -------------]
                                               2

 -- Function: schur2comp (<P>, <l_var>)
     <P> is a polynomial in the variables of the list <l_var>.  Each of
     these variables represents a complete symmetric function.  In
     <l_var> the <i>-th complete symmetric function is represented by
     the concatenation of the letter 'h' and the integer <i>: 'h<i>'.
     This function expresses <P> in terms of Schur functions.

          (%i1) schur2comp (h1*h2 - h3, [h1, h2, h3]);
          (%o1)                         s
                                         1, 2
          (%i2) schur2comp (a*h3, [h3]);
          (%o2)                         s  a
                                         3

30.2.2 Changing representations
-------------------------------

 -- Function: cont2part (<pc>, <lvar>)
     returns the partitioned polynomial associated to the contracted
     form <pc> whose variables are in <lvar>.

          (%i1) pc: 2*a^3*b*x^4*y + x^5;
                                     3    4      5
          (%o1)                   2 a  b x  y + x
          (%i2) cont2part (pc, [x, y]);
                                             3
          (%o2)              [[1, 5, 0], [2 a  b, 4, 1]]

 -- Function: contract (<psym>, <lvar>)
     returns a contracted form (i.e.  a monomial orbit under the action
     of the symmetric group) of the polynomial <psym> in the variables
     contained in the list <lvar>.  The function 'explose' performs the
     inverse operation.  The function 'tcontract' tests the symmetry of
     the polynomial.

          (%i1) psym: explose (2*a^3*b*x^4*y, [x, y, z]);
                   3      4      3      4      3    4        3    4
          (%o1) 2 a  b y z  + 2 a  b x z  + 2 a  b y  z + 2 a  b x  z

                                                     3      4      3    4
                                                + 2 a  b x y  + 2 a  b x  y
          (%i2) contract (psym, [x, y, z]);
                                        3    4
          (%o2)                      2 a  b x  y

 -- Function: explose (<pc>, <lvar>)
     returns the symmetric polynomial associated with the contracted
     form <pc>.  The list <lvar> contains the variables.

          (%i1) explose (a*x + 1, [x, y, z]);
          (%o1)                  a z + a y + a x + 1

 -- Function: part2cont (<ppart>, <lvar>)
     goes from the partitioned form to the contracted form of a
     symmetric polynomial.  The contracted form is rendered with the
     variables in <lvar>.

          (%i1) part2cont ([[2*a^3*b, 4, 1]], [x, y]);
                                        3    4
          (%o1)                      2 a  b x  y

 -- Function: partpol (<psym>, <lvar>)
     <psym> is a symmetric polynomial in the variables of the list
     <lvar>.  This function retturns its partitioned representation.

          (%i1) partpol (-a*(x + y) + 3*x*y, [x, y]);
          (%o1)               [[3, 1, 1], [- a, 1, 0]]

 -- Function: tcontract (<pol>, <lvar>)
     tests if the polynomial <pol> is symmetric in the variables of the
     list <lvar>.  If so, it returns a contracted representation like
     the function 'contract'.

 -- Function: tpartpol (<pol>, <lvar>)
     tests if the polynomial <pol> is symmetric in the variables of the
     list <lvar>.  If so, it returns its partitioned representation like
     the function 'partpol'.

30.2.3 Groups and orbits
------------------------

 -- Function: direct ([<p_1>, ..., <p_n>], <y>, <f>, [<lvar_1>, ...,
          <lvar_n>])
     calculates the direct image (see M. Giusti, D. Lazard et A.
     Valibouze, ISSAC 1988, Rome) associated to the function <f>, in the
     lists of variables <lvar_1>, ..., <lvar_n>, and in the polynomials
     <p_1>, ..., <p_n> in a variable <y>.  The arity of the function <f>
     is important for the calulation.  Thus, if the expression for <f>
     does not depend on some variable, it is useless to include this
     variable, and not including it will also considerably reduce the
     amount of computation.

          (%i1) direct ([z^2  - e1* z + e2, z^2  - f1* z + f2],
                        z, b*v + a*u, [[u, v], [a, b]]);
                 2
          (%o1) y  - e1 f1 y

                                           2            2             2   2
                            - 4 e2 f2 - (e1  - 2 e2) (f1  - 2 f2) + e1  f1
                          + -----------------------------------------------
                                                   2
          (%i2) ratsimp (%);
                        2                2                   2
          (%o2)        y  - e1 f1 y + (e1  - 4 e2) f2 + e2 f1
          (%i3) ratsimp (direct ([z^3-e1*z^2+e2*z-e3,z^2  - f1* z + f2],
                        z, b*v + a*u, [[u, v], [a, b]]));
                 6            5         2                        2    2   4
          (%o3) y  - 2 e1 f1 y  + ((2 e1  - 6 e2) f2 + (2 e2 + e1 ) f1 ) y

                                    3                               3   3
           + ((9 e3 + 5 e1 e2 - 2 e1 ) f1 f2 + (- 2 e3 - 2 e1 e2) f1 ) y

                   2       2        4    2
           + ((9 e2  - 6 e1  e2 + e1 ) f2

                              2       2       2                   2    4
           + (- 9 e1 e3 - 6 e2  + 3 e1  e2) f1  f2 + (2 e1 e3 + e2 ) f1 )

            2          2                      2     3          2
           y  + (((9 e1  - 27 e2) e3 + 3 e1 e2  - e1  e2) f1 f2

                           2            2    3                5
           + ((15 e2 - 2 e1 ) e3 - e1 e2 ) f1  f2 - 2 e2 e3 f1 ) y

                     2                   3           3     2   2    3
           + (- 27 e3  + (18 e1 e2 - 4 e1 ) e3 - 4 e2  + e1  e2 ) f2

                   2      3                   3    2   2
           + (27 e3  + (e1  - 9 e1 e2) e3 + e2 ) f1  f2

                             2    4        2   6
           + (e1 e2 e3 - 9 e3 ) f1  f2 + e3  f1

     Finding the polynomial whose roots are the sums a+u where a is a
     root of z^2 - e_1 z + e_2 and u is a root of z^2 - f_1 z + f_2.

          (%i1) ratsimp (direct ([z^2 - e1* z + e2, z^2 - f1* z + f2],
                                    z, a + u, [[u], [a]]));
                 4                    3             2
          (%o1) y  + (- 2 f1 - 2 e1) y  + (2 f2 + f1  + 3 e1 f1 + 2 e2

               2   2                              2               2
           + e1 ) y  + ((- 2 f1 - 2 e1) f2 - e1 f1  + (- 2 e2 - e1 ) f1

                            2                     2            2
           - 2 e1 e2) y + f2  + (e1 f1 - 2 e2 + e1 ) f2 + e2 f1  + e1 e2 f1

               2
           + e2

     'direct' accepts two flags: 'elementaires' and 'puissances'
     (default) which allow decomposing the symmetric polynomials
     appearing in the calculation into elementary symmetric functions,
     or power functions, respectively.

     Functions of 'sym' used in this function:

     'multi_orbit' (so 'orbit'), 'pui_direct', 'multi_elem' (so 'elem'),
     'multi_pui' (so 'pui'), 'pui2ele', 'ele2pui' (if the flag 'direct'
     is in 'puissances').

 -- Function: multi_orbit (<P>, [<lvar_1>, <lvar_2>,..., <lvar_p>])

     <P> is a polynomial in the set of variables contained in the lists
     <lvar_1>, <lvar_2>, ..., <lvar_p>.  This function returns the orbit
     of the polynomial <P> under the action of the product of the
     symmetric groups of the sets of variables represented in these <p>
     lists.

          (%i1) multi_orbit (a*x + b*y, [[x, y], [a, b]]);
          (%o1)                [b y + a x, a y + b x]
          (%i2) multi_orbit (x + y + 2*a, [[x, y], [a, b, c]]);
          (%o2)        [y + x + 2 c, y + x + 2 b, y + x + 2 a]
     Also see: 'orbit' for the action of a single symmetric group.

 -- Function: multsym (<ppart_1>, <ppart_2>, <n>)
     returns the product of the two symmetric polynomials in <n>
     variables by working only modulo the action of the symmetric group
     of order <n>.  The polynomials are in their partitioned form.

     Given the 2 symmetric polynomials in <x>, <y>: '3*(x + y) + 2*x*y'
     and '5*(x^2 + y^2)' whose partitioned forms are '[[3, 1], [2, 1,
     1]]' and '[[5, 2]]', their product will be

          (%i1) multsym ([[3, 1], [2, 1, 1]], [[5, 2]], 2);
          (%o1)         [[10, 3, 1], [15, 3, 0], [15, 2, 1]]
     that is '10*(x^3*y + y^3*x) + 15*(x^2*y + y^2*x) + 15*(x^3 + y^3)'.

     Functions for changing the representations of a symmetric
     polynomial:

     'contract', 'cont2part', 'explose', 'part2cont', 'partpol',
     'tcontract', 'tpartpol'.

 -- Function: orbit (<P>, <lvar>)
     computes the orbit of the polynomial <P> in the variables in the
     list <lvar> under the action of the symmetric group of the set of
     variables in the list <lvar>.

          (%i1) orbit (a*x + b*y, [x, y]);
          (%o1)                [a y + b x, b y + a x]
          (%i2) orbit (2*x + x^2, [x, y]);
                                  2         2
          (%o2)                 [y  + 2 y, x  + 2 x]
     See also 'multi_orbit' for the action of a product of symmetric
     groups on a polynomial.

 -- Function: pui_direct (<orbite>, [<lvar_1>, ..., <lvar_n>], [<d_1>,
          <d_2>, ..., <d_n>])

     Let <f> be a polynomial in <n> blocks of variables <lvar_1>, ...,
     <lvar_n>.  Let <c_i> be the number of variables in <lvar_i>, and
     <SC> be the product of <n> symmetric groups of degree <c_1>, ...,
     <c_n>.  This group acts naturally on <f>.  The list <orbite> is the
     orbit, denoted '<SC>(<f>)', of the function <f> under the action of
     <SC>.  (This list may be obtained by the function 'multi_orbit'.)
     The <di> are integers s.t.  c_1 <= d_1, c_2 <= d_2, ..., c_n <=
     d_n.

     Let <SD> be the product of the symmetric groups S_[d_1] x S_[d_2] x
     ... x S_[d_n].  The function 'pui_direct' returns the first <n>
     power functions of '<SD>(<f>)' deduced from the power functions of
     '<SC>(<f>)', where <n> is the size of '<SD>(<f>)'.

     The result is in multi-contracted form w.r.t.  <SD>, i.e.  only one
     element is kept per orbit, under the action of <SD>.

          (%i1) l: [[x, y], [a, b]];
          (%o1)                   [[x, y], [a, b]]
          (%i2) pui_direct (multi_orbit (a*x + b*y, l), l, [2, 2]);
                                                 2  2
          (%o2)               [a x, 4 a b x y + a  x ]
          (%i3) pui_direct (multi_orbit (a*x + b*y, l), l, [3, 2]);
                                       2  2     2    2        3  3
          (%o3) [2 a x, 4 a b x y + 2 a  x , 3 a  b x  y + 2 a  x ,

              2  2  2  2      3    3        4  4
          12 a  b  x  y  + 4 a  b x  y + 2 a  x ,

              3  2  3  2      4    4        5  5
          10 a  b  x  y  + 5 a  b x  y + 2 a  x ,

              3  3  3  3       4  2  4  2      5    5        6  6
          40 a  b  x  y  + 15 a  b  x  y  + 6 a  b x  y + 2 a  x ]
          (%i4) pui_direct ([y + x + 2*c, y + x + 2*b, y + x + 2*a],
                [[x, y], [a, b, c]], [2, 3]);
                                       2              2
          (%o4) [3 x + 2 a, 6 x y + 3 x  + 4 a x + 4 a ,

                           2                   3        2       2        3
                        9 x  y + 12 a x y + 3 x  + 6 a x  + 12 a  x + 8 a ]

30.2.4 Partitions
-----------------

 -- Function: kostka (<part_1>, <part_2>)
     written by P. Esperet, calculates the Kostka number of the
     partition <part_1> and <part_2>.

          (%i1) kostka ([3, 3, 3], [2, 2, 2, 1, 1, 1]);
          (%o1)                           6

 -- Function: lgtreillis (<n>, <m>)
     returns the list of partitions of weight <n> and length <m>.

          (%i1) lgtreillis (4, 2);
          (%o1)                   [[3, 1], [2, 2]]
     Also see: 'ltreillis', 'treillis' and 'treinat'.

 -- Function: ltreillis (<n>, <m>)
     returns the list of partitions of weight <n> and length less than
     or equal to <m>.

          (%i1) ltreillis (4, 2);
          (%o1)               [[4, 0], [3, 1], [2, 2]]
     Also see: 'lgtreillis', 'treillis' and 'treinat'.

 -- Function: treillis (<n>)
     returns all partitions of weight <n>.

          (%i1) treillis (4);
          (%o1)    [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]

     See also: 'lgtreillis', 'ltreillis' and 'treinat'.

 -- Function: treinat (<part>)
     retruns the list of partitions inferior to the partition <part>
     w.r.t.  the natural order.

          (%i1) treinat ([5]);
          (%o1)                         [[5]]
          (%i2) treinat ([1, 1, 1, 1, 1]);
          (%o2) [[5], [4, 1], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1],

                                                           [1, 1, 1, 1, 1]]
          (%i3) treinat ([3, 2]);
          (%o3)                 [[5], [4, 1], [3, 2]]

     See also: 'lgtreillis', 'ltreillis' and 'treillis'.

30.2.5 Polynomials and their roots
----------------------------------

 -- Function: ele2polynome (<L>, <z>)
     returns the polynomial in <z> s.t.  the elementary symmetric
     functions of its roots are in the list '<L> = [<n>, <e_1>, ...,
     <e_n>]', where <n> is the degree of the polynomial and <e_i> the
     <i>-th elementary symmetric function.

          (%i1) ele2polynome ([2, e1, e2], z);
                                    2
          (%o1)                    z  - e1 z + e2
          (%i2) polynome2ele (x^7 - 14*x^5 + 56*x^3  - 56*x + 22, x);
          (%o2)          [7, 0, - 14, 0, 56, 0, - 56, - 22]
          (%i3) ele2polynome ([7, 0, -14, 0, 56, 0, -56, -22], x);
                            7       5       3
          (%o3)            x  - 14 x  + 56 x  - 56 x + 22
     The inverse: 'polynome2ele (<P>, <z>)'.

     Also see: 'polynome2ele', 'pui2polynome'.

 -- Function: polynome2ele (<P>, <x>)
     gives the list '<l> = [<n>, <e_1>, ..., <e_n>]' where <n> is the
     degree of the polynomial <P> in the variable <x> and <e_i> is the
     <i>-the elementary symmetric function of the roots of <P>.

          (%i1) polynome2ele (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x);
          (%o1)          [7, 0, - 14, 0, 56, 0, - 56, - 22]
          (%i2) ele2polynome ([7, 0, -14, 0, 56, 0, -56, -22], x);
                            7       5       3
          (%o2)            x  - 14 x  + 56 x  - 56 x + 22
     The inverse: 'ele2polynome (<l>, <x>)'

 -- Function: prodrac (<L>, <k>)
     <L> is a list containing the elementary symmetric functions on a
     set <A>.  'prodrac' returns the polynomial whose roots are the <k>
     by <k> products of the elements of <A>.

     Also see 'somrac'.

 -- Function: pui2polynome (<x>, <lpui>)
     calculates the polynomial in <x> whose power functions of the roots
     are given in the list <lpui>.

          (%i1) pui;
          (%o1)                           1
          (%i2) kill(labels);
          (%o0)                         done
          (%i1) polynome2ele (x^3 - 4*x^2 + 5*x - 1, x);
          (%o1)                     [3, 4, 5, 1]
          (%i2) ele2pui (3, %);
          (%o2)                     [3, 4, 6, 7]
          (%i3) pui2polynome (x, %);
                                  3      2
          (%o3)                  x  - 4 x  + 5 x - 1
     See also: 'polynome2ele', 'ele2polynome'.

 -- Function: somrac (<L>, <k>)
     The list <L> contains elementary symmetric functions of a
     polynomial <P> .  The function computes the polynomial whose roots
     are the <k> by <k> distinct sums of the roots of <P>.

     Also see 'prodrac'.

30.2.6 Resolvents
-----------------

 -- Function: resolvante (<P>, <x>, <f>, [<x_1>,..., <x_d>])
     calculates the resolvent of the polynomial <P> in <x> of degree <n>
     >= <d> by the function <f> expressed in the variables <x_1>, ...,
     <x_d>.  For efficiency of computation it is important to not
     include in the list '[<x_1>, ..., <x_d>]' variables which do not
     appear in the transformation function <f>.

     To increase the efficiency of the computation one may set flags in
     'resolvante' so as to use appropriate algorithms:

     If the function <f> is unitary:
        * A polynomial in a single variable,
        * linear,
        * alternating,
        * a sum,
        * symmetric,
        * a product,
        * the function of the Cayley resolvent (usable up to degree 5)

               (x1*x2 + x2*x3 + x3*x4 + x4*x5 + x5*x1 -
                    (x1*x3 + x3*x5 + x5*x2 + x2*x4 + x4*x1))^2

          general,
     the flag of 'resolvante' may be, respectively:
        * unitaire,
        * lineaire,
        * alternee,
        * somme,
        * produit,
        * cayley,
        * generale.

          (%i1) resolvante: unitaire$
          (%i2) resolvante (x^7 - 14*x^5 + 56*x^3 - 56*x + 22, x, x^3 - 1,
                [x]);

          " resolvante unitaire " [7, 0, 28, 0, 168, 0, 1120, - 154, 7840,
                                   - 2772, 56448, - 33880,

          413952, - 352352, 3076668, - 3363360, 23114112, - 30494464,

          175230832, - 267412992, 1338886528, - 2292126760]
            3       6      3       9      6      3
          [x  - 1, x  - 2 x  + 1, x  - 3 x  + 3 x  - 1,

           12      9      6      3       15      12       9       6      3
          x   - 4 x  + 6 x  - 4 x  + 1, x   - 5 x   + 10 x  - 10 x  + 5 x

                 18      15       12       9       6      3
           - 1, x   - 6 x   + 15 x   - 20 x  + 15 x  - 6 x  + 1,

           21      18       15       12       9       6      3
          x   - 7 x   + 21 x   - 35 x   + 35 x  - 21 x  + 7 x  - 1]
          [- 7, 1127, - 6139, 431767, - 5472047, 201692519, - 3603982011]
                 7      6        5         4          3           2
          (%o2) y  + 7 y  - 539 y  - 1841 y  + 51443 y  + 315133 y

                                                        + 376999 y + 125253
          (%i3) resolvante: lineaire$
          (%i4) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3]);

          " resolvante lineaire "
                 24       20         16            12             8
          (%o4) y   + 80 y   + 7520 y   + 1107200 y   + 49475840 y

                                                              4
                                                 + 344489984 y  + 655360000
          (%i5) resolvante: general$
          (%i6) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3]);

          " resolvante generale "
                 24       20         16            12             8
          (%o6) y   + 80 y   + 7520 y   + 1107200 y   + 49475840 y

                                                              4
                                                 + 344489984 y  + 655360000
          (%i7) resolvante (x^4 - 1, x, x1 + 2*x2 + 3*x3, [x1, x2, x3, x4]);

          " resolvante generale "
                 24       20         16            12             8
          (%o7) y   + 80 y   + 7520 y   + 1107200 y   + 49475840 y

                                                              4
                                                 + 344489984 y  + 655360000
          (%i8) direct ([x^4 - 1], x, x1 + 2*x2 + 3*x3, [[x1, x2, x3]]);
                 24       20         16            12             8
          (%o8) y   + 80 y   + 7520 y   + 1107200 y   + 49475840 y

                                                              4
                                                 + 344489984 y  + 655360000
          (%i9) resolvante :lineaire$
          (%i10) resolvante (x^4 - 1, x, x1 + x2 + x3, [x1, x2, x3]);

          " resolvante lineaire "
                                        4
          (%o10)                       y  - 1
          (%i11) resolvante: symetrique$
          (%i12) resolvante (x^4 - 1, x, x1 + x2 + x3, [x1, x2, x3]);

          " resolvante symetrique "
                                        4
          (%o12)                       y  - 1
          (%i13) resolvante (x^4 + x + 1, x, x1 - x2, [x1, x2]);

          " resolvante symetrique "
                                     6      2
          (%o13)                    y  - 4 y  - 1
          (%i14) resolvante: alternee$
          (%i15) resolvante (x^4 + x + 1, x, x1 - x2, [x1, x2]);

          " resolvante alternee "
                      12      8       6        4        2
          (%o15)     y   + 8 y  + 26 y  - 112 y  + 216 y  + 229
          (%i16) resolvante: produit$
          (%i17) resolvante (x^7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]);

          " resolvante produit "
                  35      33         29        28         27        26
          (%o17) y   - 7 y   - 1029 y   + 135 y   + 7203 y   - 756 y

                   24           23          22            21           20
           + 1323 y   + 352947 y   - 46305 y   - 2463339 y   + 324135 y

                    19           18             17              15
           - 30618 y   - 453789 y   - 40246444 y   + 282225202 y

                       14              12             11            10
           - 44274492 y   + 155098503 y   + 12252303 y   + 2893401 y

                        9            8            7             6
           - 171532242 y  + 6751269 y  + 2657205 y  - 94517766 y

                      5             3
           - 3720087 y  + 26040609 y  + 14348907
          (%i18) resolvante: symetrique$
          (%i19) resolvante (x^7 - 7*x + 3, x, x1*x2*x3, [x1, x2, x3]);

          " resolvante symetrique "
                  35      33         29        28         27        26
          (%o19) y   - 7 y   - 1029 y   + 135 y   + 7203 y   - 756 y

                   24           23          22            21           20
           + 1323 y   + 352947 y   - 46305 y   - 2463339 y   + 324135 y

                    19           18             17              15
           - 30618 y   - 453789 y   - 40246444 y   + 282225202 y

                       14              12             11            10
           - 44274492 y   + 155098503 y   + 12252303 y   + 2893401 y

                        9            8            7             6
           - 171532242 y  + 6751269 y  + 2657205 y  - 94517766 y

                      5             3
           - 3720087 y  + 26040609 y  + 14348907
          (%i20) resolvante: cayley$
          (%i21) resolvante (x^5 - 4*x^2 + x + 1, x, a, []);

          " resolvante de Cayley "
                  6       5         4          3            2
          (%o21) x  - 40 x  + 4080 x  - 92928 x  + 3772160 x  + 37880832 x

                                                                 + 93392896

     For the Cayley resolvent, the 2 last arguments are neutral and the
     input polynomial must necessarily be of degree 5.

     See also:
     'resolvante_bipartite', 'resolvante_produit_sym',
     'resolvante_unitaire', 'resolvante_alternee1', 'resolvante_klein',
     'resolvante_klein3', 'resolvante_vierer', 'resolvante_diedrale'.

 -- Function: resolvante_alternee1 (<P>, <x>)
     calculates the transformation '<P>(<x>)' of degree <n> by the
     function product(x_i - x_j, 1 <= i < j <= n - 1).

     See also:
     'resolvante_produit_sym', 'resolvante_unitaire',
     'resolvante', 'resolvante_klein', 'resolvante_klein3',
     'resolvante_vierer', 'resolvante_diedrale', 'resolvante_bipartite'.

 -- Function: resolvante_bipartite (<P>, <x>)
     calculates the transformation of '<P>(<x>)' of even degree <n> by
     the function x_1 x_2 ... x_[n/2] + x_[n/2 + 1] ... x_n.

          (%i1) resolvante_bipartite (x^6 + 108, x);
                        10        8           6             4
          (%o1)        y   - 972 y  + 314928 y  - 34012224 y

     See also:
     'resolvante_produit_sym', 'resolvante_unitaire',
     'resolvante', 'resolvante_klein', 'resolvante_klein3',
     'resolvante_vierer', 'resolvante_diedrale', 'resolvante_alternee1'.

 -- Function: resolvante_diedrale (<P>, <x>)
     calculates the transformation of '<P>(<x>)' by the function '<x_1>
     <x_2> + <x_3> <x_4>'.

          (%i1) resolvante_diedrale (x^5 - 3*x^4 + 1, x);
                 15       12       11       10        9         8         7
          (%o1) x   - 21 x   - 81 x   - 21 x   + 207 x  + 1134 x  + 2331 x

                  6         5          4          3          2
           - 945 x  - 4970 x  - 18333 x  - 29079 x  - 20745 x  - 25326 x

           - 697

     See also:
     'resolvante_produit_sym', 'resolvante_unitaire',
     'resolvante_alternee1', 'resolvante_klein', 'resolvante_klein3',
     'resolvante_vierer', 'resolvante'.

 -- Function: resolvante_klein (<P>, <x>)
     calculates the transformation of '<P>(<x>)' by the function '<x_1>
     <x_2> <x_4> + <x_4>'.

     See also:
     'resolvante_produit_sym', 'resolvante_unitaire',
     'resolvante_alternee1', 'resolvante', 'resolvante_klein3',
     'resolvante_vierer', 'resolvante_diedrale'.

 -- Function: resolvante_klein3 (<P>, <x>)
     calculates the transformation of '<P>(<x>)' by the function '<x_1>
     <x_2> <x_4> + <x_4>'.

     See also:
     'resolvante_produit_sym', 'resolvante_unitaire',
     'resolvante_alternee1', 'resolvante_klein', 'resolvante',
     'resolvante_vierer', 'resolvante_diedrale'.

 -- Function: resolvante_produit_sym (<P>, <x>)
     calculates the list of all product resolvents of the polynomial
     '<P>(<x>)'.

          (%i1) resolvante_produit_sym (x^5 + 3*x^4 + 2*x - 1, x);
                  5      4             10      8       7       6       5
          (%o1) [y  + 3 y  + 2 y - 1, y   - 2 y  - 21 y  - 31 y  - 14 y

              4       3      2       10      8       7    6       5       4
           - y  + 14 y  + 3 y  + 1, y   + 3 y  + 14 y  - y  - 14 y  - 31 y

                 3      2       5      4
           - 21 y  - 2 y  + 1, y  - 2 y  - 3 y - 1, y - 1]
          (%i2) resolvante: produit$
          (%i3) resolvante (x^5 + 3*x^4 + 2*x - 1, x, a*b*c, [a, b, c]);

          " resolvante produit "
                 10      8       7    6        5       4       3     2
          (%o3) y   + 3 y  + 14 y  - y  - 14 y  - 31 y  - 21 y  - 2 y  + 1

     See also:
     'resolvante', 'resolvante_unitaire',
     'resolvante_alternee1', 'resolvante_klein',
     'resolvante_klein3', 'resolvante_vierer',
     'resolvante_diedrale'.

 -- Function: resolvante_unitaire (<P>, <Q>, <x>)
     computes the resolvent of the polynomial '<P>(<x>)' by the
     polynomial '<Q>(<x>)'.

     See also:
     'resolvante_produit_sym', 'resolvante',
     'resolvante_alternee1', 'resolvante_klein', 'resolvante_klein3',
     'resolvante_vierer', 'resolvante_diedrale'.

 -- Function: resolvante_vierer (<P>, <x>)
     computes the transformation of '<P>(<x>)' by the function '<x_1>
     <x_2> - <x_3> <x_4>'.

     See also:
     'resolvante_produit_sym', 'resolvante_unitaire',
     'resolvante_alternee1', 'resolvante_klein', 'resolvante_klein3',
     'resolvante', 'resolvante_diedrale'.

30.2.7 Miscellaneous
--------------------

 -- Function: multinomial (<r>, <part>)
     where <r> is the weight of the partition <part>.  This function
     returns the associate multinomial coefficient: if the parts of
     <part> are <i_1>, <i_2>, ..., <i_k>, the result is '<r>!/(<i_1>!
     <i_2>! ... <i_k>!)'.

 -- Function: permut (<L>)
     returns the list of permutations of the list <L>.


automatically generated by info2www version 1.2.2.9