
Publication quality tables in LATEX∗

Simon Fear
University of Liverpool

Printed July 13, 1997

Abstract

This article describes some additional commands to enhance the quality
of tables in LATEX. Guidelines are given as to what constitutes a good table
in this context.

1 Introduction

The routines described below are to enable the easy production of tables such as
(should) appear in published scientific books and journals. What distinguishes
these from the tables plain LATEX is able to produce is additional space above and
below rules and rules of varying ‘thickness’. What further distinguishes them from
the tables many people do produce using LATEX is the absence of vertical rules and
double rules.

I must draw a clear distinction between what I mean by a formal table, which is
a set of values/labels in columns, as distinct from what I will call a tableau, which
is the kind of thing illustrated in the LATEX manual, and which is increasingly
common as the output of of many database/management systems, that is with
icons in abundance, and probably colour into the bargain. The layout of a tableau
is determined (hopefully) as a one-off, given a jumble of material the designer is
trying to combine into a meaningful configuration. But the layout of a table has
been established over literally centuries of experience and should only be altered
in truly extraordinary circumstances.

By way of illustration, consider this tableau from the LATEX manual (p. 64 old
edition):

gnats gram $13.65
each .01

gnu stuffed 92.50
emu 33.33
armadillo frozen 8.99

This is a hotch-potch of information that is probably reasonably clearly pre-
sented as is (but is the emu stuffed or not?). However, as a published table, this
should certainly instead appear along the lines suggested further down the page
in the manual:

∗This file has version number v1.00, last revised 6 November 1995.

1

Item

Animal Description Price ($)

Gnat per gram 13.65
each 0.01

Gnu stuffed 92.50
Emu stuffed 33.33
Armadillo frozen 8.99

It may be noted that it in fact takes much less work to lay this out as a formal
table; we don’t have to work out a new layout for everything we do. Moreover,
we can be almost certain that the data cannot be misread (because the reader
does not have to learn how to read each of the infinite number of different possible
tableaux).

The above table cannot be produced in pure LATEX, unfortunately. It can be
laid out as it should be, but despite your best efforts, using plain \hline commands
produces

Item
Animal Description Price ($)
Gnat per gram 13.65

each 0.01
Gnu stuffed 92.50
Emu stuffed 33.33
Armadillo frozen 8.99

Note (if it is not already obvious) that there is not enough space between the
top line and the capital I of ‘Item’, and so on for all the lines: contrast with the
previous version. Also, the top and bottom rules (ie lines) in the first version are
heavier than the middle rule, which is turn heavier than the subrule underneath
‘Item’. Yes, I know you can redefine \doublerulesep and then use \hline\hline
to get something near the same effect, and you can use struts to improve the
spacing. But that is a fiddle and you should not have to think of such things.
The booktabs style defines its commands so that such things are taken care of
automatically.

In general, I would say that this package is of no interest to those looking for an
alternative to PicTEX to conjure up fancy tableaux. Rather, it is a style guide for
authors of scientific papers and books as regards table layout. It is not going too
far to say that if you cannot create a table using the commands in this package,
you have designed it wrong.

1.1 A note on terminology

In British typesetting, a ‘line’ is always called a ‘rule’. Perhaps confusingly (for
historic reasons in fact), the ‘thickness’ of rule is often referred to as is its ‘width’
(whereas just about everyone else would call this ‘depth’ or ‘height’, if they were
thinking of a horizontal rule). A ‘thick black line’ is called a ‘heavy rule’. I have
used this terminology in most of the new commands below. If nothing else it avoid
confusion with \hline.

2

2 The layout of formal tables

You will not go far wrong if you remember two simple commandments at all times:

1. Never, ever use vertical rules.

2. Never use double rules.

These commandments may seem extreme but in years of experience I have never
found a good argument in favour of breaking them. For example, if you feel that
the information in the left half of a table is so different from that on the right that
it needs to be separated by a vertical line, then you should use two tables instead.
The second commandment is very, very occasionally violated: I have worked for
a publisher who insisted on a double light rule above a row of totals. But this
would not have been my choice.

There are three further guidelines I might mention here as they are so poorly
known outside the circles of professional typesetters and subeditors:

1. Put the units in the column heading (not in the body of the table).

2. Always precede a decimal point by a digit; thus 0.1 not just .1.

3. Do not use ‘ditto’ signs or any other such convention to repeat a previous
value. In many circumstances a blank will serve just as well. If it won’t,
then repeat the value.

Is this just me being pedantic? These last guidelines are violated with increas-
ing frequency in published work. To me, this just indicates that the typesetting
is amatuer.

Anyway, whether or not you wish to follow the minor niceties, if you use only
the following commands in your formal tables your reader will be grateful. (I
repeat that the guidelines are not just to keep the pedantic happy. Enforced
structure of presentation enforces structured thought in the first instance.)

3 Use of the new commands

In the simplest of cases a table begins with a \toprule, has a single row of column\toprule

\midrule

\bottomrule

headings, then a dividing rule called here a \midrule; after the columns of data
we finish off with a \bottomrule. Most book publishers set the \toprule and
\bottomrule heavier (ie thicker, or darker; see notation) than the intermediate
\midrule. However, when tables appear in very small typesizes it is sometimes
impossible to make this distinction, and moreover quite a few journals use all
rules of the same heaviness. The rule commands here all take a default which may
be reset within the document (preferably, but not necessarily, in the preamble).
For the top and bottom rules this is \heavyrulewidth and for midrules it is
\lightrulewidth (fully described below). In very rare cases where you need to
do something special, you may use the optional arguments to the rule commands
which have formal syntax as follows:

\toprule[〈wd〉]
\midrule[〈wd〉]
\bottomrule[〈wd〉]

3

where 〈wd〉 is a TEXdimension (for example 1pt, .5em, etc.).
All the rule commands here go immediately after the closing \\ of the pre-

ceding row (except of course \toprule, which comes right after the \tabular{}
command); in other words, exactly where plain LATEX allows \hline or \cline.

Of course more often than not we need a rule to extend over certain of the\cmidrule

columns, for which we need a \cmidrule (the analogue of LATEX’s \cline com-
mand). Generally, this rule should not come to the full width of the end columns,
and this is especially the case when we need to begin a \cmidrule straight after
the end of another one (LATEX’s \clines crash into each other here if you are
not extra careful with \extracolsep). Thus, you will generally want to use the
optional ‘trimming’ commands, which are (r), (l) and (rl) or (lr), indicated
whether the right and/or left ends of the rule should be trimmed. Note the ex-
ceptional use of parentheses instead of braces or brackets for this command, the
full syntax of which is

\cmidrule[〈wd〉](〈trim〉){a–b}

where again 〈wd〉 is an optional rule width command (the default here is
\cmidrulewidth) and the last argument, which is not optional, gives the column
numbers to be spanned.

An example of the commands in use is given by the code used to produce the
example table above:

\begin{tabular}{@{}llr@{}} \toprule

\multicolumn{2}{c}{Item} \\ \cmidrule(r){1-2}

Animal & Description & Price (\$)\\ \midrule

Gnat & per gram & 13.65 \\

& each & 0.01 \\

Gnu & stuffed & 92.50 \\

Emu & stuffed & 33.33 \\

Armadillo & frozen & 8.99 \\ \bottomrule

\end{tabular}

Occasionally we want to put an extra space between certain rows of a table;\addlinespace

for example, before the last row, if this is a total (space is better than another
\midrule here, in my opinion). This is simply a matter of inserting

\addlinespace[〈wd〉]
after the \\ alignment marker. It is not a bad idea to think of \addlinespace as
being a white rule of width 〈wd〉. The default space is \defaultaddspace which
gives rather less than a whole line space (such as you could create by using \\ \\
at the end of the line; this is really too much space in most cases).

4 Abuse of the new commands

Let’s face it, nobody can leave well alone, so here are some guidelines and extra
commands for TEXperts and meddlers.

The new rule commands are not guaranteed to work with \hline or \cline,
although these remain available and unchanged. I cannot foresee any reason to
want to mix them.

4

More importantly the rules generated by the new commands are in no way
guaranteed to connect with verticals generated by {|} characters in the preamble.
This is a feature (see above). You should not use vertical rules in tables, period.

If you just cannot stop yourself from using a double rule, even a construction\morecmidrules

as bizarre as \toprule\bottomrule\midrule will work without generating an
error message (just as you can double \hline). These rules will be separated by
the ordinary LATEX separator \doublerulesep. However if your perversion is to
want double \cmidrules you will need the extra command \morecmidrules to
do so properly, because normally two \cmidrules in a row is a completely sane
construction calling for two rules on the same ‘rule row’. Thus in

\cmidrule{1-2}\cmidrule{1-2}

the second command writes a rule that just overwrites the first one; I suppose you
wanted

\cmidrule{1-2}\morecmidrules\cmidrule{1-2}

which gives you a double rule between columns one and two, separated by
\cmidrulesep (note: since a \cmidrule is generally very light, the ordinary
\doublerulesep is probably too much space). Finish off a whole row of rules
before giving the \morecmidrules command. Note that \morecmidrules has no
effect whatsoever if it does not immediately follow a \cmidrule (ie it is not a
general space-generating command).

Talking of which brings us to the abuse of \addlinespace to generate weird\specialrule

extra space between rules. Don’t do it. (It’s not actually illegal though.) Instead
use

\specialrule{〈wd〉}{〈abovespace〉}{〈belowspace〉}
where it should be noted all three arguments are mandatory (I couldn’t be both-
ered to program in defaults). If you use this frequently, you have misunderstood
the purpose and content of the guidelines given above. Technical note: no space is
added after a preceding rule, but a following rule will generate a \doublerulesep
above itself. Why are you reading this section?

5 Technical summary of commands

The new rule commands are valid inside the tabular (and in fact also array)
environment, in all versions of LATEX (you must remove the

\ProvidesPackage{booktabs}

line from booktabs.sty to run in LATEX2.09 and earlier), and fully compatible
with the extended array environment of the LATEX2ε tools package.

The commands follow the standard placement syntax of \hline. If rule com-
mands are doubled, it is safest to ensure there is no space between the commands.
(In many circumstances violations of this safety rule will give the weird message
“misplaced noalign{”.) Don’t use double rules!

For the present purposes a ‘rule’ is any of \toprule, \midrule, \bottomrule,
\cmidrule, \specialrule or \addlinespace. Note especially the inclusion of
\addlinespace in this list; and the exclusion of \hline and \cline, which will
give unpredicatble results if mixed with these.

5

\toprule[〈wd〉]
A rule of width 〈wd〉 (default \heavyrulewidth) with \belowrulesep extra ver-
tical space inserted below it (unless followed by another rule command, in which
case \doublerulesep vertical space follows).

\midrule[〈wd〉]
A 〈wd〉 (default \lightrulewidth) rule with \aboverulesep space above it (un-
less preceded by another rule, from which it will be separated by \doublerulesep)
and with \belowrulesep space below it (unless another rule follows).

\bottomrule[〈wd〉]
A 〈wd〉 (default \heavyrulewidth) rule with \aboverulesep space above it (un-
less preceded by another rule, from which it will be separated by \doublerulesep)
and with \belowrulesep space below it (unless another rule follows). The extra
space below is to make space for table footnotes.

\cmidrule[〈wd〉](〈trim〉){a–b}

A 〈wd〉 (default \cmidrulewidth) rule with \aboverulesep space above it (un-
less following another \cmidrule, in which case it is on the same vertical align-
ment; or if following any other rule, separated by \doublerulesep; or if following
\morecmidrules, separated by \cmidrulesep), and with \belowrulesep below it
(unless followed by another \cmidrule, in which case the following rule is on the
same vertical alignment; or if followed by \morecmdirules, with \cmidrulesep
below it).

The rule spans columns a to b. The optional argument 〈trim〉 which note goes
in parentheses if at all, can be either r for right trimming, l for left trimming, or
both.

\addlinespace[〈wd〉]
Actually classed as a zero-width rule with no extra space above and with 〈wd〉
(default \defaultaddspace) space below (if another rule follows, this will be sep-
arated by a further \doublerulesep). In practice use this only to add space
between rows in the body of the table.

\specialrule{〈wd〉}{〈abovespace〉}{〈belowspace〉}
A 〈wd〉 rule (note mandatory argument) with 〈abovespace〉 above it and 〈belowspace〉
below it (unless another rule follows, in which case this will be separated by a fur-
ther \doublerulesep).

\morecmidrules

Instructs LATEX to begin a new row of \cmidrules, separated from the last by
\cmidrulesep. Has no effect outside this environment.

The default dimensions are

\heavyrulewidth=.08em
\lightrulewidth=0.5em
\cmidrulewidth=0.3em
\belowrulesep=.65ex
\aboverulesep=.4ex
\defaultaddspace=.5em
\cmidrulekern=.25em

6

The last of these, \cmidrulekern, is the amount by which a \cmidrule is trimmed
at each end indicated in the () options. In the construction

\cmidrule(r){1-2}\cmidrule(l){3-4}

there is a total of .5 em separating the two rules. Currently the only way to get
special effects is to reset \cmidrulekern as appropriate; the amount of trimming
is not available as an argument in the current implementation of \cmidrule.

The user can change these defaults on the fly by simply inserting a command
in exactly the same format as above; the redefinition will stay in effect for the rest
of the document or until redefined again.

6 Support for firsthline and lasthline

Yes in a way, but mostly no. Just not applicable. The commands here are not
about doing neat things with boxes; those are tableaux not tables. You do not
ever, ever want a formal table in the middle of a line of text.

However, if you use the array.sty package, the commands are not altered by
the present code (just as \hline and \cline remain active).

7 Acknowledgments

Hugely indebted of course to DEK and Lamport; the optional argument and
\cmidrule stuff especially is filched and adapted from latex.sty. The doc-
umentation driver stuff is stolen wholesale from the tools package description
dcolumn.dtx by David Carlisle.

For beta testing and encouragement ...

8 The code

The current version is defined at the top of the file looking something like this
1 〈∗package〉
2 \NeedsTeXFormat{LaTeX2e}

3 \ProvidesPackage{booktabs}

4 [\filedate\space version\fileversion]

First we set up the new dimensions described above:
5 \newdimen\heavyrulewidth

6 \newdimen\lightrulewidth

7 \newdimen\cmidrulewidth

8 \newdimen\belowrulesep

9 \newdimen\aboverulesep

10 \newdimen\cmidrulesep

11 \newdimen\cmidrulekern

12 \newdimen\defaultaddspace

13 \heavyrulewidth=.08em

14 \lightrulewidth=.05em

15 \cmidrulewidth=.03em

16 \belowrulesep=.65ex

17 \aboverulesep=.4ex

7

18 \cmidrulesep=\doublerulesep

19 \cmidrulekern=.25em

20 \defaultaddspace=.5em

And some internal counters of no interest to the end user:
21 \newcount\rulesflag

22 \newdimen\@cmidrulewidth

23 \newcount\@cmidla

24 \newcount\@cmidlb

25 \rulesflag=0

which will be described as needed below.

8.1 Full width rules

We put the full width rules into a \noalign{} group, using a dirty trick
(\ifnum=0‘}) to fool the parser that the bracket count is OK. The bracket re-
ally gets closed after all the skipping at the end of the \@endrule macro.

\toprule

26 \def\toprule{\noalign{\ifnum0=‘}\fi

27 \@ifnextchar[{\@toprule}{\@toprule[\heavyrulewidth]}}

This allows for \toprule’s optional argument; if it has one, it is passed to
\@toprule, otherwise we call this with the default \heavyrulewidth.

In the following, if \rulesflag has been set (to one) we have just done a
previous rule that has been exceptionally modified to not have its normal space
below, so we need to put \doublerulesep before this \toprule; then we clear the
flag. Note: we can’t just always add \belowrulesep below a \toprule, because
there should be \doublerulesep between succesive rules. But we could just ban
double rules!
28 \def\@toprule[#1]{\ifnum\rulesflag=1\vskip

29 \doublerulesep\global\rulesflag=0\fi

30 \hrule \@height#1\futurelet\@tempa\@endrule}

In the third line above we have put in the rule, and we call the closing routine
\@endrules with \@tempa set to the token following the rule command in the
document.
31 \def\@endrule{\ifx\@tempa\toprule\global\rulesflag=1%

32 \else\ifx\@tempa\midrule\global\rulesflag=1%

33 \else\ifx\@tempa\bottomrule\global\rulesflag=1%

34 \else\ifx\@tempa\cmidrule\global\rulesflag=1%

35 \else\ifx\@tempa\specialrule\global\rulesflag=1%

36 \else\ifx\@tempa\addlinespace\global\rulesflag=1%

37 \else\vskip \belowrulesep\fi\fi\fi\fi\fi\fi\ifnum0=‘{\fi}}

Here if the next command is another rule or linespace (shame on user!) we have set
the \rulesflag to 1 (and added no space); otherwise we have added the proper
space below.

\midrule

\bottomrule

The code is almost the same as for a \toprule except for the addition of space
above.

Note that as far as programming is concerned, a \bottomrule is just a heavy
\midrule (but the end user should not think of it in this way).
38 \def\midrule{\noalign{\ifnum0=‘}\fi

8

39 \@ifnextchar[{\@midrule}{\@midrule[\lightrulewidth]}}

40 \def\@midrule[#1]{\ifnum\rulesflag=1\vskip

41 \doublerulesep\global\rulesflag=0

42 \else\vskip \aboverulesep\fi

43 \hrule \@height#1\futurelet\@tempa\@endrule}

44 \def\bottomrule{\noalign{\ifnum0=‘}\fi

45 \@ifnextchar[{\@midrule}{\@midrule[\heavyrulewidth]}}

\addlinespace An \addlinespace is handled like a zero-width rule with no space above and
argument (or default) space below. Note that a following rule will be added
after an additional \doublerulesep space. (Users are not encouraged to add
space before/after rules with \addlinespace. If this is needed, they should use a
\specialrule.)
46 \def\addlinespace{\noalign{\ifnum0=‘}\fi

47 \@ifnextchar[{\@addspace}{\@addspace[\defaultaddspace]}}

48 \def\@addspace[#1]{\ifnum\rulesflag=1\global\rulesflag=0\fi

49 \vskip #1\futurelet\@tempa\@endrule}

\specialrule This is included with some misgivings as it allows the user to do silly things. But
a style designer might need this (or a modification of it) in times of need.

Note that a following \toprule will behave as expected (no extra space above),
but a \midrule or \bottomrule will add \aboverulespace, whereas a following
\cmidrule will add \doublerulesep. Why would you ever want to do this any-
way?
50 \def\specialrule#1#2#3{\noalign{

51 \ifnum\rulesflag=1\global\rulesflag=0

52 \else\vskip #2\fi\hrule \@height#1\vskip #3}}

8.2 Special subrules

\cmidrule The \cmidrule uses \rulesflag in a slightly different way. This is (left) set to
one if you are in the middle of a row of \cmidrules, or starting a new one (with
\morecmidrules). Otherwise, when \rulesflag is zero, we precede the rule with
\aboverulesep.
53 \def\cmidrule{\noalign{\ifnum0=‘}\fi

54 \@ifnextchar[{\@cmidrule}{\@cmidrule[\cmidrulewidth]}}

55 \def\@cmidrule[#1]{\@ifnextchar({\@@cmidrule[#1]}{\@@cmidrule[#1]()}}

56 \def\@@cmidrule[#1](#2)#3{\@@@cmidrule[#3]{#1}{#2}}

The above is fiddling around to set defaults for missing optional arguments. We
also pass to \@@@cmidrule in a different order, namely [a-b]{width required}
{kerning commands} (can’t remember why I did this):
57 \def\@@@cmidrule[#1-#2]#3#4{\global\@cmidla#1\relax

58 \global\advance\@cmidla\m@ne

59 \ifnum\@cmidla>0\global\let\@gtempa\@cmidrulea\else

60 \global\let\@gtempa\@cmidruleb\fi

61 \global\@cmidlb#2\relax

62 \global\advance\@cmidlb-\@cmidla

This has set up a switch to call the relevant routine, \@cmidrulea or \@cmidruleb,
depending on whether we start from column one or not (what a faff).
63 \global\@cmidrulewidth=#3

9

That is, set per default or given argument.
Now we parse the trimming arguments (if there are any):

64 \global\let\cmlkern@l\z@ \global\let\cmlkern@r\z@

65 \@tfor\@tempa :=#4\do{\global\expandafter\let

66 \csname cmlkern@\@tempa\endcsname\cmidrulekern}%

Now insert space above if needed, close the \noalign, then switch to appropriate
rule drawing routine as determined above (\let to \@gtempa):
67 \ifnum\rulesflag=0\vskip \aboverulesep\fi\ifnum0=‘{\fi}\@gtempa

Now open another \noalign, and call the closing routine:
68 \noalign{\ifnum0=‘}\fi\futurelet\@tempa\@xcmidrule}

This code (called above) actually draws the rules:
69 \def\@cmidrulea{\multispan\@cmidla&\multispan\@cmidlb

70 \unskip\hskip \cmlkern@l\leaders\hrule \@height\@cmidrulewidth\hfill

71 \hskip \cmlkern@r\cr}

72 \def\@cmidruleb{\multispan\@cmidlb

73 \unskip\hskip \cmlkern@l\leaders\hrule \@height\@cmidrulewidth\hfill

74 \hskip \cmlkern@r\cr}

Finally, the closing routine. If another \cmidrule follows, backspace vertical so
it will line up, and \rulesflag=1 will suppress adding space above the next.
If a \morecimdrules follows, we add (positive) \cmidrulesep (and again set
\rulesflag to one). Otherwise this is the last rule of the current group and we
can just add \belowrulesep.

Finally, we close the \noalign.
75 \def\@xcmidrule{\ifx\@tempa\cmidrule\vskip-\@cmidrulewidth

76 \global\rulesflag=1\else

77 \ifx\@tempa\morecmidrules\vskip \cmidrulesep

78 \global\rulesflag=1\else

79 \vskip \belowrulesep\global\rulesflag=0\fi\fi

80 \ifnum0=‘{\fi}}

\morecmidrules This is really a dummy command; all the work is done above within the \cmidrule
routine. We look one step ahead there to see if a \morecmidrules follows the
current \cmidrule, and if so set the flag. Otherwise, \morecmidrules itself does
nothing.
81 \def\morecmidrules{\noalign{\relax}}

82 〈/package〉

10

