(maxima.info)Functions and Variables for grobner


Prev: Introduction to grobner Up: Top
Enter node , (file) or (file)node

63.2 Functions and Variables for grobner
========================================

63.2.1 Global switches for grobner
----------------------------------

 -- Option variable: poly_monomial_order
     Default value: 'lex'

     This global switch controls which monomial order is used in
     polynomial and Groebner Bases calculations.  If not set, 'lex' will
     be used.

 -- Option variable: poly_coefficient_ring
     Default value: 'expression_ring'

     This switch indicates the coefficient ring of the polynomials that
     will be used in grobner calculations.  If not set, _maxima's_
     general expression ring will be used.  This variable may be set to
     'ring_of_integers' if desired.

 -- Option variable: poly_primary_elimination_order
     Default value: 'false'

     Name of the default order for eliminated variables in
     elimination-based functions.  If not set, 'lex' will be used.

 -- Option variable: poly_secondary_elimination_order
     Default value: 'false'

     Name of the default order for kept variables in elimination-based
     functions.  If not set, 'lex' will be used.

 -- Option variable: poly_elimination_order
     Default value: 'false'

     Name of the default elimination order used in elimination
     calculations.  If set, it overrides the settings in variables
     'poly_primary_elimination_order' and
     'poly_secondary_elimination_order'.  The user must ensure that this
     is a true elimination order valid for the number of eliminated
     variables.

 -- Option variable: poly_return_term_list
     Default value: 'false'

     If set to 'true', all functions in this package will return each
     polynomial as a list of terms in the current monomial order rather
     than a _maxima_ general expression.

 -- Option variable: poly_grobner_debug
     Default value: 'false'

     If set to 'true', produce debugging and tracing output.

 -- Option variable: poly_grobner_algorithm
     Default value: 'buchberger'

     Possible values:
        * 'buchberger'
        * 'parallel_buchberger'
        * 'gebauer_moeller'

     The name of the algorithm used to find the Groebner Bases.

 -- Option variable: poly_top_reduction_only
     Default value: 'false'

     If not 'false', use top reduction only whenever possible.  Top
     reduction means that division algorithm stops after the first
     reduction.

63.2.2 Simple operators in grobner
----------------------------------

'poly_add', 'poly_subtract', 'poly_multiply' and 'poly_expt' are the
arithmetical operations on polynomials.  These are performed using the
internal representation, but the results are converted back to the
_maxima_ general form.

 -- Function: poly_add (<poly1>, <poly2>, <varlist>)
     Adds two polynomials <poly1> and <poly2>.

          (%i1) poly_add(z+x^2*y,x-z,[x,y,z]);
                                              2
          (%o1)                              x  y + x

 -- Function: poly_subtract (<poly1>, <poly2>, <varlist>)
     Subtracts a polynomial <poly2> from <poly1>.

          (%i1) poly_subtract(z+x^2*y,x-z,[x,y,z]);
                                                2
          (%o1)                          2 z + x  y - x

 -- Function: poly_multiply (<poly1>, <poly2>, <varlist>)
     Returns the product of polynomials <poly1> and <poly2>.

          (%i2) poly_multiply(z+x^2*y,x-z,[x,y,z])-(z+x^2*y)*(x-z),expand;
          (%o1)                                  0

 -- Function: poly_s_polynomial (<poly1>, <poly2>, <varlist>)
     Returns the _syzygy polynomial_ (_S-polynomial_) of two polynomials
     <poly1> and <poly2>.

 -- Function: poly_primitive_part (<poly1>, <varlist>)
     Returns the polynomial <poly> divided by the GCD of its
     coefficients.

          (%i1) poly_primitive_part(35*y+21*x,[x,y]);
          (%o1)                              5 y + 3 x

 -- Function: poly_normalize (<poly>, <varlist>)
     Returns the polynomial <poly> divided by the leading coefficient.
     It assumes that the division is possible, which may not always be
     the case in rings which are not fields.

63.2.3 Other functions in grobner
---------------------------------

 -- Function: poly_expand (<poly>, <varlist>)
     This function parses polynomials to internal form and back.  It is
     equivalent to 'expand(<poly>)' if <poly> parses correctly to a
     polynomial.  If the representation is not compatible with a
     polynomial in variables <varlist>, the result is an error.  It can
     be used to test whether an expression correctly parses to the
     internal representation.  The following examples illustrate that
     indexed and transcendental function variables are allowed.

          (%i1) poly_expand((x-y)*(y+x),[x,y]);
                                               2    2
          (%o1)                               x  - y
          (%i2) poly_expand((y+x)^2,[x,y]);
                                          2            2
          (%o2)                          y  + 2 x y + x
          (%i3) poly_expand((y+x)^5,[x,y]);
                            5      4         2  3       3  2      4      5
          (%o3)            y  + 5 x y  + 10 x  y  + 10 x  y  + 5 x  y + x
          (%i4) poly_expand(-1-x*exp(y)+x^2/sqrt(y),[x]);
                                                    2
                                            y      x
          (%o4)                       - x %e  + ------- - 1
                                                 sqrt(y)

          (%i5) poly_expand(-1-sin(x)^2+sin(x),[sin(x)]);
                                          2
          (%o5)                      - sin (x) + sin(x) - 1


 -- Function: poly_expt (<poly>, <number>, <varlist>)
     exponentitates <poly> by a positive integer <number>.  If <number>
     is not a positive integer number an error will be raised.

          (%i1) poly_expt(x-y,3,[x,y])-(x-y)^3,expand;
          (%o1)                                  0

 -- Function: poly_content (<poly>. <varlist>)
     'poly_content' extracts the GCD of its coefficients

          (%i1) poly_content(35*y+21*x,[x,y]);
          (%o1)                                  7

 -- Function: poly_pseudo_divide (<poly>, <polylist>, <varlist>)
     Pseudo-divide a polynomial <poly> by the list of n polynomials
     <polylist>.  Return multiple values.  The first value is a list of
     quotients a.  The second value is the remainder r.  The third
     argument is a scalar coefficient c, such that c*poly can be divided
     by <polylist> within the ring of coefficients, which is not
     necessarily a field.  Finally, the fourth value is an integer count
     of the number of reductions performed.  The resulting objects
     satisfy the equation:

     c*poly=sum(a[i]*polylist[i],i=1...n)+r.

 -- Function: poly_exact_divide (<poly1>, <poly2>, <varlist>)
     Divide a polynomial <poly1> by another polynomial <poly2>.  Assumes
     that exact division with no remainder is possible.  Returns the
     quotient.

 -- Function: poly_normal_form (<poly>, <polylist>, <varlist>)
     'poly_normal_form' finds the normal form of a polynomial <poly>
     with respect to a set of polynomials <polylist>.

 -- Function: poly_buchberger_criterion (<polylist>, <varlist>)
     Returns 'true' if <polylist> is a Groebner basis with respect to
     the current term order, by using the Buchberger criterion: for
     every two polynomials h1 and h2 in <polylist> the S-polynomial
     S(h1,h2) reduces to 0 modulo <polylist>.

 -- Function: poly_buchberger (<polylist_fl> <varlist>)
     'poly_buchberger' performs the Buchberger algorithm on a list of
     polynomials and returns the resulting Groebner basis.

63.2.4 Standard postprocessing of Groebner Bases
------------------------------------------------

The _k-th elimination Ideal_ I_k of an Ideal I over K[ x[1],...,x[n] ]
is the ideal intersect(I, K[ x[k+1],...,x[n] ]).
The _colon ideal_ I:J is the ideal {h|for all w in J: w*h in I}.
The ideal I:p^inf is the ideal {h| there is a n in N: p^n*h in I}.
The ideal I:J^inf is the ideal {h| there is a n in N and a p in J: p^n*h
in I}.
The _radical ideal_ sqrt(I) is the ideal {h| there is a n in N : h^n in
I }.

 -- Function: poly_reduction (<polylist>, <varlist>)
     'poly_reduction' reduces a list of polynomials <polylist>, so that
     each polynomial is fully reduced with respect to the other
     polynomials.

 -- Function: poly_minimization (<polylist>, <varlist>)
     Returns a sublist of the polynomial list <polylist> spanning the
     same monomial ideal as <polylist> but minimal, i.e.  no leading
     monomial of a polynomial in the sublist divides the leading
     monomial of another polynomial.

 -- Function: poly_normalize_list (<polylist>, <varlist>)
     'poly_normalize_list' applies 'poly_normalize' to each polynomial
     in the list.  That means it divides every polynomial in a list
     <polylist> by its leading coefficient.

 -- Function: poly_grobner (<polylist>, <varlist>)
     Returns a Groebner basis of the ideal span by the polynomials
     <polylist>.  Affected by the global flags.

 -- Function: poly_reduced_grobner (<polylist>, <varlist>)
     Returns a reduced Groebner basis of the ideal span by the
     polynomials <polylist>.  Affected by the global flags.

 -- Function: poly_depends_p (<poly>, <var>, <varlist>)
     'poly_depends' tests whether a polynomial depends on a variable
     <var>.

 -- Function: poly_elimination_ideal (<polylist>, <number>, <varlist>)

     'poly_elimination_ideal' returns the grobner basis of the number-th
     elimination ideal of an ideal specified as a list of generating
     polynomials (not necessarily Groebner basis).

 -- Function: poly_colon_ideal (<polylist1>, <polylist2>, <varlist>)

     Returns the reduced Groebner basis of the colon ideal

     I(polylist1):I(polylist2)

     where polylist1 and polylist2 are two lists of polynomials.

 -- Function: poly_ideal_intersection (<polylist1>, <polylist2>,
          <varlist>)

     'poly_ideal_intersection' returns the intersection of two ideals.

 -- Function: poly_lcm (<poly1>, <poly2>, <varlist>)
     Returns the lowest common multiple of <poly1> and <poly2>.

 -- Function: poly_gcd (<poly1>, <poly2>, <varlist>)

     Returns the greatest common divisor of <poly1> and <poly2>.

     See also 'ezgcd', 'gcd', 'gcdex', and 'gcdivide'.

     Example:

          (%i1) p1:6*x^3+19*x^2+19*x+6;
                                  3       2
          (%o1)                6 x  + 19 x  + 19 x + 6
          (%i2) p2:6*x^5+13*x^4+12*x^3+13*x^2+6*x;
                            5       4       3       2
          (%o2)          6 x  + 13 x  + 12 x  + 13 x  + 6 x
          (%i3) poly_gcd(p1, p2, [x]);
                                      2
          (%o3)                    6 x  + 13 x + 6

 -- Function: poly_grobner_equal (<polylist1>, <polylist2>, <varlist>)
     'poly_grobner_equal' tests whether two Groebner Bases generate the
     same ideal.  Returns 'true' if two lists of polynomials <polylist1>
     and <polylist2>, assumed to be Groebner Bases, generate the same
     ideal, and 'false' otherwise.  This is equivalent to checking that
     every polynomial of the first basis reduces to 0 modulo the second
     basis and vice versa.  Note that in the example below the first
     list is not a Groebner basis, and thus the result is 'false'.

          (%i1) poly_grobner_equal([y+x,x-y],[x,y],[x,y]);
          (%o1)                         false

 -- Function: poly_grobner_subsetp (<polylist1>, <polylist2>, <varlist>)

     'poly_grobner_subsetp' tests whether an ideal generated by
     <polylist1> is contained in the ideal generated by <polylist2>.
     For this test to always succeed, <polylist2> must be a Groebner
     basis.

 -- Function: poly_grobner_member (<poly>, <polylist>, <varlist>)

     Returns 'true' if a polynomial <poly> belongs to the ideal
     generated by the polynomial list <polylist>, which is assumed to be
     a Groebner basis.  Returns 'false' otherwise.

     'poly_grobner_member' tests whether a polynomial belongs to an
     ideal generated by a list of polynomials, which is assumed to be a
     Groebner basis.  Equivalent to 'normal_form' being 0.

 -- Function: poly_ideal_saturation1 (<polylist>, <poly>, <varlist>)
     Returns the reduced Groebner basis of the saturation of the ideal

     I(polylist):poly^inf

     Geometrically, over an algebraically closed field, this is the set
     of polynomials in the ideal generated by <polylist> which do not
     identically vanish on the variety of <poly>.

 -- Function: poly_ideal_saturation (<polylist1>, <polylist2>,
          <varlist>)
     Returns the reduced Groebner basis of the saturation of the ideal

     I(polylist1):I(polylist2)^inf

     Geometrically, over an algebraically closed field, this is the set
     of polynomials in the ideal generated by <polylist1> which do not
     identically vanish on the variety of <polylist2>.

 -- Function: poly_ideal_polysaturation1 (<polylist1>, <polylist2>,
          <varlist>)
     <polylist2> ist a list of n polynomials '[poly1,...,polyn]'.
     Returns the reduced Groebner basis of the ideal

     I(polylist):poly1^inf:...:polyn^inf

     obtained by a sequence of successive saturations in the polynomials
     of the polynomial list <polylist2> of the ideal generated by the
     polynomial list <polylist1>.

 -- Function: poly_ideal_polysaturation (<polylist>, <polylistlist>,
          <varlist>)
     <polylistlist> is a list of n list of polynomials
     '[polylist1,...,polylistn]'.  Returns the reduced Groebner basis of
     the saturation of the ideal

     I(polylist):I(polylist_1)^inf:...:I(polylist_n)^inf

 -- Function: poly_saturation_extension (<poly>, <polylist>, <varlist1>,
          <varlist2>)

     'poly_saturation_extension' implements the famous Rabinowitz trick.

 -- Function: poly_polysaturation_extension (<poly>, <polylist>,
          <varlist1>, <varlist2>)


automatically generated by info2www version 1.2.2.9