(octave.info)Function Application


Next: Accumulation Prev: Broadcasting Up: Vectorization and Faster Code Execution
Enter node , (file) or (file)node

19.3 Function Application
=========================

As a general rule, functions should already be written with matrix
arguments in mind and should consider whole matrix operations in a
vectorized manner.  Sometimes, writing functions in this way appears
difficult or impossible for various reasons.  For those situations,
Octave provides facilities for applying a function to each element of an
array, cell, or struct.

 -- : arrayfun (FUNC, A)
 -- : X = arrayfun (FUNC, A)
 -- : X = arrayfun (FUNC, A, B, ...)
 -- : [X, Y, ...] = arrayfun (FUNC, A, ...)
 -- : arrayfun (..., "UniformOutput", VAL)
 -- : arrayfun (..., "ErrorHandler", ERRFUNC)

     Execute a function on each element of an array.

     This is useful for functions that do not accept array arguments.
     If the function does accept array arguments it is better to call
     the function directly.

     The first input argument FUNC can be a string, a function handle,
     an inline function, or an anonymous function.  The input argument A
     can be a logic array, a numeric array, a string array, a structure
     array, or a cell array.  By a call of the function ‘arrayfun’ all
     elements of A are passed on to the named function FUNC
     individually.

     The named function can also take more than two input arguments,
     with the input arguments given as third input argument B, fourth
     input argument C, ... If given more than one array input argument
     then all input arguments must have the same sizes, for example:

          arrayfun (@atan2, [1, 0], [0, 1])
               ⇒ [ 1.57080   0.00000 ]

     If the parameter VAL after a further string input argument
     "UniformOutput" is set ‘true’ (the default), then the named
     function FUNC must return a single element which then will be
     concatenated into the return value and is of type matrix.
     Otherwise, if that parameter is set to ‘false’, then the outputs
     are concatenated in a cell array.  For example:

          arrayfun (@(x,y) x:y, "abc", "def", "UniformOutput", false)
          ⇒
             {
               [1,1] = abcd
               [1,2] = bcde
               [1,3] = cdef
             }

     If more than one output arguments are given then the named function
     must return the number of return values that also are expected, for
     example:

          [A, B, C] = arrayfun (@find, [10; 0], "UniformOutput", false)
          ⇒
          A =
          {
             [1,1] =  1
             [2,1] = [](0x0)
          }
          B =
          {
             [1,1] =  1
             [2,1] = [](0x0)
          }
          C =
          {
             [1,1] =  10
             [2,1] = [](0x0)
          }

     If the parameter ERRFUNC after a further string input argument
     "ErrorHandler" is another string, a function handle, an inline
     function, or an anonymous function, then ERRFUNC defines a function
     to call in the case that FUNC generates an error.  The definition
     of the function must be of the form

          function [...] = errfunc (S, ...)

     where there is an additional input argument to ERRFUNC relative to
     FUNC, given by S.  This is a structure with the elements
     "identifier", "message", and "index" giving, respectively, the
     error identifier, the error message, and the index of the array
     elements that caused the error.  The size of the output argument of
     ERRFUNC must have the same size as the output argument of FUNC,
     otherwise a real error is thrown.  For example:

          function y = ferr (s, x), y = "MyString"; endfunction
          arrayfun (@str2num, [1234],
                    "UniformOutput", false, "ErrorHandler", @ferr)
          ⇒
             {
               [1,1] = MyString
             }

     See also: Note: spfun, Note: cellfun, Note:
     structfun.

 -- : Y = spfun (F, S)
     Compute ‘f(S)’ for the nonzero values of S.

     This results in a sparse matrix with the same structure as S.  The
     function F can be passed as a string, a function handle, or an
     inline function.

     See also: Note: arrayfun, Note: cellfun,
     Note: structfun.

 -- : cellfun (NAME, C)
 -- : cellfun ("size", C, K)
 -- : cellfun ("isclass", C, CLASS)
 -- : cellfun (FUNC, C)
 -- : cellfun (FUNC, C, D)
 -- : [A, ...] = cellfun (...)
 -- : cellfun (..., "ErrorHandler", ERRFUNC)
 -- : cellfun (..., "UniformOutput", VAL)

     Evaluate the function named NAME on the elements of the cell array
     C.

     Elements in C are passed on to the named function individually.
     The function NAME can be one of the functions

     ‘isempty’
          Return 1 for empty elements.

     ‘islogical’
          Return 1 for logical elements.

     ‘isnumeric’
          Return 1 for numeric elements.

     ‘isreal’
          Return 1 for real elements.

     ‘length’
          Return a vector of the lengths of cell elements.

     ‘ndims’
          Return the number of dimensions of each element.

     ‘numel’
     ‘prodofsize’
          Return the number of elements contained within each cell
          element.  The number is the product of the dimensions of the
          object at each cell element.

     ‘size’
          Return the size along the K-th dimension.

     ‘isclass’
          Return 1 for elements of CLASS.

     Additionally, ‘cellfun’ accepts an arbitrary function FUNC in the
     form of an inline function, function handle, or the name of a
     function (in a character string).  The function can take one or
     more arguments, with the inputs arguments given by C, D, etc.
     Equally the function can return one or more output arguments.  For
     example:

          cellfun ("atan2", {1, 0}, {0, 1})
               ⇒ [ 1.57080   0.00000 ]

     The number of output arguments of ‘cellfun’ matches the number of
     output arguments of the function.  The outputs of the function will
     be collected into the output arguments of ‘cellfun’ like this:

          function [a, b] = twoouts (x)
            a = x;
            b = x*x;
          endfunction
          [aa, bb] = cellfun (@twoouts, {1, 2, 3})
               ⇒
                  aa =
                     1 2 3
                  bb =
                     1 4 9

     Note that per default the output argument(s) are arrays of the same
     size as the input arguments.  Input arguments that are singleton
     (1x1) cells will be automatically expanded to the size of the other
     arguments.

     If the parameter "UniformOutput" is set to true (the default), then
     the function must return scalars which will be concatenated into
     the return array(s).  If "UniformOutput" is false, the outputs are
     concatenated into a cell array (or cell arrays).  For example:

          cellfun ("tolower", {"Foo", "Bar", "FooBar"},
                   "UniformOutput", false)
          ⇒ {"foo", "bar", "foobar"}

     Given the parameter "ErrorHandler", then ERRFUNC defines a function
     to call in case FUNC generates an error.  The form of the function
     is

          function [...] = errfunc (S, ...)

     where there is an additional input argument to ERRFUNC relative to
     FUNC, given by S.  This is a structure with the elements
     "identifier", "message", and "index" giving respectively the error
     identifier, the error message, and the index into the input
     arguments of the element that caused the error.  For example:

          function y = foo (s, x), y = NaN; endfunction
          cellfun ("factorial", {-1,2}, "ErrorHandler", @foo)
          ⇒ [NaN 2]

     Use ‘cellfun’ intelligently.  The ‘cellfun’ function is a useful
     tool for avoiding loops.  It is often used with anonymous function
     handles; however, calling an anonymous function involves an
     overhead quite comparable to the overhead of an m-file function.
     Passing a handle to a built-in function is faster, because the
     interpreter is not involved in the internal loop.  For example:

          a = {...}
          v = cellfun (@(x) det (x), a); # compute determinants
          v = cellfun (@det, a); # faster

     See also: Note: arrayfun, *note structfun:
     XREFstructfun, Note: spfun.

 -- : structfun (FUNC, S)
 -- : [A, ...] = structfun (...)
 -- : structfun (..., "ErrorHandler", ERRFUNC)
 -- : structfun (..., "UniformOutput", VAL)

     Evaluate the function named NAME on the fields of the structure S.
     The fields of S are passed to the function FUNC individually.

     ‘structfun’ accepts an arbitrary function FUNC in the form of an
     inline function, function handle, or the name of a function (in a
     character string).  In the case of a character string argument, the
     function must accept a single argument named X, and it must return
     a string value.  If the function returns more than one argument,
     they are returned as separate output variables.

     If the parameter "UniformOutput" is set to true (the default), then
     the function must return a single element which will be
     concatenated into the return value.  If "UniformOutput" is false,
     the outputs are placed into a structure with the same fieldnames as
     the input structure.

          s.name1 = "John Smith";
          s.name2 = "Jill Jones";
          structfun (@(x) regexp (x, '(\w+)$', "matches"){1}, s,
                     "UniformOutput", false)
          ⇒
             {
               name1 = Smith
               name2 = Jones
             }

     Given the parameter "ErrorHandler", ERRFUNC defines a function to
     call in case FUNC generates an error.  The form of the function is

          function [...] = errfunc (SE, ...)

     where there is an additional input argument to ERRFUNC relative to
     FUNC, given by SE.  This is a structure with the elements
     "identifier", "message" and "index", giving respectively the error
     identifier, the error message, and the index into the input
     arguments of the element that caused the error.  For an example on
     how to use an error handler, Note: cellfun.

     See also: Note: cellfun, Note: arrayfun,
     Note: spfun.

   Consistent with earlier advice, seek to use Octave built-in functions
whenever possible for the best performance.  This advice applies
especially to the four functions above.  For example, when adding two
arrays together element-by-element one could use a handle to the
built-in addition function ‘@plus’ or define an anonymous function
‘@(x,y) x + y’.  But, the anonymous function is 60% slower than the
first method.  Note: Operator Overloading, for a list of basic
functions which might be used in place of anonymous ones.


automatically generated by info2www version 1.2.2.9