(maxima.info)Functions and Variables for orthogonal polynomials


Prev: Introduction to orthogonal polynomials Up: orthopoly-pkg
Enter node , (file) or (file)node

77.2 Functions and Variables for orthogonal polynomials
=======================================================

 -- Function: assoc_legendre_p (<n>, <m>, <x>)
     The associated Legendre function of the first kind of degree <n>
     and order <m>.

     Reference: Abramowitz and Stegun, equations 22.5.37, page 779,
     8.6.6 (second equation), page 334, and 8.2.5, page 333.

 -- Function: assoc_legendre_q (<n>, <m>, <x>)
     The associated Legendre function of the second kind of degree <n>
     and order <m>.

     Reference: Abramowitz and Stegun, equation 8.5.3 and 8.1.8.

 -- Function: chebyshev_t (<n>, <x>)
     The Chebyshev polynomial of the first kind of degree <n>.

     Reference: Abramowitz and Stegun, equation 22.5.47, page 779.

 -- Function: chebyshev_u (<n>, <x>)
     The Chebyshev polynomial of the second kind of degree <n>.

     Reference: Abramowitz and Stegun, equation 22.5.48, page 779.

 -- Function: gen_laguerre (<n>, <a>, <x>)
     The generalized Laguerre polynomial of degree <n>.

     Reference: Abramowitz and Stegun, equation 22.5.54, page 780.

 -- Function: hermite (<n>, <x>)
     The Hermite polynomial of degree <n>.

     Reference: Abramowitz and Stegun, equation 22.5.55, page 780.

 -- Function: intervalp (<e>)
     Return 'true' if the input is an interval and return false if it
     isn't.

 -- Function: jacobi_p (<n>, <a>, <b>, <x>)
     The Jacobi polynomial.

     The Jacobi polynomials are actually defined for all <a> and <b>;
     however, the Jacobi polynomial weight '(1 - <x>)^<a> (1 + <x>)^<b>'
     isn't integrable for '<a> <= -1' or '<b> <= -1'.

     Reference: Abramowitz and Stegun, equation 22.5.42, page 779.

 -- Function: laguerre (<n>, <x>)
     The Laguerre polynomial of degree <n>.

     Reference: Abramowitz and Stegun, equations 22.5.16 and 22.5.54,
     page 780.

 -- Function: legendre_p (<n>, <x>)
     The Legendre polynomial of the first kind of degree <n>.

     Reference: Abramowitz and Stegun, equations 22.5.50 and 22.5.51,
     page 779.

 -- Function: legendre_q (<n>, <x>)
     The Legendre function of the second kind of degree <n>.

     Reference: Abramowitz and Stegun, equations 8.5.3 and 8.1.8.

 -- Function: orthopoly_recur (<f>, <args>)
     Returns a recursion relation for the orthogonal function family <f>
     with arguments <args>.  The recursion is with respect to the
     polynomial degree.

          (%i1) orthopoly_recur (legendre_p, [n, x]);
                              (2 n + 1) P (x) x - n P     (x)
                                         n           n - 1
          (%o1)   P     (x) = -------------------------------
                   n + 1                   n + 1

     The second argument to 'orthopoly_recur' must be a list with the
     correct number of arguments for the function <f>; if it isn't,
     Maxima signals an error.

          (%i1) orthopoly_recur (jacobi_p, [n, x]);

          Function jacobi_p needs 4 arguments, instead it received 2
           -- an error.  Quitting.  To debug this try debugmode(true);

     Additionally, when <f> isn't the name of one of the families of
     orthogonal polynomials, an error is signalled.

          (%i1) orthopoly_recur (foo, [n, x]);

          A recursion relation for foo isn't known to Maxima
           -- an error.  Quitting.  To debug this try debugmode(true);

 -- Variable: orthopoly_returns_intervals
     Default value: 'true'

     When 'orthopoly_returns_intervals' is 'true', floating point
     results are returned in the form 'interval (<c>, <r>)', where <c>
     is the center of an interval and <r> is its radius.  The center can
     be a complex number; in that case, the interval is a disk in the
     complex plane.

 -- Function: orthopoly_weight (<f>, <args>)

     Returns a three element list; the first element is the formula of
     the weight for the orthogonal polynomial family <f> with arguments
     given by the list <args>; the second and third elements give the
     lower and upper endpoints of the interval of orthogonality.  For
     example,

          (%i1) w : orthopoly_weight (hermite, [n, x]);
                                      2
                                   - x
          (%o1)                 [%e    , - inf, inf]
          (%i2) integrate(w[1]*hermite(3, x)*hermite(2, x), x, w[2], w[3]);
          (%o2)                           0

     The main variable of <f> must be a symbol; if it isn't, Maxima
     signals an error.

 -- Function: pochhammer (<x>, <n>)
     The Pochhammer symbol.  For nonnegative integers <n> with '<n> <=
     pochhammer_max_index', the expression 'pochhammer (<x>, <n>)'
     evaluates to the product '<x> (<x> + 1) (<x> + 2) ... (<x> + n -
     1)' when '<n> > 0' and to 1 when '<n> = 0'.  For negative <n>,
     'pochhammer (<x>, <n>)' is defined as '(-1)^<n> / pochhammer (1 -
     <x>, -<n>)'.  Thus

          (%i1) pochhammer (x, 3);
          (%o1)                   x (x + 1) (x + 2)
          (%i2) pochhammer (x, -3);
                                           1
          (%o2)               - -----------------------
                                (1 - x) (2 - x) (3 - x)

     To convert a Pochhammer symbol into a quotient of gamma functions,
     (see Abramowitz and Stegun, equation 6.1.22) use 'makegamma'; for
     example

          (%i1) makegamma (pochhammer (x, n));
                                    gamma(x + n)
          (%o1)                     ------------
                                      gamma(x)

     When <n> exceeds 'pochhammer_max_index' or when <n> is symbolic,
     'pochhammer' returns a noun form.

          (%i1) pochhammer (x, n);
          (%o1)                         (x)
                                           n

 -- Variable: pochhammer_max_index
     Default value: 100

     'pochhammer (<n>, <x>)' expands to a product if and only if '<n> <=
     pochhammer_max_index'.

     Examples:

          (%i1) pochhammer (x, 3), pochhammer_max_index : 3;
          (%o1)                   x (x + 1) (x + 2)
          (%i2) pochhammer (x, 4), pochhammer_max_index : 3;
          (%o2)                         (x)
                                           4

     Reference: Abramowitz and Stegun, equation 6.1.16, page 256.

 -- Function: spherical_bessel_j (<n>, <x>)
     The spherical Bessel function of the first kind.

     Reference: Abramowitz and Stegun, equations 10.1.8, page 437 and
     10.1.15, page 439.

 -- Function: spherical_bessel_y (<n>, <x>)
     The spherical Bessel function of the second kind.

     Reference: Abramowitz and Stegun, equations 10.1.9, page 437 and
     10.1.15, page 439.

 -- Function: spherical_hankel1 (<n>, <x>)
     The spherical Hankel function of the first kind.

     Reference: Abramowitz and Stegun, equation 10.1.36, page 439.

 -- Function: spherical_hankel2 (<n>, <x>)
     The spherical Hankel function of the second kind.

     Reference: Abramowitz and Stegun, equation 10.1.17, page 439.

 -- Function: spherical_harmonic (<n>, <m>, <x>, <y>)
     The spherical harmonic function.

     Reference: Merzbacher 9.64.

 -- Function: unit_step (<x>)
     The left-continuous unit step function; thus 'unit_step (<x>)'
     vanishes for '<x> <= 0' and equals 1 for '<x> > 0'.

     If you want a unit step function that takes on the value 1/2 at
     zero, use '(1 + signum (<x>))/2'.

 -- Function: ultraspherical (<n>, <a>, <x>)
     The ultraspherical polynomial (also known as the Gegenbauer
     polynomial).

     Reference: Abramowitz and Stegun, equation 22.5.46, page 779.


automatically generated by info2www version 1.2.2.9