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Abstrakt

Tento učebńı materiál podává formou doprovodných p̌rednáškových slidů
výklad významné metody Relačńı analýzy dat, kterou je Formálńı
konceptálńı analýza (Formal Concept Analysis, FCA). V prvńı části jsou
prob́ırány teoretické základy FCA, konceptuálńı svazy a základńı algoritmy
pro jejich výpočet. Ve druhé části jsou vedle p̌rehledu významných aplikaćı
FCA p̌redstaveny vybrané aplikace ve faktorové analýze a v źıskáváńı
informaćı (Information Retrieval). Posledńı, ťret́ı, část je věnovanána
atributovým implikaćım a asociačńım pravidl̊um. Matematický popis ve
stylu definice a tvrzeńı s důkazy je doprovázen p̌ŕıklady, řešenými cvičeńımi
a úkoly. Výklad p̌redpokládá znalosti základů teoretické informatiky,
zejména algebry, algoritmů a matematické logiky, v rozsahu bakalá̌rského
studia informatiky.
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Ćılová skupina

Slidy jsou je primárně určeny pro studenty navazuj́ıćıho oboru Informatika
uskutečňovaného v prezenčńı formě na Př́ırodovědecké fakultě Univerzity
Palackého v Olomouci, jako doprovodný studijńı materiál k p̌rednáškám.
Rozsahem a hloubkou prob́ırané látky je však vhodný i jako primárńı
studijńı materiál v libovolném kursu Formálńı konceptuálńı analýzy a
p̌ŕıbuzných témat.
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Introduction to Formal Concept Analysis (FCA)
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Introduction to Formal Concept Analysis

– Formal Concept Analysis (FCA) = method of analysis of tabular data
(Rudolf Wille, TU Darmstadt),

– alternatively called: concept data analysis, concept lattices, Galois
lattices, . . .

– used for data mining, knowledge discovery, preprocessing data

– input: objects (rows) × attributes (columns) table

y1 y2 y3

x1 1 1 1
x2 1 0 1
x3 0 1 1
. . . . . .

or

y1 y2 y3

x1 X X X
x2 X X
x3 X X
. . . . . .

or

(
1 1 1
1 0 1
0 1 1

)
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Introduction to Formal Concept Analysis

– output:

1 hierarchically ordered collection of clusters:
– called concept lattice,
– clusters are called formal concepts,
– hierarchy = subconcept-superconcept,

2 data dependencies:
– called attribute implications,
– not all (would be redundant), only representative set
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Output 1: Concept Lattices

input data: output concept lattice:
y1 y2 y3

x1 X X X
x2 X X
x3 X X

concept lattice = hierarchically ordered set of clusters

cluster (formal concept) = 〈A,B〉,
A = collection of objects covered by cluster,
B = collection of attributes covered by cluster,

example of formal concept: 〈{x1, x2}, {y1, y3}〉,
clusters = nodes in the Hasse diagram,

Hasse diagram = represents partial order given by
subconcept-superconcept hierarchy

concept lattice = all potentially interesting concepts in data
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Output 2: Attribute Implications

input data: attribute implications:
y1 y2 y3

x1 X X X
x2 X X
x3 X X

A ⇒ B like
{y2} ⇒ {y3}, {y1, y2} ⇒ {y3},

but not {y1} ⇒ {y2},

attribute implication = particular data dependency,

large number of attribute implications may be valid in given data,

some of them redundant and thus not interesting ({y2} ⇒ {y2}),
reasonably small non-redundant set of attribute dependencies
(non-redundant basis),

connections to other types of data dependencies (functional
dependencies from relational databases, association rules).
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History of FCA

Port-Royal logic (traditional logic): formal notion of concept
Arnauld A., Nicole P.: La logique ou l’art de penser, 1662 (Logic Or
The Art Of Thinking, CUP, 2003):
concept = extent (objects) + intent (attributes)

G. Birkhoff (1940s): work on lattices and related mathematical
structures, emphasizes applicational aspects of lattices in data
analysis.

Barbut M., Monjardet B.: Ordre et classification, algbre et
combinatoire. Hachette, Paris, 1970.

Wille R.: Restructuring lattice theory: an approach based on
hierarchies of concepts. In: I. Rival (Ed.): Ordered Sets. Reidel,
Dordrecht, 1982, pp. 445–470.
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Literature on FCA

books

Ganter B., Wille R.: Formal Concept Analysis. Springer, 1999.

Carpineto C., Romano G.: Concept Data Analysis. Wiley, 2004.

conferences

ICFCA (Int. Conference of Formal Concept Analysis), Springer LNCS,
http://www.isima.fr/icfca07/

CLA (Concept Lattices and Their Applications),
http://cla2008.inf.upol.cz

ICCS (Int. Conference on Conceptual Structures), Springer LNCS,
http://www.iccs.info/

conferences with focus on data analysis, information sciences, etc.

web

keywords: formal concept analysis, concept lattice, attribute
implication, concept data analysis, Galois lattice
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Selected Applications of FCA

clustering and classification (conceptual clustering),

information retrieval, knowledge extraction (structured view on data,
structured browsing),

machine learning,
software engineering

G. Snelting, F. Tip: Understanding class hierarchies using concept
analysis. ACM Trans. Program. Lang. Syst. 22(3):540–582, May
2000.
U. Dekel, Y. Gill: Visualizing class interfaces with formal concept
analysis. In OOPSLA’03, pp. 288–289, Anaheim, CA, October 2003.

preprocessing method: e.g., Zaki M.: Mining non-redundant
association rules. Data Mining and Knowl. Disc. 9(2004), 223–248.
closed frequent itemsets instead of frequent itemsets ⇒
non-redundant association rules (<< number)

mathematics (new results in math. structures related to FCA)
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State of the art of FCA

Ganter, B., Stumme, G., Wille, R. (Eds.): Formal Concept Analysis
Foundations and Applications. Springer, LNCS 3626, 2005,

development of theoretical foundations,

development of algorithms,

applications: increasingly popular (information retrieval, software
engineering, social networks, . . . ),

FCA as method of data preprocessing, interaction with other methods
of data analysis,

several software packages available.
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Concept Lattices
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What is a concept?

central notion in FCA = formal concept
but what is a concept? many approaches, including:

psychology (approaches: classical, prototype, exemplar, knowledge)
Murphy G. L.: The Big Book of Concepts. MIT Press, 2004.
Margolis E., Laurence S.: Concepts: Core Readings. MIT Press, 1999.

logic (rare, but Transparent Intensional Logic)
Tichy P.: The Foundations of Frege’s Logic. W. De Gryuter, 1988.
Materna P.: Conceptual Systems. Logos Verlag, Berlin, 2004.

artificial intelligence (frames, learning of concepts)
Michalski, R. S., Bratko, I. and Kubat, M. (Eds.), Machine Learning
and Data Mining: Methods and Applications, London, Wiley, 1998.

conceptual graphs (Sowa)
Sowa J. F.: Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Course Technology, 1999.

“conceptual modeling”, object-oriented paradigm, . . .

traditional/Port-Royal logic
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Traditional (Port-Royal) view on concepts

The notion of a concept as used in FCA — inspired by
Port-Royal logic (traditional logic):
Arnauld A., Nicole P.: La logique ou l’art de penser, 1662 (Logic Or The
Art Of Thinking, CUP, 2003):

concept (according to Port-Royal) := extent + intent
extent = objects covered by concept
intent = attributes covered by concept

example: DOG (extent = collection of all dogs (foxhound, poodle,
. . . ), intent = {barks, has four limbs, has tail,. . . })

concept hierarchy
subconcept/superconcept relation
DOG ≤ MAMMAL ≤ ANIMAL
concept1=(extent1,intent1) ≤ concept2=(extent2,intent2)
⇔ extent1 ⊆ extent2 (⇔ intent1 ⊇ intent2)
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Formal Contexts (Tables With Binary Attributes)

Definition (formal context (table with binary attributes))

A formal context is a triplet 〈X ,Y , I 〉 where X and Y are non-empty sets
and I is a binary relation between X and Y , i.e., I ⊆ X × Y .

interpretation: X . . . set of objects, Y . . . set of attributes,
〈x , y〉 ∈ I . . . object x has attribute y

formal context can be represented by table (table with binary
attributes)
〈x , y〉 ∈ I . . .×in table, 〈x , y〉 6∈ I . . . blank in table,

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×
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Concept-forming Operators ↑ and ↓

Definition (concept-forming operators)

For a formal context 〈X ,Y , I 〉, operators ↑ : 2X → 2Y and ↓ : 2Y → 2X

are defined for every A ⊆ X and B ⊆ Y by

A↑ = {y ∈ Y | for each x ∈ A : 〈x , y〉 ∈ I},
B↓ = {x ∈ X | for each y ∈ B : 〈x , y〉 ∈ I}.

operator ↑:
assigns subsets of Y to subsets of X ,
A↑ . . . set of all attributes shared by all objects from A,

operator ↓:
assigns subsets of X to subsets of Y ,
B↑ . . . set of all objects sharing all attributes from B.

To emphasize that ↑ and ↓ are induced by 〈X ,Y , I 〉, we use ↑I and ↓I .
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Concept-forming Operators ↑ and ↓

Example (concept-forming operators)

For table

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

we have:

{x2}↑ = {y1, y3, y4}, {x2, x3}↑ = {y3, y4},
{x1, x4, x5}↑ = ∅,
X ↑ = ∅, ∅↑ = Y ,

{y1}↓ = {x1, x2, x5}, {y1, y2}↓ = {x1},
{y2, y3}↓ = {x1, x3, x4}, {y2, y3, y4}↓ = {x1, x3, x4},
∅↓ = X , Y ↓ = {x1}.
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Formal Concepts

Definition (formal concept)

A formal concept in 〈X ,Y , I 〉 is a pair 〈A,B〉 of A ⊆ X and B ⊆ Y such
that

A↑ = B and B↓ = A.

A . . . extent of 〈A,B〉,
B . . . extent of 〈A,B〉,
verbal description: 〈A,B〉 is a formal concept iff A contains just
objects sharing all attributes from B and B contains just attributes
shared by all objects from A,

mathematical description: 〈A,B〉 is a formal concept iff 〈A,B〉 is a
fixpoint of 〈↑, ↓〉.
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Formal Concepts

Example (formal concept)

For table

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

the highlighted rectangle represents formal concept
〈A1,B1〉 = 〈{x1, x2, x3, x4}, {y3, y4}〉 because

{x1, x2, x3, x4}↑ = {y3, y4},
{y3, y4}↓ = {x1, x2, x3, x4}.
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Example (formal concept (cntd.))

But there are further formal concepts:

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

i.e., 〈A2,B2〉 = 〈{x1, x3, x4}, {y2, y3, y4}〉,
〈A3,B3〉 = 〈{x1, x2}, {y1, y3, y4}〉, 〈A4,B4〉 = 〈{x1, x2, x5}, {y1}〉.



Subconcept-superconcept ordering

Definition (subconcept-superconcept ordering)

For formal concepts 〈A1,B1〉 and 〈A2,B2〉 of 〈X ,Y , I 〉, put
〈A1,B1〉 ≤ 〈A2,B2〉 iff A1 ⊆ A2 (iff B2 ⊆ B1).

≤ . . . subconcept-superconcept ordering,

〈A1,B1〉 ≤ 〈A2,B2〉 . . . 〈A1,B1〉 is more specific than 〈A2,B2〉
(〈A2,B2〉 is more general),

captures intuition behind DOG ≤ MAMMAL.

Example

Consider formal concepts from the previous example:
〈A1,B1〉 = 〈{x1, x2, x3, x4}, {y3, y4}〉, 〈A2,B2〉 = 〈{x1, x3, x4}, {y2, y3, y4}〉,
〈A3,B3〉 = 〈{x1, x2}, {y1, y3, y4}〉, 〈A4,B4〉 = 〈{x1, x2, x5}, {y1}〉. Then:
〈A3,B3〉 ≤ 〈A1,B1〉, 〈A3,B3〉 ≤ 〈A2,B2〉, 〈A3,B3〉 ≤ 〈A4,B4〉,
〈A2,B2〉 ≤ 〈A1,B1〉, 〈A1,B1〉||〈A4,B4〉, 〈A2,B2〉||〈A4,B4〉.
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Concept Lattice

Definition (concept lattice)

Denote by B(X ,Y , I ) the collection of all formal concepts of 〈X ,Y , I 〉, i.e.
B (X ,Y , I ) = {〈A,B〉 ∈ 2X × 2Y | A↑ = B,B↓ = A}.

B (X ,Y , I ) equipped with the subconcept-superconcept ordering ≤ is
called a concept lattice of 〈X ,Y , I 〉.

B (X ,Y , I ) represents all (potentially interesting) clusters which are
“hidden” in data 〈X ,Y , I 〉.
We will see that 〈B (X ,Y , I ),≤〉 is indeed a lattice later.

Denote
Ext(X ,Y , I ) = {A ∈ 2X | 〈A,B〉 ∈ B (X ,Y , I ) for some B}
(extents of concepts)
Int(X ,Y , I ) = {B ∈ 2Y | 〈A,B〉 ∈ B (X ,Y , I ) for some A}
(intents of concepts)
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Concept Lattice – Example

input data (Ganter, Wille: Formal Concept Analysis. Springer, 1999):

a b c d e f g h i

leech 1 × × ×
bream 2 × × × ×

frog 3 × × × × ×
dog 4 × × × × ×

spike-weed 5 × × × ×
reed 6 × × × × ×
bean 7 × × × ×

maize 8 × × × ×

a: needs water to live, b: lives in water,
c : lives on land, d : needs chlorophyll to produce food,
e: two seed leaves, f : one seed leaf,
g : can move around, h: has limbs,
i : suckles its offspring.
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a b c d e f g h i

leech 1 × × ×
bream 2 × × × ×

frog 3 × × × × ×
dog 4 × × × × ×

spike-weed 5 × × × ×
reed 6 × × × × ×
bean 7 × × × ×

maize 8 × × × ×

formal concepts:

C0 = 〈{1, 2, 3, 4, 5, 6, 7, 8}, {a}〉, C1 = 〈{1, 2, 3, 4}, {a, g}〉,
C2 = 〈{2, 3, 4}, {a, g , h}〉, C3 = 〈{5, 6, 7, 8}, {a, d}〉,
C4 = 〈{5, 6, 8}, {a, d , f }〉, C5 = 〈{3, 4, 6, 7, 8}, {a, c}〉,
C6 = 〈{3, 4}, {a, c , g , h}〉, C7 = 〈{4}, {a, c , g , h, i}〉,
C8 = 〈{6, 7, 8}, {a, c , d}〉, C9 = 〈{6, 8}, {a, c , d , f }〉,
C10 = 〈{7}, {a, c , d , e}〉, C11 = 〈{1, 2, 3, 5, 6}, {a, b}〉,
C12 = 〈{1, 2, 3}, {a, b, g}〉, C13 = 〈{2, 3}, {a, b, g , h}〉,
C14 = 〈{5, 6}, {a, b, d , f }〉, C15 = 〈{3, 6}, {a, b, c}〉,
C16 = 〈{3}, {a, b, c , g , h}〉, C17 = 〈{6}, {a, b, c , d , f }〉,
C18 = 〈{}, {a, b, c , d , e, f , g , h, i}〉.



a b c d e f g h i

leech 1 × × ×
bream 2 × × × ×

frog 3 × × × × ×
dog 4 × × × × ×

spike-weed 5 × × × ×
reed 6 × × × × ×
bean 7 × × × ×

maize 8 × × × ×

concept lattice:
C0

C1

C2

C3

C4

C5

C6

C7

C8

C9

C10

C11

C12
C13

C14C15

C16
C17

C18

C0 = 〈{1, 2, 3, 4, 5, 6, 7, 8}, {a}〉, C1 = 〈{1, 2, 3, 4}, {a, g}〉,
C2 = 〈{2, 3, 4}, {a, g , h}〉, C3 = 〈{5, 6, 7, 8}, {a, d}〉,
C4 = 〈{5, 6, 8}, {a, d , f }〉, C5 = 〈{3, 4, 6, 7, 8}, {a, c}〉,
C6 = 〈{3, 4}, {a, c , g , h}〉, C7 = 〈{4}, {a, c , g , h, i}〉,
C8 = 〈{6, 7, 8}, {a, c , d}〉, C9 = 〈{6, 8}, {a, c , d , f }〉,
C10 = 〈{7}, {a, c , d , e}〉, C11 = 〈{1, 2, 3, 5, 6}, {a, b}〉,
C12 = 〈{1, 2, 3}, {a, b, g}〉, C13 = 〈{2, 3}, {a, b, g , h}〉,
C14 = 〈{5, 6}, {a, b, d , f }〉, C15 = 〈{3, 6}, {a, b, c}〉,
C16 = 〈{3}, {a, b, c , g , h}〉, C17 = 〈{6}, {a, b, c , d , f }〉,
C18 = 〈{}, {a, b, c , d , e, f , g , h, i}〉.



Formal concepts as maximal rectangles

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

Definition (rectangles in 〈X , Y , I 〉)
A rectangle in 〈X ,Y , I 〉 is a pair 〈A,B〉 such that A×B ⊆ I , i.e.: for each
x ∈ A and y ∈ B we have 〈x , y〉 ∈ I . For rectangles 〈A1,B1〉 and 〈A2,B2〉,
put 〈A1,B1〉 v 〈A2,B2〉 iff A1 ⊆ A2 and B1 ⊆ B2.

Example

In the table above, 〈{x1, x2, x3}, {y3, y4}〉 is a rectangle which is not
maximal w.r.t. v. 〈{x1, x2, x3, x4}, {y3, y4}〉 is a rectangle which is
maximal w.r.t. v.
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Formal concepts as maximal rectangles

Theorem (formal concepts as maximal rectangles)

〈A,B〉 is a formal concept of 〈X ,Y , I 〉 iff 〈A,B〉 is a maximal rectangle in
〈X ,Y , I 〉.

Proof.

“⇒”:
“⇐”:

“Geometrical reasoning” in FCA based on rectangles is important.
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Mathematical structures related to FCA

– Galois connections,

– closure operators,

– fixed points of Galois connections and closure operators.

These structure are referred to as closure structures.
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Galois connections

Definition (Galois connection)

A Galois connection between sets X and Y is a pair 〈f , g〉 of f : 2X → 2Y

and g : 2Y → 2X satisfying for A,A1,A2 ⊆ X , B,B1,B2 ⊆ Y :

A1 ⊆ A2 ⇒ f (A2) ⊆ f (A1), (1)

B1 ⊆ B2 ⇒ g(B2) ⊆ g(B1), (2)

A ⊆ g(f (A)), (3)

B ⊆ f (g(B). (4)

Definition (fixpoints of Galois connections)

For a Galois connection 〈f , g〉 between sets X and Y , the set

fix(〈f , g〉) = {〈A,B〉 ∈ 2X × 2Y | f (A) = B, g(B) = A}

is called a set of fixpoints of 〈f , g〉.
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Galois connections

Theorem (arrow operators form a Galois connection)

For a formal context 〈X ,Y , I 〉, the pair 〈↑I , ↓I 〉 of operators induced by
〈X ,Y , I 〉 is a Galois connection between X and Y .

Proof.
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Lemma (chaining of Galois connection)

For a Galois connection 〈f , g〉 between X and Y we have
f (A) = f (g(f (A))) and g(B) = g(f (g(B))) for any A ⊆ X and B ⊆ Y .

Proof.

We prove only f (A) = f (g(f (A))), g(B) = g(f (g(B))) is dual:
“⊆”:
f (A) ⊆ f (g(f (A))) follows from (4) by putting B = f (A).
“⊇”:
Since A ⊆ g(f (A)) by (3), we get f (A) ⊇ f (g(f (A))) by application of
(1).
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Closure operators

Definition (closure operator)

A closure operator on a set X is a mapping C : 2X → 2X satisfying for
each A,A1,A2 ⊆ X

A ⊆ C (A), (5)

A1 ⊆ A2 ⇒ C (A1) ⊆ C (A2), (6)

C (A) = C (C (A)). (7)

Definition (fixpoints of closure operators)

For a closure operator C : 2X → 2X , the set

fix(C ) = {A ⊆ X |C (A) = A}

is called a set of fixpoints of C .
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Closure operators

Theorem (from Galois connection to closure operators)

If 〈f , g〉 is a Galois connection between X and Y then CX = f ◦ g is a
closure operator on X and CY = g ◦ f is a closure operator on Y .

Proof.

We show that f ◦ g : 2X → 2X is a closure operator on X :
(5) is A ⊆ g(f (A)) which is true by definition of a Galois connection.
(6): A1 ⊆ A2 impies f (A2) ⊆ f (A1) which implies g(f (A1)) ⊆ g(f (A2)).
(7): Since f (A) = f (g(f (A))), we get g(f (A)) = g(f (g(f (A)))).
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Theorem (extents and intents)

Ext(X ,Y , I ) = {B↓ |B ⊆ Y },
Int(X ,Y , I ) = {A↑ |A ⊆ X}.

Proof.

We prove only the part for Ext(X ,Y , I ), part for Int(X ,Y , I ) is dual.
“⊆”: If A ∈ Ext(X ,Y , I ), then 〈A,B〉 is a formal concept for some
B ⊆ Y . By definition, A = B↓, i.e. A ∈ {B↓ |B ⊆ Y }.
“⊇”: Let A ∈ {B↓ |B ⊆ Y }, i.e. A = B↓ for some B. Then 〈A,A↑〉 is a
formal concept. Namely, A↑↓ = B↓↑↓ = B↓ = A by chaining, and A↑ = A↑

for free. That is, A is the extent of a formal concept 〈A,A↑〉, whence
A ∈ Ext(X ,Y , I ).
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Theorem (least extent containing A, least intent containing B)

The least extent containing A ⊆ X is A↑↓. The least intent containing
B ⊆ Y is B↓↑.

Proof.

For extents:
1. A↑↓ is an extent (by previous theorem).
2. If C is an extent such that A ⊆ C , then A↑↓ ⊆ C ↑↓ because ↑↓ is a
closure operator. Therefore, A↑↓ is the least extent containing A.

R. Belohlavek, J. Outrata (CS UP) Relational Data Analysis 2008 36 / 113



Extents, intents, concept lattice

Theorem

For any formal context 〈X ,Y , I 〉:

Ext(X ,Y , I ) = fix(↑↓),

Int(X ,Y , I ) = fix(↓↑),

B(X ,Y , I ) = {〈A,A↑〉 |A ∈ Ext(X ,Y , I )},
B(X ,Y , I ) = {〈B↓,B〉 |B ∈ Int(X ,Y , I )}.

Proof.

For Ext(X ,Y , I ):
We need to show that A is an extent iff A = A↑↓.
“⇒”: If A is an extent then for the corresponding formal concept 〈A,B〉
we have B = A↑ and A = B↓ = A↑↓. Hence, A = A↑↓.
“⇐”: If A = A↑↓ then 〈A,A↑〉 is a formal concept. Namely, denoting
〈A,B〉 = 〈A,A↑〉, we have both A↑ = B and B↓ = A↑↓ = A. Therefore, A
is an extent.

For B(X ,Y , I ) = {〈A,A↑〉 |A ∈ Ext(X ,Y , I )}:
If 〈A,B〉 ∈ B(X ,Y , I ) then B = A↑ and, obviously, A ∈ Ext(X ,Y , I ).
If A ∈ Ext(X ,Y , I ) then A = A↑↓ (above claim) and, therefore,
〈A,A⇑〉 ∈ B(X ,Y , I ).
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Extents, intents, concept lattice

cntd.

For B(X ,Y , I ) = {〈A,A↑〉 |A ∈ Ext(X ,Y , I )}:
If 〈A,B〉 ∈ B(X ,Y , I ) then B = A↑ and, obviously, A ∈ Ext(X ,Y , I ).
If A ∈ Ext(X ,Y , I ) then A = A↑↓ (above claim) and, therefore,
〈A,A↑〉 ∈ B(X ,Y , I ).

remark

The previous theorem says:
In order to obtain B(X ,Y , I ), we can:

1. compute Ext(X ,Y , I ),

2. for each A ∈ Ext(X ,Y , I ), output 〈A,A↑〉.
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Concise definition of Galois connections

There is a single condition which is equivalent to conditions (1)–(4) from
definition of Galois connection:

Theorem

〈f , g〉 is a Galois connection between X and Y iff for every A ⊆ X and
B ⊆ Y :

A ⊆ g(B) iff B ⊆ f (A) (8)

Proof.

“⇒”:
Let 〈f , g〉 be a Galois connection.
If A ⊆ g(B) then f (g(B)) ⊆ f (A) and since B ⊆ f (g(B)), we get
B ⊆ f (A). In similar way, B ⊆ f (A) implies A ⊆ g(B).
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Concise definition of Galois connections

cntd.

“⇐”:
Let A ⊆ g(B) iff B ⊆ f (A). We check that 〈f , g〉 is a Galois connection.
Due to duality, it suffices to check (a) A ⊆ g(f (A)), and (b) A1 ⊆ A2

implies f (A2) ⊆ f (A1).
(a): Due to our assumption, A ⊆ g(f (A)) is equivalent to f (A) ⊆ f (A)
which is evidently true.
(b): Let A1 ⊆ A2. Due to (a), we have A2 ⊆ g(f (A2)), therefore
A1 ⊆ g(f (A2)). Using assumption, the latter is equivalent to
f (A2) ⊆ f (A1).
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Galois connections, and union and intersection

Theorem

〈f , g〉 is a Galois connection between X and Y then for Aj ⊆ X, j ∈ J,
and Bj ⊆ Y , j ∈ J we have

f (
⋃
j∈J

Aj) =
⋂
j∈J

f (Aj), (9)

g(
⋃
j∈J

Bj) =
⋂
j∈J

g(Bj). (10)

Proof.

(9):
For any D ⊆ Y : D ⊆ f (

⋃
j∈J Aj) iff

⋃
j∈J Aj ⊆ g(D) iff for each j ∈ J:

Aj ⊆ g(D) iff for each j ∈ J: D ⊆ f (Aj) iff D ⊆
⋂

j∈J f (Aj).
Since D is arbitrary, it follows that f (

⋃
j∈J Aj) =

⋂
j∈J f (Aj).

(10): dual.
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Each Galois connection is induced by a binary
relation

Theorem

Let 〈f , g〉 be a Galois connection between X and Y . Consider a formal
context 〈X ,Y , I 〉 such that I is defined by

〈x , y〉 ∈ I iff y ∈ f ({x}) or, equivalently, iff x ∈ g({y}), (11)

for each x ∈ X and y ∈ Y . Then 〈↑I , ↓I 〉 = 〈f , g〉, i.e., the arrow operators
〈↑I , ↓I 〉 induced by 〈X ,Y , I 〉 coincide with 〈f , g〉.

Proof.

First, we show y ∈ f ({x}) iff x ∈ g({y}):
From y ∈ f ({x}) we get {y} ⊆ f ({x}) from which, using (8), we get
{x} ⊆ g({y}), i.e. x ∈ g({y}).
In a similar way, x ∈ g({y}) implies y ∈ f ({x}). This establishes
y ∈ f ({x}) iff x ∈ g({y}).

Now, for each A ⊆ X we have f (A) = f (∪x∈A{x}) = ∩x∈Af ({x}) =
∩x∈A{y ∈ Y | y ∈ f ({x})} = ∩x∈A{y ∈ Y | 〈x , y〉 ∈ I} = {y ∈ Y | for
each x ∈ A : 〈x , y〉 ∈ I} = A⇑I .
Dually, for B ⊆ Y we get g(B) = B⇓I .
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Each Galois connection is induced by a binary
relation

cntd.

Now, using (9), for each A ⊆ X we have

f (A) = f (∪x∈A{x}) = ∩x∈Af ({x}) =

= ∩x∈A{y ∈ Y | y ∈ f ({x})} = ∩x∈A{y ∈ Y | 〈x , y〉 ∈ I} =

= {y ∈ Y | for each x ∈ A : 〈x , y〉 ∈ I} = A↑I .

Dually, for B ⊆ Y we get g(B) = B↓I .

remarks

Relation I induced from 〈f , g〉 by (11) will be denoted by I〈f ,g〉.

Therefore, we have established two mappings:
I 7→ 〈↑I , ↓I 〉 assigns a Galois connection to a binary relation I .
〈↑, ↓〉 7→ I〈↑,↓〉 assigns a binary relation to a Galois connection.
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Representation theorem for Galois connections

Theorem (representation theorem)

I 7→ 〈↑I , ↓I 〉 and 〈↑, ↓〉 7→ I〈↑,↓〉 are mutually inverse mappings between the
set of all binary relations between X and Y and the set of all Galois
connections between X and Y .

Proof.

Using the results established above, it remains to check that I = I〈↑I ,↓I 〉:
We have

〈x , y〉 ∈ I〈↑I ,↓I 〉 iff y ∈ {x}↑I iff 〈x , y〉 ∈ I ,

finishing the proof.

remarks

In particular, previous theorem assures that (1)–(4) fully describe all the
properties of our arrow operators induced by data 〈X ,Y , I 〉.
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Duality between extents and intents

Having established properties of 〈↑, ↓〉, we can see the duality relationship
between extents and intents:

Theorem

For 〈A1,B1〉, 〈A2,B2〉 ∈ B(X ,Y , I ),

A1 ⊆ A2 iff B2 ⊆ B1. (12)

Proof.

By assumption, Ai = B↓
i and Bi = A↑

i . Therefore, using (1) and (2), we

get A1 ⊆ A2 implies A↑
2 ⊆ A↑

1, i.e., B2 ⊆ B1, which implies B↓
1 ⊆ B↓

2 , i.e.
A1 ⊆ A2.

Therefore, the definition of a partial order ≤ on B(X ,Y , I ) is correct.
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Duality between extents and intents

Theorem (extents, intents, and formal concepts)

1. 〈Ext(X ,Y , I ),⊆〉 and 〈Int(X ,Y , I ),⊆〉 are partially ordered sets.

2. 〈Ext(X ,Y , I ),⊆〉 and 〈Int(X ,Y , I ),⊆〉 are dually isomorphic, i.e.,
there is a mapping f : Ext(X ,Y , I ) → Int(X ,Y , I ) satisfying
A1 ⊆ A2 iff f (A2) ⊆ f (A1).

3. 〈B(X ,Y , I ),≤〉 is isomorphic to 〈Ext(X ,Y , I ),⊆〉.
4. 〈B(X ,Y , I ),≤〉 is dually isomorphic to 〈Int(X ,Y , I ),⊆〉.

Proof.

1.: Obvious because Ext(X ,Y , I ) is a collection of subsets of X and ⊆ is
set inclusion. Same for Int(X ,Y , I ).
2.: Just take f = ↑ and use previous results.
3.: Obviously, mapping 〈A,B〉 7→ A is the required isomorphism.
4.: Mapping 〈A,B〉 7→ B is the required dual isomorphism.
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Hierarchical structure of concept lattices

We know that B(X ,Y , I ) (set of all formal concepts) equipped with ≤
(subconcept-superconcept hierarchy) is a partially ordered set. Now, the
question is:

What is the structure of 〈B(X ,Y , I ),≤〉?

It turns out that 〈B(X ,Y , I ),≤〉 is a complete lattice (we will see this as a
part of Main theorem of concept lattices).

concept lattice ≈ complete conceptual hierarchy

The fact that 〈B(X ,Y , I ),≤〉 is a lattice is a “welcome property”.
Namely, it says that for any collection K ⊆ B(X ,Y , I ) of formal concepts,
B(X ,Y , I ) contains both the “direct generalization”

∨
K of concepts from

K (supremum of K ), and the “direct specialization”
∨

K of concepts from
K (infimum of K ). In this sense, 〈B(X ,Y , I ),≤〉 is a complete conceptual
hierarchy.

Now: details to Main theorem of concept lattices.
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Theorem (system of fixpoints of closure operators)

For a closure operator C on X , the partially ordered set 〈fix(C ),⊆〉 of
fixpoints of C is a complete lattice with infima and suprema given by∧

j∈J

Aj =
⋂
j∈J

Aj , (13)

∨
j∈J

Aj = C (
⋃
j∈J

Aj). (14)

Proof.

Evidently, 〈fix(C ),⊆〉 is a partially ordered set.
(13): First, we check that for Aj ∈ fix(C ) we have

⋂
j∈J Aj ∈ fix(C )

(intersection of fixpoints is a fixpoint). We need to check⋂
j∈J Aj = C (

⋂
j∈J Aj).

“⊆”:
⋂

j∈J Aj ⊆ C (
⋂

j∈J Aj) is obvious (property of closure operators).
“⊇”: We have C (

⋂
j∈J Aj) ⊆

⋂
j∈J Aj iff for each j ∈ J we have

C (
⋂

j∈J Aj) ⊆ Aj which is true. Indeed, we have
⋂

j∈J Aj ⊆ Aj from which
we get C (

⋂
j∈J Aj) ⊆ C (Aj) = Aj .



cntd.

Now, since
⋂

j∈J Aj ∈ fix(C ), it is clear that
⋂

j∈J Aj is the infimum of
Aj ’s: first,

⋂
j∈J Aj is less of equal to every Aj ; second,

⋂
j∈J Aj is greater

or equal to any A ∈ fix(C ) which is less or equal to all Aj ’s; that is,⋂
j∈J Aj is the greatest element of the lower cone of {Aj | j ∈ J}).

(14): We verify
∨

j∈J Aj = C (
⋃

j∈J Aj). Note first that since
∨

j∈J Aj is a
fixpoint of C , we have

∨
j∈J Aj = C (

∨
j∈J Aj).

“⊆”: C (
⋃

j∈J Aj) is a fixpoint which is greater or equal to every Aj , and so
C (

⋃
j∈J Aj) must be greater or equal to the supremum

∨
j∈J Aj , i.e.∨

j∈J Aj ⊆ C (
⋃

j∈J Aj).
“⊇”: Since

∨
j∈J Aj ⊇ Aj for any j ∈ J, we get

∨
j∈J Aj ⊇

⋃
j∈J Aj , and so∨

j∈J Aj = C (
∨

j∈J Aj) ⊇ C (
⋃

j∈J Aj).

To sum up,
∨

j∈J Aj = C (
⋃

j∈J Aj).



Theorem (Main theorem of concept lattices, Wille (1982))

(1) B (X ,Y , I ) is a complete lattice with infima and suprema given by∧
j∈J

〈Aj ,Bj〉 = 〈
⋂
j∈J

Aj , (
⋃
j∈J

Bj)
↓↑〉 ,

∨
j∈J

〈Aj ,Bj〉 = 〈(
⋃
j∈J

Aj)
↑↓,

⋂
j∈J

Bj〉 . (15)

(2) Moreover, an arbitrary complete lattice V = (V ,≤) is isomorphic to
B (X ,Y , I ) iff there are mappings γ : X → V , µ : Y → V such that

(i) γ(X ) is
∨

-dense in V, µ(Y ) is
∧

-dense in V;

(ii) γ(x) ≤ µ(y) iff 〈x , y〉 ∈ I .

remark

(1) K ⊆ V is supremally dense in V iff for each v ∈ V there exists
K ′ ⊆ K such that v =

∨
K ′ (i.e., every element v of V is a supremum of

some elements of K ).
Dually for infimal density of K in V (every element v of V is an infimum
of some elements of K ).

(2) Supremally (infimally) dense sets canbe considered building blocks of
V .



Proof.

Proof for (1) only. We check
∧

j∈J 〈Aj ,Bj〉 = 〈
⋂

j∈J Aj , (
⋃

j∈J Bj)
↓↑〉:

First, 〈Ext(X ,Y , I ),⊆〉 = 〈fix(↑↓),⊆〉 and 〈Int(X ,Y , I ),⊆〉 = 〈fix(↓↑),⊆〉.
That is, Ext(X ,Y , I ) and Int(X ,Y , I ) are systems of fixpoints of closure
operators, and therefore, suprema and infima in Ext(X ,Y , I ) and
Int(X ,Y , I ) obey the formulas from previous theorem.

Second, recall that 〈B (X ,Y , I ),≤〉 is isomorphic to 〈Ext(X ,Y , I ),⊆〉 and
dually isomorphic to 〈Int(X ,Y , I ),⊆〉.
Therefore, infima in B (X ,Y , I ) correspond to infima in Ext(X ,Y , I ) and
to suprema in Int(X ,Y , I ).
That is, since

∧
j∈J 〈Aj ,Bj〉 is the infimum of 〈Aj ,Bj〉’s in 〈B (X ,Y , I ),≤〉:

The extent of
∧

j∈J 〈Aj ,Bj〉 is the infimum of Aj ’s in 〈Ext(X ,Y , I ),⊆〉
which is, according to (13),

⋂
j∈J Aj . The intent of

∧
j∈J 〈Aj ,Bj〉 is the

supremum of Bj ’s in 〈Int(X ,Y , I ),⊆〉 which is, according to (14),
(
⋃

j∈J Bj)
↓↑. We just proved∧

j∈J 〈Aj ,Bj〉 = 〈
⋂

j∈J Aj , (
⋃

j∈J Bj)
↓↑〉.

Checking the formula for
∨

j∈J 〈Aj ,Bj〉 is dual.



γ and µ in part (2) of Main theorem

Consider part (2) and take V := B(X ,Y , I ). Since B(X ,Y , I ) is
isomorphic to B(X ,Y , I ), there exist mappings

γ : X → B(X ,Y , I ) and µ : Y → B(X ,Y , I )
satisfying properties from part (2). How do mappings γ and µ work?

γ(x) = 〈{x}↑↓, {x}↑〉. . . object concept of x ,

µ(y) = 〈{y}↓, {y}↓↑〉. . . attribute concept of y .

Then: (i) says that each 〈A,B〉 ∈ B(X ,Y , I ) is a supremum of some
objects concepts (and, infimum of some attribute concepts). This is true
since

〈A,B〉 =
∨

x∈A〈{x}↑↓, {x}↑〉 and 〈A,B〉 =
∧

y∈B〈{y}↓, {y}↓↑〉.

(ii) is true, too: γ(x) ≤ µ(y) iff {x}↑↓ ⊆ {y}↓ iff {y} ⊆ {x}↑↓↑ = {x}↑ iff
〈x , y〉 ∈ I .
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What does Main theorem say?

Part (1): B(X ,Y , I ) is a lattice + description of infima and suprema.
Part (2): way to label a concept lattice so that no information is lost.

labeling of Hasse diagrams of concept lattices

γ(x) = 〈{x}↑↓, {x}↑〉 . . . object concept of x –labeled by x ,
µ(y) = 〈{y}↓, {y}↓↑〉 . . . attribute concept of y – labeled by y .

How do we see extents and intents in a labeled Hasse diagram?

extents and intents in labeled Hasse diagram

Consider formal concept 〈A,B〉 corresponding to node c of a labeled
diagram of concept lattice B(X ,Y , I ). What is then extent and the intent
of 〈A,B〉?

x ∈ A iff node with label x lies on a path going from c downwards,

y ∈ B iff node with label y lies on a path going from c upwards.
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Labeling of diagrams of concept lattices

Example

(1) Draw a labeled Hasse diagram of concept lattice associated to formal
context

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

(2) Is every formal concept either an object concept or an attribute
concept? Can a formal concept be both an object concept and an
attribute concept?

Exercise

Label the Hasse diagram from the organisms vs. their properties example.
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Labeling of diagrams of concept lattices

Example

Draw a labeled Hasse diagram of concept lattice associated to formal
context

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

B(X ,Y , I ) consists of: 〈{x1},Y 〉, 〈{x1, x2}, {y1, y3, y4}〉,
〈{x1, x3, x4}, {y2, y3, y4}〉, 〈{x1, x2, x3, x4}, {y3, y4}〉, 〈{x1, x2, x5}, {y1}〉,
〈X , ∅〉.
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Clarified and reduced formal contexts

Definition (clarified context)

A formal context 〈X ,Y , I 〉 is called clarified if the corresponding table
does neither contain identical rows nor identical columns.

That is, if 〈X ,Y , I 〉 is clarified then
{x1}↑ = {x2}↑ implies x1 = x2 for every x1, x2 ∈ X ;
{y1}↓ = {y2}↓ implies y1 = y2 for every y1, y2 ∈ Y .
clarification: removal of identical rows and columns (only one of several
identical rows/columns is left)

Example

The formal context on the right results by clarification from the formal
context on the left.

I y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 ×

I y1 y2 y3

x1 × × ×
x2 × ×
x3 × ×
x5 ×
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Clarified and reduced formal contexts

Theorem

If 〈X1,Y1, I1〉 is a clarified context resulting from 〈X2,Y2, I2〉 by
clarification, then B(X1,Y1, I1) is isomorphic to B(X2,Y2, I2).

Proof.

Let 〈X2,Y2, I2〉 contain x1, x2 s.t. {x1}↑ = {x2}↑ (identical rows). Let
〈X1,Y1, I1〉 result from 〈X2,Y2, I2〉 by removing x2 (i.e., X1 = X2 − {x2},
Y1 = Y2). An isomorphism f : B(X1,Y1, I1) → B(X2,Y2, I2) is given by

f (〈A1,B1〉) = 〈A2,B2〉
where B1 = B2 and

A2 =

{
A1 if x1 6∈ A1,
A1 ∪ {x2} if x1 ∈ A1.
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Clarified and reduced formal contexts

cntd.

Namely, one can easily see that 〈A1,B1〉 is a formal concept of
B(X1,Y1, I1) iff f (〈A1,B1〉) is a formal concept of B(X2,Y2, I2) and that
for formal concepts 〈A1,B1〉, 〈C1,D1〉 of B(X1,Y1, I1) we have

〈A1,B1〉 ≤ 〈C1,D1〉 iff f (〈A1,B1〉) ≤ f (〈C1,D1〉).

Therefore, B(X1,Y1, I1) is isomorphic to B(X2,Y2, I2). This justifies the
claim for removing one (identical) row. The same is true for removing one
column. Repeated application gives the theorem.

Example

Find the isomorphism between concept lattices of formal contexts from the
previous example.
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Clarified and reduced formal contexts

Another way to simplify the input formal context: removing reducible
objects and attributes

Example

Draw concept lattices of the following formal contexts:

I y1 y2 y3

x1 ×
x2 × × ×
x3 ×

I y1 y3

x1 ×
x2 × ×
x3 ×

Why are they isomorphic?

Hint: y2 = intersection of y1 and y3 (i.e., {y2}↓ = {y1}↓ ∩ {y3}↓).
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Clarified and reduced formal contexts

Definition (reducible objects and attributes)

For a formal context 〈X ,Y , I 〉, an attribute y ∈ Y is called reducible iff
there is Y ′ ⊂ Y with y 6∈ Y ′ such that

{y}↓ =
⋂

z∈Y ′

{z}↓,

i.e., the column corresponding to y is the intersection of columns
corresponding to zs from Y ′. An object x ∈ X is called reducible iff there
is X ′ ⊂ X with x 6∈ X ′ such that

{x}↑ =
⋂

z∈X ′

{z}↑,

i.e., the row corresponding to x is the intersection of rows corresponding
to zs from X ′.
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Clarified and reduced formal contexts

– y2 from the previous example is reducible (Y ′ = {y1, y3}).
– Analogy: If a (real-valued attribute) y is a linear combination of other

attributes, it can be removed (caution: this depends on what we do
with the attributes). Intersection = particular attribute combination.

– (Non-)reducibility in 〈X ,Y , I 〉 is connected to so-called∧
-(ir)reducibility and

∨
-(ir)reducibility in B(X ,Y , I ).

– In a complete lattice 〈V ,≤〉, v ∈ V is called
∧

-irreducible if there is
no U ⊂ V with v 6∈ U s.t. v =

∧
U. Dually for

∨
-irreducibility.

– Determine all
∧

-irreducible elements in 〈2{a,b,c},⊆〉, in a “pentagon”,
and in a 4-element chain.

– Verify that in a finite lattice 〈V ,≤〉: v is
∧

-irreducible iff v is covered
by exactly one element of V ; v is

∨
-irreducible iff v covers exactly

one element of V .
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Clarified and reduced formal contexts

– easily from definition: y is reducible iff there is Y ′ ⊂ Y with y 6∈ Y ′

s.t.
〈{y}↓, {y}↓↑〉 =

∧
z∈Y ′

〈{z}↓, {z}↓↑〉. (16)

– Let 〈X ,Y , I 〉 be clarified. Then in (16), for each z ∈ Y ′:
{y}↓ 6= {z}↓, and so, 〈{y}↓, {y}↓↑〉 6= 〈{z}↓, {z}↓↑〉. Thus: y is
reducible iff 〈{y}↓, {y}↓↑〉 is an infimum of attribute concepts
different from 〈{y}↓, {y}↓↑〉. Now, since every concept 〈A,B〉 is an
infimum of some attribute concepts (attribute concepts are

∧
-dense),

we get that y is not reducible iff 〈{y}↓, {y}↓↑〉 is
∧

-irreducible in
B(X ,Y , I ).

– Therefore, if 〈X ,Y , I 〉 is clarified, y is not reducible iff 〈{y}↓, {y}↓↑〉
is

∧
-irreducible.
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Clarified and reduced formal contexts

– Suppose 〈X ,Y , I 〉 is not clarified due to {y}↓ = {z}↓ for some z 6= y .
Then y is reducible by definition (just put Y ′ = {z} in the definition).
Still, it can happen that 〈{y}↓, {y}↓↑〉 is

∧
-irreducible and it can

happen that y is
∧

-reducible, see the next example.

– Example. Two non-clarified contexts. Left: y2 reducible and
〈{y2}↓, {y2}↓↑〉

∧
-reducible. Right: y2 reducible but 〈{y2}↓, {y2}↓↑〉∧

-irreducible.

I y1 y2 y3 y4

x1 ×
x2 × × × ×
x3 × × × ×
x4 ×

I y1 y2 y3 y4 y5

x1 × ×
x2 × ×
x3 × × × ×
x4 × ×

– The same for reducibility of objects: If 〈X ,Y , I 〉 is clarified, then x is
not reducible iff 〈{x}↑↓, {x}↑〉 is

∨
-irreducible in B(X ,Y , I ).

– Therefore, it is convenient to consider reducibility on clarified contexts
(then, reducibility of objects and attributes corresponds to

∨
- and∧

-reducibility of object concepts and attribute concepts).
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Theorem

Let y ∈ Y be reducible in 〈X ,Y , I 〉. Then B(X ,Y − {y}, J) is isomorphic
to B(X ,Y , I ) where J = I ∩ (X × (Y − {y})) is the restriction of I to
X × Y − {y}, i.e., 〈X ,Y − {y}, J〉 results by removing column y from
〈X ,Y , I 〉.

Proof.

Follows from part (2) of Main theorem of concept lattices:
Namely, B(X ,Y − {y}, J) is isomorphic to B(X ,Y , I ) iff there are
mappings γ : X → B(X ,Y , I ) and µ : Y − {y} → B(X ,Y , I ) such that
(a) γ(X ) is

∨
-dense in B(X ,Y , I ), (b) µ(Y − {y}) is

∧
-dense in

B(X ,Y , I ), and (c) γ(x) ≤ µ(z) iff 〈x , z〉 ∈ J. If we define γ(x) and µ(z)
to be the object and attribute concept of B(X ,Y , I ) corresponding to x
and z , respectively, then:
(a) is evident.
(c) is satisfied because for z ∈ Y − {z} we have 〈x , z〉 ∈ J iff 〈x , z〉 ∈ I (J
is a restriction of I ).



cntd.

(b): We need to show that each 〈A,B〉 ∈ B(X ,Y , I ) is an infimum of
attribute concepts different from 〈{y}↓, {y}↓↑〉. But this is true because y
is reducible: Namely, if 〈A,B〉 ∈ B(X ,Y , I ) is the infimum of attribute
concepts which include 〈{y}↓, {y}↓↑〉, then we may replace 〈{y}↓, {y}↓↑〉
by the attribute concepts 〈{z}↓, {z}↓↑〉, z ∈ Y ′ (cf. definition of reducible
attribute), of which 〈{y}↓, {y}↓↑〉 is the infimum.



Definition (reduced formal context)

〈X ,Y , I 〉 is

– row reduced if no object x ∈ X is reducible,

– column reduced if no attribute y ∈ Y is reducible,

– reduced if it is both row reduced and column reduced.

– By above observation: If 〈X ,Y , I 〉 is not clarified, then either some
object is reducible (if there are identical rows) or some attribute is
reducible (if there are identical columns). Therefore, if 〈X ,Y , I 〉 is
reduced, it is clarified.

– The relationship between reducibility of objects/attributes and
∨

-
and

∧
-reducibility of object/attribute concepts gives:

observation

A clarified 〈X ,Y , I 〉 is

– row reduced iff every object concept is
∨

-irreducible,

– column reduced iff every attribute concept is
∧

-irreducible.



Reducing formal context by arrow relations

How to find out which objects and attributes are reducible?

Definition (arrow relations)

For 〈X ,Y , I 〉, define relations ↗, ↙, and l between X and Y by

– x ↙ y iff 〈x , y〉 6∈ I and if {x}↑ ⊂ {x1}↑ then 〈x1, y〉 ∈ I .

– x ↗ y iff 〈x , y〉 6∈ I and if {y}↓ ⊂ {y1}↓ then 〈x , y1〉 ∈ I .

– x l y iff x ↙ y and x ↗ y .

Therefore, if 〈x , y〉 ∈ I then none of x ↙ y , x ↗ y , x l y occurs. The
arrow relations can therefore be entered in the table of 〈X ,Y , I 〉 such as

I y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I y1 y2 y3 y4

x1 × × × ×
x2 × × l ↙
x3 l × × ×
x4 ↗ × ↗
x5 ↗ × × l
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Reducing formal context by arrow relations

Theorem (arrow relations and reducibility)

For any 〈X ,Y , I 〉, x ∈ X, y ∈ Y :

– 〈{x}↑↓, {x}↑〉 is
∨

-irreducible iff there is y ∈ Y s.t. x ↙ y;

– 〈{y}↓, {y}↓↑〉 is
∧

-irreducible iff there is x ∈ Y s.t. x ↗ y.

Proof.

Due to duality, we verify
∧

-irreducibility:
x ↗ y IFF
x 6∈ {y}↓ and for every y1 with {y}↓ ⊂ {y1}↓ we have x ∈ {y1}↓ IFF
{y}↓ ⊂

⋂
y1:{y}↓⊂{y1}↓ IFF

〈{y}↓, {y}↓↑〉 is not an infimum of other attribute concepts IFF
〈{y}↓, {y}↓↑〉 is

∧
-irreducible.
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Reducing formal context by arrow relations

Problem:
INPUT: (arbitrary) formal context 〈X1,Y1, I1〉
OUTPUT: a reduced context 〈X2,Y2, I2〉

Algorithm:

1. clarify 〈X1,Y1, I1〉 to get a clarified context 〈X3,Y3, I3〉 (removing
identical rows and columns),

2. compute arrow relations ↙ and ↗ for 〈X3,Y3, I3〉,
3. obtain 〈X2,Y2, I2〉 from 〈X3,Y3, I3〉 by removing objects x from X3 for

which there is no y ∈ Y3 with x ↙ y , and attributes y from Y3 for
which there is no x ∈ X3 with x ↗ y . That is:
X2 = X3 − {x | there is no y ∈ Y3 s. t. x ↙ y},
Y2 = Y3 − {y | there is no x ∈ X3 s. t. x ↗ y},
I2 = I3 ∩ (X2 × Y2).
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Reducing formal context by arrow relations

Example (arrow relations)

Compute arrow relations ↙, ↗, l for the following formal context:

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

Start with ↗. We need to go through cells in the table not containing ×
and decide whether ↗ applies.
The first such cell corresponds to 〈x2, y3〉. By definition, x2 ↗ y3 iff for
each y ∈ Y such that {y3}↓ ⊂ {y}↓ we have x2 ∈ {y}↓. The only such y
is y2 for which we have x2 ∈ {y2}↓, hence x2 ↗ y3.
And so on up to 〈x5, y4〉 for which we get x5 ↗ y4.
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Reducing formal context by arrow relations

Example (arrow relations cntd.)

Compute arrow relations ↙, ↗, l for the following formal context:

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

Continue with ↙. Go through cells in the table not containing × and
decide whether ↙ applies. The first such cell corresponds to 〈x2, y3〉. By
definition, x2 ↙ y3 iff for each x ∈ X such that {x2}↑ ⊂ {x}↑ we have
y3 ∈ {x}↑. The only such x is x1 for which we have y3 ∈ {x1}↑, hence
x2 ↙ y3.
And so on up to 〈x5, y4〉 for which we get x5 ↙ y4.
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Reducing formal context by arrow relations

Example (arrow relations cntd. – result)

Compute arrow relations ↙, ↗, l for the following formal context (left):

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I1 y1 y2 y3 y4

x1 × × × ×
x2 × × l ↙
x3 l × × ×
x4 ↗ × ↗
x5 ↗ × × l

The arrow relations are indicated in the right table. Therefore, the
corresponding reduced context is

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×
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Reducing formal context by arrow relations

For a complete lattice 〈V ,≤〉 and v ∈ V , denote

v∗ =
∨

u∈V ,u<v

u,

v∗ =
∧

u∈V ,v<u

u.

exercise

Show that x ↙ y iff
〈{x}↑↓, {x}↑〉 ∨ 〈{y}↓, {y}↓↑〉 = 〈{x}↑↓, {x}↑〉∗ < 〈{y}↓, {y}↓↑〉,
Show that x ↗ y iff
〈{x}↑↓, {x}↑〉 ∧ 〈{y}↓, {y}↓↑〉 = 〈{y}↓, {y}↓↑〉∗ > 〈{y}↓, {y}↓↑〉.
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Reducing formal context by arrow relations

Let 〈X1,Y1, I1〉 be clarified, X2 ⊆ X1 and Y2 ⊆ Y1 be sets of irreducible
objects and attributes, respectively, let I2 = I1 ∩ (X2 × Y2) (restriction of
I1 to irreducible objects and attributes).
How can we obtain from concepts of B(X1,Y1, I1) from those of
B(X2,Y2, I2)? Answer is based on:

1. 〈A1,B1〉 7→ 〈A1 ∩ X2,B1 ∩ Y2〉 is an isomorphism from B(X1,Y1, I1)
on B(X2,Y2, I2).

2. therefore, each extent A2 of B(X2,Y2, I2) is of the form A2 = A1 ∩ X2

where A1 is an extent of B(X1,Y1, I1) (same for intents).
3. for x ∈ X1: x ∈ A1 iff {x}↑↓ ∩ X2 ⊆ A1 ∩ X2,

for y ∈ Y1: y ∈ B1 iff {y}↓↑ ∩ Y2 ⊆ B1 ∩ Y2.

Here, ↑ and ↓ are operators induced by 〈X1,Y1, I1〉.
Therefore, given 〈A2,B2〉 ∈ B(X2,Y2, I2), the corresponding
〈A1,B1〉 ∈ B(X1,Y1, I1) is given by

A1 = A2 ∪ {x ∈ X1 − X2 | {x}↑↓ ∩ X2 ⊆ A2}, (17)

B1 = B2 ∪ {y ∈ Y1 − Y2 | {y}↓↑ ∩ Y2 ⊆ B2}. (18)
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Reducing formal context by arrow relations

Example

Left is a clarified formal context 〈X1,Y1, I1〉, right is a reduced context
〈X2,Y2, I2〉 (see previous example).

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

Determine B(X1,Y1, I1) by first computing B(X2,Y2, I2) and then using
the method from the previous slide to obtain concepts B(X1,Y1, I1) from
the corresponding concepts from B(X2,Y2, I2).
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Example (cntd.)

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

B(X2,Y2, I2) consists of:
〈∅,Y2〉, 〈{x2}, {y1}〉, 〈{x3}, {y3, y4}〉, 〈{x3, x5}, {y3}〉, 〈X2, ∅〉.
We need to go through all 〈A2,B2〉 ∈ B(X2,Y2, I2) and determine the
corresponding 〈A1,B1〉 ∈ B(X1,Y1, I1) using (17) and (18). Note:
X1 − X2 = {x1, x4}, Y1 − Y2 = {y2}.

1. for 〈A2,B2〉 = 〈∅,Y2〉 we have
{x1}↑↓ ∩ X2 = {x1} ∩ X2 = ∅ ⊆ A2,
{x4}↑↓ ∩ X2 = X1 ∩ X2 = X2 6⊆ A2,
hence A1 = A2 ∪ {x1} = {x1}, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = Y1. So, 〈A1,B1〉 = 〈{x1},Y1〉.



Example (cntd.)

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

2. for 〈A2,B2〉 = 〈{x2}, {y1}〉 we have
{x1}↑↓ ∩ X2 = ∅ ⊆ A2, {x4}↑↓ ∩ X2 = X2 6⊆ A2,
hence A1 = A2 ∪ {x1} = {x1, x2}, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = {y1, y2}. So, 〈A1,B1〉 = 〈{x1, x2}, {y1, y2}〉.

3. for 〈A2,B2〉 = 〈{x3}, {y3, y4}〉 we have
{x1}↑↓ ∩ X2 = ∅ ⊆ A2, {x4}↑↓ ∩ X2 = X2 6⊆ A2,
hence A1 = A2 ∪ {x1} = {x1, x3}, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = {y2, y3, y4}. So,
〈A1,B1〉 = 〈{x1, x3}, {y2, y3, y4}〉.



Example (cntd.)

I1 y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3 × × ×
x4 ×
x5 × ×

I2 y1 y3 y4

x2 ×
x3 × ×
x5 ×

4. for 〈A2,B2〉 = 〈{x3, x5}, {y3}〉 we have
{x1}↑↓ ∩ X2 = ∅ ⊆ A2, {x4}↑↓ ∩ X2 = X2 6⊆ A2,
hence A1 = A2 ∪ {x1} = {x1, x3, x5}, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = {y2, y3}. So,
〈A1,B1〉 = 〈{x1, x3, x5}, {y2, y3}〉.

5. for 〈A2,B2〉 = 〈X2, ∅〉 we have
{x1}↑↓ ∩ X2 = ∅ ⊆ A2, {x4}↑↓ ∩ X2 = X2 ⊆ A2,
hence A1 = A2 ∪ {x1, x4} = X1, and
{y2}↓↑ ∩ Y2 = {y2} ∩ Y2 = ∅ ⊆ B2,
hence B1 = B2 ∪ {y2} = {y2}. So, 〈A1,B1〉 = 〈X1, {y2}〉.



Clarification and reduction

exercise

Determine a reduced context from the following formal context. Use the
reduced context to compute B(X ,Y , I ).

I y1 y2 y3 y4 y5

x1
x2 × ×
x3 × × ×
x4 × × ×
x5 × ×
x6 × × ×
x7 × × ×

Hint: First clarify, then compute arrow relations.
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Algorithms for computing concept lattices

problem:
INPUT: formal context 〈X ,Y , I 〉,
OUTPUT: concept lattice B(X ,Y , I ) (possibly plus ≤)

– Sometimes one needs to compute the set B(X ,Y , I ) of formal
concepts only.

– Sometimes one needs to compute both the set B(X ,Y , I ) and the
conceptual hierarchy ≤. ≤ can be computed from B(X ,Y , I ) by
definition of ≤. But this is not efficient. Algorithms exist which can
compute B(X ,Y , I ) and ≤ simultaneously, which is more efficient
(faster) than first computing B(X ,Y , I ) and then computing ≤.

survey: Kuznetsov S. O., Obiedkov S. A.: Comparing performance of
algorithms for generating concept lattices. J. Experimental & Theoretical
Artificial Intelligence 14(2003), 189–216.

We will introduce:
– Ganter’s NextClosure algorithm (computes B(X ,Y , I )),
– Lindig’s UpperNeighbor algorithm (computes B(X ,Y , I ) and ≤).
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NextClosure Algorithm

– author: Bernhard Ganter (1987)

– input: formal context 〈X ,Y , I 〉,
– output: Int(X ,Y , I ) . . . all intents (dually, Ext(X ,Y , I ) . . . all

extents),

– list all intents (or extents) in lexicographic order,

– note that B(X ,Y , I ) can be reconstructed from Int(X ,Y , I ) due to

B(X ,Y , I ) = {〈B↓,B〉 |B ∈ Int(X ,Y , I )},

– one of most popular algorithms, easy to implement,

– we present NextClosure for intents.
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NextClosure Algorithm

suppose Y = {1, . . . , n}
(that is, we denote attributes by positive integers, this way, we fix an
ordering of attributes)

Definition (lexicographic ordering of sets of attributes)

For A,B ⊆ Y , i ∈ {1, . . . , n} put

A <i B iff i ∈ B − A a A ∩ {1, . . . , i − 1} = B ∩ {1, . . . , i − 1},
A < B iff A <i B for some i .

Note: < . . . lexicographic ordering (thus, every two distinct sets A,B ⊆
are comparable).

For i = 1, we put {1, . . . , i − 1} = ∅.

One may think of B ⊆ Y in terms of its characteristic vector. For
Y = {1, 2, 3, 4, 5, 6, 7} and B = {1, 3, 4, 6}, the characteristic vector of B
is 1011010.
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NextClosure Algorithm

Example

Let Y = {1, 2, 3, 4, 5, 6}, consider sets {1}, {2}, {2, 3}, {3, 4, 5}, {3, 6},
{1, 4, 5}. We have

{2} <1 {1} because 1 ∈ {1} − {2} = {1} and A ∩ ∅ = B ∩ ∅.
Characteristic vectors: 010000 <1 100000.

{3, 6} <4 {3, 4, 5} because 4 ∈ {3, 4, 5} − {3, 6} = {4, 5} and
A ∩ {1, 2, 3} = B ∩ {1, 2, 3}. Characteristic vectors:
001001 <4 001110.

All sets ordered lexicographically:
{3, 6} <4 {3, 4, 5} <2 {2} <3 {2, 3} <1 {1} <4 {1, 4, 5}.
Characteristic vectors:
001001 <4 001110 <2 010000 <3 011000 <1 100000 <4 100110.

Note: if B1 ⊂ B2 then B1 < B2.
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NextClosure Algorithm

Definition

For A ⊆ Y , i ∈ {1, . . . , n}, put

A⊕ i := ((A ∩ {1, . . . , i − 1}) ∪ {i})↓↑.

Example

I 1 2 3 4
x1 × × ×
x2 × × × ×
x3 ×

A = {1, 3}, i = 2.
A⊕ i = (({1, 3} ∩ {1, 2}) ∪ {2})↓↑ = ({1} ∪ {2})↓↑ = {1, 2}↓↑ =
{1, 2, 4}.
A = {2}, i = 1.
A⊕ i = (({2} ∩ ∅) ∪ {1})↓↑ = {1}↓↑ = {1, 2, 4}.
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Lemma

For any B,D,D1,D2 ⊆ Y :

(1) If B <i D1, B <j D2, and i < j then D2 <i D1;

(2) if i 6∈ B then B < B ⊕ i ;

(3) if B <i D and D = D↓↑ then B ⊕ i ⊆ D;

(4) if B <i D and D = D↓↑ then B <i B ⊕ i .

Proof.

(1) by easy inspection.
(2) is true because B ∩ {1, . . . , i − 1} ⊆ B ⊕ i ∩ {1, . . . , i − 1} and
i ∈ (B ⊕ i)− B.
(3) Putting C1 = B ∩ {1, . . . , i − 1} and C2 = {i} we have C1 ∪ C2 ⊆ D,
and so B ⊕ i = (C1 ∪ C2)

↓↑ ⊆ D↓↑ = D.
(4) By assumption, B ∩ {1, . . . , i − 1} = D ∩ {1, . . . , i − 1}. Furthermore,
(3) yields B ⊕ i ⊆ D and so B ∩ {1, . . . , i − 1} ⊇ B ⊕ i ∩ {1, . . . , i − 1}.
On the other hand, B ⊕ i ∩ {1, . . . , i − 1} ⊇
(B ∩ {1, . . . , i − 1})↓↑ ∩ {1, . . . , i − 1} ⊇ B ∩ {1, . . . , i − 1}. Therefore,
B ∩ {1, . . . , i − 1} = B ⊕ i ∩ {1, . . . , i − 1}. Finally, i ∈ B ⊕ i .



NextClosure Algorithm

Theorem (lexicographic successor)

The least intent B+ greater (w.r.t. <) than B ⊆ Y is given by

B+ = B ⊕ i

where i is the greatest one with B <i B ⊕ i .

Proof.

Let B+ be the least intent greater than B (w.r.t. <). We have B < B+

and thus B <i B+ for some i such that i ∈ B+. By Lemma (4),
B <i B ⊕ i , i.e. B < B ⊕ i . Lemma (3) yields B ⊕ i ≤ B+ which gives
B+ = B ⊕ i since B+ is the least intent with B < B+. It remains to show
that i is the greatest one satisfying B <i B ⊕ i . Suppose B <k B ⊕ k for
k > i . By Lemma (1), B ⊕ k <i B ⊕ i which is a contradiction to
B ⊕ i = B+ < B ⊕ k (B+ is the least intent greater than B and so
B+ < B ⊕ k). Therefore we have k = i .
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pseudo-code of NextClosure algorithm:

1. A:=∅↓↑; (leastIntent)
2. store(A);
3. while not(A=Y) do
4. A:=A+;
5. store(A);
6. endwhile.

complexity: time complexity of computing A+ is O(|X | · |Y |2):
complexity of computing C ↑ is O(|X | · |Y |), for D↓ it is O(|X | · |Y |), thus
for D↓↑ it is O(|X | · |Y |); complexity of computing A⊕ i is thus
O(|X | · |Y |); to get A+ we need to compute A⊕ i |Y |-times in the worst
case. As a result, complexity of computing A+ is O(|X | · |Y |2).
time complexity of NextClosure is O(|X | · |Y |2 · |B (X ,Y , I )|)
⇒ polynomial time delay complexity (Johnson D. S., Yannakakis M.,
Papadimitrou C. H.: On generating all maximal independent sets. Inf.
Processing Letters 27(1988), 129–133.): going from A to A+ in a
polynomial time = NextClosure has polynomial time delay complexity

Note! Almost no space requirements. But: NextClosure does not
directly give information about ≤.



Example (NextClosure Algorithm – simulation)

Simulate NextClosure algorithm on the following example.

I 1 2 3
x1 × × ×
x2 × ×
x3 × ×
x4 ×

1. A = ∅↓↑ = ∅.
2. Next, we are looking for A+, i.e. ∅+, which is A⊕ i s.t. i is the

largest one with A <i A⊕ i . We proceed for i = 3, 2, 1 and test
whether A <i A⊕ i :

– i = 3: A⊕ i = {3}↓↑ = {3} and ∅ <3 {3} = A⊕ i , therefore A+ = {3}.
3. Next, {3}+:

– i = 3: A⊕ i = {3}↓↑ = {3} and {3} 6<3 {3} = A⊕ i , therefore we
proceed for i = 2.

– i = 2: A⊕ i = {2}↓↑ = {2, 3} and {3} <2 {2, 3} = A⊕ i , therefore
A+ = {2, 3}.



Example (cntd.)

4. Next, {2, 3}+:
– i = 3: A⊕ i = {2, 3}↓↑ = {2, 3} and {2, 3} 6<3 {2, 3} = A⊕ i ,

therefore we proceed for i = 2.
– i = 2: A⊕ i = {2}↓↑ = {2, 3} and {2, 3} 6<2 {2, 3} = A⊕ i , therefore

we proceed for i = 1.
– i = 1: A⊕ i = {1}↓↑ = {1} and {2, 3} <1 {1} = A⊕ i , therefore we

A+ = {1}.
5. Next, {1}+:

– i = 3: A⊕ i = {1, 3}↓↑ = {1, 3} and {1} <3 {1, 3} = A⊕ i , therefore
A+ = {1, 3}.

6. Next, {1, 3}+:
– i = 3: A⊕ i = {1, 3}↓↑ = {1, 3} and {1, 3} 6<3 {1, 3} = A⊕ i ,

therefore we proceed for i = 2.
– i = 2: A⊕ i = {1, 2}↓↑ = {1, 2, 3} and {1, 3} <2 {1, 2, 3} = A⊕ i ,

therefore A+ = {1, 2, 3} = Y .

Therefore, the intents from Int(X ,Y , I ), ordered lexicographically, are:
∅ < {3} < {2, 3} < {1} < {1, 3} < {1, 2, 3}.



Example (cntd.)

I 1 2 3
x1 × × ×
x2 × ×
x3 × ×
x4 ×

Int(X ,Y , I ) = {∅, {3}, {2, 3}, {1}, {1, 3}, {1, 2, 3}}.

From this list, we can get the corresponding extents:
X = ∅↓, {x1, x2, x3} = {3}↓, {x1, x3} = {2, 3}↓, {x1, x3, x4} = {1}↓,
{x1, x2} = {1, 3}↓, {x1} = {1, 2, 3}↓.
Therefore, B(X ,Y , I ) consists of: 〈{x1}, {1, 2, 3}〉, 〈{x1, x2}, {1, 3}〉,
〈{x1, x3}, {2, 3}〉, 〈{x1, x2, x3}, {3}〉, 〈{x1, x2, x4}, {1}〉, 〈{x1, x2, x3, x4}, ∅〉.



NextClosure Algorithm

– If ↓↑ is replaced by an arbitrary closure operator C , NextClosure
computes all fixpoints of C . This is easy to see: all that matters in
the proofs of Theorem and Lemma justifying correctness of
NextClosure, is that ↓↑ is a closure operator.

– Therefore, NextClosure is essentially an algorithm for computing all
fixpoints of a given closure operator C .

– Computational complexity of NextClosure depends on computational
complexity of computing C (A) (computing closure of arbitrary set A).
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UpperNeighbor Algorithm

– author: Christian Lindig (Fast Concept Analysis, 2000)

– input: formal context 〈X ,Y , I 〉,
– output: B(X ,Y , I ) and ≤
– idea:

1. start with the least formal concept 〈∅↑↓, ∅↑〉,
2. for each 〈A,B〉 generate all its upper neighbors (and store the

necessary information)
3. go to the next concept.

– Details can be found at http://www.st.cs.uni-sb.de/~lindig/
papers/fast-ca/iccs-lindig.pdf

– Crucial point: how to compute upper neighbors of a given 〈A,B〉.
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UpperNeighbor Algorithm

Theorem (upper neighbors of formal concept)

If 〈A,B〉 ∈ B (X ,Y , I ) is not the largest concept then (A ∪ {x})↑↓, with
x ∈ X − A, is an extent of an upper neighbor of 〈A,B〉 iff for each
z ∈ (A ∪ {x})↑↓ − A we have (A ∪ {x})↑↓ = (A ∪ {z})↑↓.

Remark

In general, for x ∈ X − A, (A ∪ {x})↑↓ need not be an extent of an upper
neighbor of 〈A,B〉. Find an example.
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UpperNeighbor Algorithm

pseudo-code of UpperNeighbor procedure:

1. min:=X − A;
2. neighbors:=∅;
3. for x ∈ X − A do
4. B1 := (A ∪ {x})↑; A1 := B↓

1;
5. if (min∩((A1 − A)− {x}) = ∅) then
6. neighbors:=neighbors∪{(A1,B1)}
7. else min:=min−{x};
8. enddo.

complexity: polynomial time delay with delay O(|X |2 · |Y |) (same as
NextClosure – version for extents)
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Example (UpperNeighbor – simulation)

I 1 2 3
x1 × × ×
x2 × ×
x3 × ×
x4 ×

Determine all upper neighbors of the least concept
〈A,B〉 = 〈∅↑↓, ∅↑〉 = 〈{x1}, {1, 2, 3}〉.

– according to 1., and 2., min := {x2, x3, x4}, neighbors := ∅.
– run loop 3.–8. for x ∈ {x2, x3, x4}.
– for x = x2:

- 4. B1 = {x1, x2}↑ = {1, 3}, A1 = B↓
1 = {x1, x2}.

- 5. min ∩ ((A1 −A)−{x}) = {x2, x3, x4} ∩ (({x1, x2}− {x1})−{x2}) =
{x2, x3, x4} ∩ ∅ = ∅, therefore neighbors := {〈{x1, x2}, {1, 3}〉}.

– for x = x3:
- 4. B1 = {x1, x3}↑ = {2, 3}, A1 = B↓

1 = {x1, x3}.
- 5. min ∩ ((A1 −A)−{x}) = {x2, x3, x4} ∩ (({x1, x3}− {x1})−{x3}) =
{x2, x3, x4} ∩ ∅ = ∅, therefore
neighbors := {〈{x1, x2}, {1, 3}〉, 〈{x1, x3}, {2, 3}〉}.



Example (UpperNeighbor – simulation)

I 1 2 3
x1 × × ×
x2 × ×
x3 × ×
x4 ×

– for x = x4:
- 4. B1 = {x1, x4}↑ = {1}, A1 = B↓

1 = {x1, x2, x4}.
- 5.

min∩ ((A1−A)−{x}) = {x2, x3, x4} ∩ (({x1, x2, x4}− {x1})−{x4}) =
{x2, x3, x4} ∩ {x2} = {x2}, therefore neighbors does not change and we
proceed with 7. and set min := min − {x4} = {x2, x3}.

– loop 3.–8. ends, result is
neighbors = {〈{x1, x2}, {1, 3}〉, 〈{x1, x3}, {2, 3}〉}.

This is correct since B(X ,Y , I ) consists of 〈{x1}, {1, 2, 3}〉,
〈{x1, x2}, {1, 3}〉, 〈{x1, x3}, {2, 3}〉, 〈{x1, x2, x3}, {3}〉, 〈{x1, x2, x4}, {1}〉,
〈{x1, x2, x3, x4}, ∅〉.



Many-valued contexts and conceptual scaling

– many-valued formal contexts = tables like
age education symptom

Alice 23 BS 1
Boris 30 MS 0
Cyril 31 PhD 1

David 43 MS 0
Ellen 24 PhD 1
Fred 64 MS 0

George 30 Bc 0

– how to use FCA to such data? ⇒ conceptual scaling

– conceptual scaling = transformation of many-valued formal contexts
to ordinary formal contexts such as
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Many-valued contexts and conceptual scaling
ay am ao eBS eMS ePhD symptom

Alice 1 0 0 1 0 0 1
Boris 1 0 0 0 1 0 0
Cyril 0 1 0 0 0 1 1

David 0 1 0 0 1 0 0
Ellen 1 0 0 0 0 1 1
Fred 0 0 1 0 1 0 0

George 1 0 0 1 0 0 0

– new attributes introduced:
ay . . . young, am . . . middle-aged, ao . . . old, eBS . . . highest education
BS, eMS . . . highest education MS, ePhD . . . highest education PhD.

– After scaling, the data can be processed by means of FCA.
– Scaling needs to be done with assistance of a user:

- what kind of new attributes to introduce?
- how many? (rule: the more, the larger the concept lattice)
- how to scale? (nominal scaling, ordinal scaling, other types)
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Many-valued contexts and conceptual scaling

Definition (many-valued context)

A many-valued context (data table with general attributes) is a tuple
D = 〈X ,Y ,W , I 〉 where X is a non-empty finite set of objects, Y is a
finite set of (many-valued) attributes, W is a set of values, and I is a
ternary relation between X , Y , and W , i.e., I ⊆ X × Y ×W , such that

〈x , y ,w〉 ∈ I and 〈x , y , v〉 ∈ I imply w = v .

remark

(1) A many-valued context can be thought of as representing a table with
rows corresponding to x ∈ X , columns corresponding to y ∈ Y , and table
entries at the intersection of row x and column y containing values
w ∈ W provided 〈x , y ,w〉 ∈ I and containing blanks if there is no w ∈ W
with 〈x , y ,w〉 ∈ I .
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Many-valued contexts and conceptual scaling

remark (cntd.)

(2) One can see that each y ∈ Y can be considered a partial function from
X to W . Therefore, we often write

y(x) = w instead of 〈x , y ,w〉 ∈ I .

A set
dom(y) = {x ∈ X | 〈x , y ,w〉 ∈ I for some w ∈ W }

is called a domain of y . Attribute y ∈ Y is called complete if
dom(y) = X , i.e. if the table contains some value in every row in the
column corresponding to y . A many-valued context is called complete if
each of its attributes is complete.
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Many-valued contexts and conceptual scaling

remark (cntd.)

(3) From the point of view of theory of relational databases, a complete
many-valued context is essentially a relation over a relation scheme Y .
Namely, each y ∈ Y can be considered an attribute in the sense of
relational databases and putting

Dy = {w | 〈x , y ,w〉 ∈ I for some x ∈ X},

Dy is a domain for y .
(4) We consider only complete many-valued contexts.
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Example (many-valued context)

age education symptom

Alice 23 BS 1
Boris 30 MS 0
Cyril 31 PhD 1

David 43 MS 0
Ellen 24 PhD 1
Fred 64 MS 0

George 30 Bc 0

represents a many-valued context 〈X ,Y ,W , I 〉 with

– X = {Alice, Boris, . . . , George},
– Y = {age, education, symptom},
– W = {0,1, . . . , 150, BS, MS, PhD, 0,1},
– 〈Alice, age, 23〉 ∈ I , 〈Alice, education, BS〉 ∈ I , . . . , 〈George,

symptom, 0〉 ∈ I .

– Using the above convention, we have age(Alice)=23,
education(Alice)=BS, symptom(George)=0.



Many-valued contexts and conceptual scaling

Definition (scale)

Let 〈X ,Y ,W , I 〉 be a many-valued context. A scale for attribute y ∈ Y is
a formal context (data table) Sy = 〈Xy ,Yy , Iy 〉 such that Dy ⊆ Xy .
Objects w ∈ Xy are called scale values, attributes of Yy are called scale
attributes.

Example (scale)

eBS eMS ePhD

BS 1 0 0
MS 0 1 0
PhD 0 0 1

is a scale for attribute y =education. Here, Sy = 〈Xy ,Yy , Iy 〉, Xy = {BS,
MS, PhD}, Yy = {eBS , eMS , ePhD}, Iy is given by the above table.

R. Belohlavek, J. Outrata (CS UP) Relational Data Analysis 2008 103 / 113



Many-valued contexts and conceptual scaling

Example (scale)

ay am ao

0 1 0 0
... 1 0 0

30 1 0 0
31 0 1 0
... 0 1 0

60 0 1 0
61 0 0 1
... 0 0 1

150 0 0 1

ay am ao

0–30 1 0 0
31–60 0 1 0
61–150 0 0 1

is a scale for attribute age (right table is a shorthand version of left table).
Here, Sy = 〈Xy ,Yy , Iy 〉, Xy = {0, . . . , 150}, Yy = {ay , am, ao}, Iy is given
by the above table.
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Many-valued contexts and conceptual scaling

Example (scale - granularity)

A different scale for attribute age is.

avy ay am ao avo

0–25 1 0 0 0 0
26–35 0 1 0 0 0
36–55 0 0 1 0 0
56–75 0 0 0 1 0
76–150 0 0 0 0 1

avy . . . very young, ay . . . young, am . . . middle aged, ao . . . old, avo

. . . very old.
The choice is made by a user and depends on his/her desired level of
granularity (precision).
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Scale defines the meaning of a scale attributes from Yy . Two most
important types are:

– nominal scale: values of attribute y are not ordered in any natural
way (y is a nominal variable) or we do not want to take this ordering
into consideration,

– ordinal scale: values of attribute y are ordered (y is an ordinal
variable).

Example (nominal and ordinal scales)

Left: nominal scale for y =education. Right: ordinal scale for
y =education with BS < MS < PhD.

eBS eMS ePhD

BS 1 0 0
MS 0 1 0
PhD 0 0 1

eBS eMS ePhD

BS 1 0 0
MS 1 1 0
PhD 1 1 1

For nominal scale: eMS applies to individuals with highest degree MS
For ordinal scale: eMS applies to individuals with degree at least MS (MS
or higher)



Many-valued contexts and conceptual scaling

Assume Yy1 ∩ Yy2 = ∅ for different y1, y2 ∈ Y .

Definition (plain scaling)

For a many-valued context D = 〈X ,Y ,W , I 〉 (as above), scales Sy

(y ∈ Y ), the derived formal context (w.r.t. plain scaling) is 〈X ,Z , J〉 with
attributes defined by

– Z =
⋃

y∈Y Yy ,

– 〈x , z〉 ∈ J iff y(x) = w and 〈w , z〉 ∈ Iy .

Meaning of 〈X ,Y ,W , I 〉 7→ 〈X ,Z , J〉:
– objects of the derived context are the same as of the original

many-valued context;

– each column representing an attribute y is replaced by columns
representing scale attributes z ∈ Yy ;

– attribute value y(x) is replaced by the row of scale context Sy .
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Example

Formal context and nominal scales for age and education:

age education symptom

Alice 23 BS 1
Boris 30 MS 0
Cyril 31 PhD 1

David 43 MS 0
Ellen 24 PhD 1
Fred 64 MS 0

George 30 Bc 0

ay am ao

0–30 1 0 0
31–60 0 1 0
61–150 0 0 1

eBS eMS ePhD

BS 1 0 0
MS 0 1 0
PhD 0 0 1



Example

Derived formal context:

ay am ao eBS eMS ePhD symptom

Alice 1 0 0 1 0 0 1
Boris 1 0 0 0 1 0 0
Cyril 0 1 0 0 0 1 1

David 0 1 0 0 1 0 0
Ellen 1 0 0 0 0 1 1
Fred 0 0 1 0 1 0 0

George 1 0 0 1 0 0 0



Example

Formal context and nominal scale for age and ordinal scale for education:

age education symptom

Alice 23 BS 1
Boris 30 MS 0
Cyril 31 PhD 1

David 43 MS 0
Ellen 24 PhD 1
Fred 64 MS 0

George 30 Bc 0

ay am ao

0–30 1 0 0
31–60 0 1 0
61–150 0 0 1

eBS eMS ePhD

BS 1 0 0
MS 1 1 0
PhD 1 1 1



Example

Derived formal context:

ay am ao eBS eMS ePhD symptom

Alice 1 0 0 1 0 0 1
Boris 1 0 0 1 1 0 0
Cyril 0 1 0 1 1 1 1

David 0 1 0 1 1 0 0
Ellen 1 0 0 1 1 1 1
Fred 0 0 1 1 1 0 0

George 1 0 0 1 0 0 0



Example

In the examples of derived formal context, what scale was used for
attribute symptom?:

symptom

0
1 ×

or (different notation)

symptom

0 0
1 1



What is the impact of using nominal scale vs. ordinal scale? Compare
concept lattices of two derived contexts, one one using nominal scale, the
other using ordinal scale.

education

Alice BS
Boris MS
Cyril PhD

David MS
Ellen PhD
Fred MS

George BS

eBS eMS ePhD

Alice 1 0 0
Boris 0 1 0
Cyril 0 0 1

David 0 1 0
Ellen 0 0 1
Fred 0 1 0

George 1 0 0

eBS eMS ePhD

Alice 1 0 0
Boris 1 1 0
Cyril 1 1 1

David 1 1 0
Ellen 1 1 1
Fred 1 1 0

George 1 0 0


