(maxima.info)Functions and Variables for lbfgs


Prev: Introduction to lbfgs Up: Top
Enter node , (file) or (file)node

67.2 Functions and Variables for lbfgs
======================================

 -- Function: lbfgs
          lbfgs (<FOM>, <X>, <X0>, <epsilon>, <iprint>)
          lbfgs ([<FOM>, <grad>] <X>, <X0>, <epsilon>, <iprint>)

     Finds an approximate solution of the unconstrained minimization of
     the figure of merit <FOM> over the list of variables <X>, starting
     from initial estimates <X0>, such that norm(grad(FOM)) <
     epsilon*max(1, norm(X)).

     <grad>, if present, is the gradient of <FOM> with respect to the
     variables <X>.  <grad> may be a list or a function that returns a
     list, with one element for each element of <X>.  If not present,
     the gradient is computed automatically by symbolic differentiation.
     If <FOM> is a function, the gradient <grad> must be supplied by the
     user.

     The algorithm applied is a limited-memory quasi-Newton (BFGS)
     algorithm [1].  It is called a limited-memory method because a
     low-rank approximation of the Hessian matrix inverse is stored
     instead of the entire Hessian inverse.  Each iteration of the
     algorithm is a line search, that is, a search along a ray in the
     variables <X>, with the search direction computed from the
     approximate Hessian inverse.  The FOM is always decreased by a
     successful line search.  Usually (but not always) the norm of the
     gradient of FOM also decreases.

     <iprint> controls progress messages printed by 'lbfgs'.

     'iprint[1]'
          '<iprint>[1]' controls the frequency of progress messages.
          'iprint[1] < 0'
               No progress messages.
          'iprint[1] = 0'
               Messages at the first and last iterations.
          'iprint[1] > 0'
               Print a message every '<iprint>[1]' iterations.
     'iprint[2]'
          '<iprint>[2]' controls the verbosity of progress messages.
          'iprint[2] = 0'
               Print out iteration count, number of evaluations of
               <FOM>, value of <FOM>, norm of the gradient of <FOM>, and
               step length.
          'iprint[2] = 1'
               Same as '<iprint>[2] = 0', plus <X0> and the gradient of
               <FOM> evaluated at <X0>.
          'iprint[2] = 2'
               Same as '<iprint>[2] = 1', plus values of <X> at each
               iteration.
          'iprint[2] = 3'
               Same as '<iprint>[2] = 2', plus the gradient of <FOM> at
               each iteration.

     The columns printed by 'lbfgs' are the following.

     'I'
          Number of iterations.  It is incremented for each line search.
     'NFN'
          Number of evaluations of the figure of merit.
     'FUNC'
          Value of the figure of merit at the end of the most recent
          line search.
     'GNORM'
          Norm of the gradient of the figure of merit at the end of the
          most recent line search.
     'STEPLENGTH'
          An internal parameter of the search algorithm.

     Additional information concerning details of the algorithm are
     found in the comments of the original Fortran code [2].

     See also 'lbfgs_nfeval_max' and 'lbfgs_ncorrections'.

     References:

     [1] D. Liu and J. Nocedal.  "On the limited memory BFGS method for
     large scale optimization".  Mathematical Programming B 45:503-528
     (1989)

     [2] <http://netlib.org/opt/lbfgs_um.shar>

     Examples:

     The same FOM as computed by FGCOMPUTE in the program sdrive.f in
     the LBFGS package from Netlib.  Note that the variables in question
     are subscripted variables.  The FOM has an exact minimum equal to
     zero at u[k] = 1 for k = 1, ..., 8.

          (%i1) load ("lbfgs")$
          (%i2) t1[j] := 1 - u[j];
          (%o2)                     t1  := 1 - u
                                      j         j
          (%i3) t2[j] := 10*(u[j + 1] - u[j]^2);
                                                    2
          (%o3)                t2  := 10 (u      - u )
                                 j         j + 1    j
          (%i4) n : 8;
          (%o4)                           8
          (%i5) FOM : sum (t1[2*j - 1]^2 + t2[2*j - 1]^2, j, 1, n/2);
                           2 2           2              2 2           2
          (%o5) 100 (u  - u )  + (1 - u )  + 100 (u  - u )  + (1 - u )
                      8    7           7           6    5           5
                               2 2           2              2 2           2
                  + 100 (u  - u )  + (1 - u )  + 100 (u  - u )  + (1 - u )
                          4    3           3           2    1           1
          (%i6) lbfgs (FOM, '[u[1],u[2],u[3],u[4],u[5],u[6],u[7],u[8]],
                 [-1.2, 1, -1.2, 1, -1.2, 1, -1.2, 1], 1e-3, [1, 0]);
          *************************************************
            N=    8   NUMBER OF CORRECTIONS=25
                 INITIAL VALUES
           F=  9.680000000000000D+01   GNORM=  4.657353755084533D+02
          *************************************************
           I NFN   FUNC                    GNORM                   STEPLENGTH

           1   3   1.651479526340304D+01   4.324359291335977D+00   7.926153934390631D-04
           2   4   1.650209316638371D+01   3.575788161060007D+00   1.000000000000000D+00
           3   5   1.645461701312851D+01   6.230869903601577D+00   1.000000000000000D+00
           4   6   1.636867301275588D+01   1.177589920974980D+01   1.000000000000000D+00
           5   7   1.612153014409201D+01   2.292797147151288D+01   1.000000000000000D+00
           6   8   1.569118407390628D+01   3.687447158775571D+01   1.000000000000000D+00
           7   9   1.510361958398942D+01   4.501931728123679D+01   1.000000000000000D+00
           8  10   1.391077875774293D+01   4.526061463810630D+01   1.000000000000000D+00
           9  11   1.165625686278198D+01   2.748348965356907D+01   1.000000000000000D+00
          10  12   9.859422687859144D+00   2.111494974231706D+01   1.000000000000000D+00
          11  13   7.815442521732282D+00   6.110762325764183D+00   1.000000000000000D+00
          12  15   7.346380905773044D+00   2.165281166715009D+01   1.285316401779678D-01
          13  16   6.330460634066464D+00   1.401220851761508D+01   1.000000000000000D+00
          14  17   5.238763939854303D+00   1.702473787619218D+01   1.000000000000000D+00
          15  18   3.754016790406625D+00   7.981845727632704D+00   1.000000000000000D+00
          16  20   3.001238402313225D+00   3.925482944745832D+00   2.333129631316462D-01
          17  22   2.794390709722064D+00   8.243329982586480D+00   2.503577283802312D-01
          18  23   2.563783562920545D+00   1.035413426522664D+01   1.000000000000000D+00
          19  24   2.019429976373283D+00   1.065187312340952D+01   1.000000000000000D+00
          20  25   1.428003167668592D+00   2.475962450735100D+00   1.000000000000000D+00
          21  27   1.197874264859232D+00   8.441707983339661D+00   4.303451060697367D-01
          22  28   9.023848942003913D-01   1.113189216665625D+01   1.000000000000000D+00
          23  29   5.508226405855795D-01   2.380830599637816D+00   1.000000000000000D+00
          24  31   3.902893258879521D-01   5.625595817143044D+00   4.834988416747262D-01
          25  32   3.207542206881058D-01   1.149444645298493D+01   1.000000000000000D+00
          26  33   1.874468266118200D-01   3.632482152347445D+00   1.000000000000000D+00
          27  34   9.575763380282112D-02   4.816497449000391D+00   1.000000000000000D+00
          28  35   4.085145106760390D-02   2.087009347116811D+00   1.000000000000000D+00
          29  36   1.931106005512628D-02   3.886818624052740D+00   1.000000000000000D+00
          30  37   6.894000636920714D-03   3.198505769992936D+00   1.000000000000000D+00
          31  38   1.443296008850287D-03   1.590265460381961D+00   1.000000000000000D+00
          32  39   1.571766574930155D-04   3.098257002223532D-01   1.000000000000000D+00
          33  40   1.288011779655132D-05   1.207784334505595D-02   1.000000000000000D+00
          34  41   1.806140190993455D-06   4.587890258846915D-02   1.000000000000000D+00
          35  42   1.769004612050548D-07   1.790537363138099D-02   1.000000000000000D+00
          36  43   3.312164244118216D-10   6.782068546986653D-04   1.000000000000000D+00

           THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.
           IFLAG = 0
          (%o6) [u  = 1.000005339816132, u  = 1.000009942840108,
                  1                       2
          u  = 1.000005339816132, u  = 1.000009942840108,
           3                       4
          u  = 1.000005339816132, u  = 1.000009942840108,
           5                       6
          u  = 1.000005339816132, u  = 1.000009942840108]
           7                       8

     A regression problem.  The FOM is the mean square difference
     between the predicted value F(X[i]) and the observed value Y[i].
     The function F is a bounded monotone function (a so-called
     "sigmoidal" function).  In this example, 'lbfgs' computes
     approximate values for the parameters of F and 'plot2d' displays a
     comparison of F with the observed data.

          (%i1) load ("lbfgs")$
          (%i2) FOM : '((1/length(X))*sum((F(X[i]) - Y[i])^2, i, 1,
                                                          length(X)));
                                         2
                         sum((F(X ) - Y ) , i, 1, length(X))
                                 i     i
          (%o2)          -----------------------------------
                                      length(X)
          (%i3) X : [1, 2, 3, 4, 5];
          (%o3)                    [1, 2, 3, 4, 5]
          (%i4) Y : [0, 0.5, 1, 1.25, 1.5];
          (%o4)                [0, 0.5, 1, 1.25, 1.5]
          (%i5) F(x) := A/(1 + exp(-B*(x - C)));
                                             A
          (%o5)            F(x) := ----------------------
                                   1 + exp((- B) (x - C))
          (%i6) ''FOM;
                          A               2            A                2
          (%o6) ((----------------- - 1.5)  + (----------------- - 1.25)
                    - B (5 - C)                  - B (4 - C)
                  %e            + 1            %e            + 1
                      A             2            A               2
           + (----------------- - 1)  + (----------------- - 0.5)
                - B (3 - C)                - B (2 - C)
              %e            + 1          %e            + 1
                       2
                      A
           + --------------------)/5
                - B (1 - C)     2
             (%e            + 1)
          (%i7) estimates : lbfgs (FOM, '[A, B, C], [1, 1, 1], 1e-4, [1, 0]);
          *************************************************
            N=    3   NUMBER OF CORRECTIONS=25
                 INITIAL VALUES
           F=  1.348738534246918D-01   GNORM=  2.000215531936760D-01
          *************************************************

          I  NFN  FUNC                    GNORM                   STEPLENGTH
          1    3  1.177820636622582D-01   9.893138394953992D-02   8.554435968992371D-01
          2    6  2.302653892214013D-02   1.180098521565904D-01   2.100000000000000D+01
          3    8  1.496348495303004D-02   9.611201567691624D-02   5.257340567840710D-01
          4    9  7.900460841091138D-03   1.325041647391314D-02   1.000000000000000D+00
          5   10  7.314495451266914D-03   1.510670810312226D-02   1.000000000000000D+00
          6   11  6.750147275936668D-03   1.914964958023037D-02   1.000000000000000D+00
          7   12  5.850716021108202D-03   1.028089194579382D-02   1.000000000000000D+00
          8   13  5.778664230657800D-03   3.676866074532179D-04   1.000000000000000D+00
          9   14  5.777818823650780D-03   3.010740179797108D-04   1.000000000000000D+00

           THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.
           IFLAG = 0
          (%o7) [A = 1.461933911464101, B = 1.601593973254801,
                                                     C = 2.528933072164855]
          (%i8) plot2d ([F(x), [discrete, X, Y]], [x, -1, 6]), ''estimates;
          (%o8)

     Gradient of FOM is specified (instead of computing it
     automatically).  Both the FOM and its gradient are passed as
     functions to 'lbfgs'.

          (%i1) load ("lbfgs")$
          (%i2) F(a, b, c) := (a - 5)^2 + (b - 3)^4 + (c - 2)^6$
          (%i3) define(F_grad(a, b, c),
                       map (lambda ([x], diff (F(a, b, c), x)), [a, b, c]))$
          (%i4) estimates : lbfgs ([F, F_grad],
                             [a, b, c], [0, 0, 0], 1e-4, [1, 0]);
          *************************************************
            N=    3   NUMBER OF CORRECTIONS=25
                 INITIAL VALUES
           F=  1.700000000000000D+02   GNORM=  2.205175729958953D+02
          *************************************************

             I  NFN     FUNC                    GNORM                   STEPLENGTH

             1    2     6.632967565917637D+01   6.498411132518770D+01   4.534785987412505D-03
             2    3     4.368890936228036D+01   3.784147651974131D+01   1.000000000000000D+00
             3    4     2.685298972775191D+01   1.640262125898520D+01   1.000000000000000D+00
             4    5     1.909064767659852D+01   9.733664001790506D+00   1.000000000000000D+00
             5    6     1.006493272061515D+01   6.344808151880209D+00   1.000000000000000D+00
             6    7     1.215263596054292D+00   2.204727876126877D+00   1.000000000000000D+00
             7    8     1.080252896385329D-02   1.431637116951845D-01   1.000000000000000D+00
             8    9     8.407195124830860D-03   1.126344579730008D-01   1.000000000000000D+00
             9   10     5.022091686198525D-03   7.750731829225275D-02   1.000000000000000D+00
            10   11     2.277152808939775D-03   5.032810859286796D-02   1.000000000000000D+00
            11   12     6.489384688303218D-04   1.932007150271009D-02   1.000000000000000D+00
            12   13     2.075791943844547D-04   6.964319310814365D-03   1.000000000000000D+00
            13   14     7.349472666162258D-05   4.017449067849554D-03   1.000000000000000D+00
            14   15     2.293617477985238D-05   1.334590390856715D-03   1.000000000000000D+00
            15   16     7.683645404048675D-06   6.011057038099202D-04   1.000000000000000D+00

           THE MINIMIZATION TERMINATED WITHOUT DETECTING ERRORS.
           IFLAG = 0
          (%o4) [a = 5.000086823042934, b = 3.052395429705181,
                                                     c = 1.927980629919583]

 -- Variable: lbfgs_nfeval_max
     Default value: 100

     'lbfgs_nfeval_max' is the maximum number of evaluations of the
     figure of merit (FOM) in 'lbfgs'.  When 'lbfgs_nfeval_max' is
     reached, 'lbfgs' returns the result of the last successful line
     search.

 -- Variable: lbfgs_ncorrections
     Default value: 25

     'lbfgs_ncorrections' is the number of corrections applied to the
     approximate inverse Hessian matrix which is maintained by 'lbfgs'.


automatically generated by info2www version 1.2.2.9