
An environment for multicolumn output∗†

Frank Mittelbach
Email: see top of the source file

Printed March 23, 1999

Abstract

This article describes the use and the implementation of the multicols environment. This environment
allows switching between one and multicolumn format on the same page. Footnotes are handled correctly
(for the most part), but will be placed at the bottom of the page and not under each column. LATEX’s float
mechanism, however, is partly disabled in the current implementation. At the moment only page-wide
floats (i.e., star-forms) can be used within the scope of the environment.

Preface to version 1.5

This new release contains two
major changes: multicols will now
support up to 10 columns and t-
wo more tuning possibilities have
been added to the balancing rou-
tine. The balancing routine now
checks the badness of the result-

ing columns and rejects solution-
s that are larger than a certain
treshold.

At the same time multicols
has been upgraded to run under
LATEX2ε.

I apologise for the state of the

code documentation but the work
on LATEX2ε kept me too busy to
do a proper job. This will hope-
fully be corrected in the near fu-
ture.

1 Introduction

Switching between two column
and one column layout is pos-
sible in LATEX, but every use
of \twocolumn or \onecolumn s-
tarts a new page. Moreover, the
last page of two column output
isn’t balanced and this often re-
sults in an empty, or nearly emp-
ty, right column. When I start-
ed to write macros for doc.sty
(see “The doc–Option”, TUG-

boat volume 10 #2, pp. 245–273)
I thought that it would be nice to
place the index on the same page
as the bibliography. And balanc-
ing the last page would not only
look better, it also would save s-
pace; provided of course that it is
also possible to start the next ar-
ticle on the same page. Rewrit-
ing the index environment was
comparatively easy, but the nex-

t goal, designing an environmen-
t which takes care of footnotes,
floats etc., was a harder task.
It took me a whole weekend1 to
get together the few lines of code
below and there is still a good
chance that I missed something
after all.

Try it and, hopefully, enjoy it;
and please direct bug reports and
suggestions back to Mainz.

∗This file has version number v1.5t, last revised 1999/03/22.
†Note: This package is released under terms which affect its use in commercial applications. Please see the details at the

top of the source file.
1I started with the algorithm given in the TEXbook on page 417. Without this help a weekend would not have been enough.

1

2 The User Interface

To use the environment one sim-
ply says

\begin{multicols}{〈number〉}
〈multicolumn text〉

\end{multicols}

where 〈number〉 is the required
number of columns and 〈multi-
column text〉 may contain arbi-
trary LATEX commands, except
that floats and marginpars are
not allowed in the current imple-
mentation2.

As its first action, the multicol-
s environment measures the cur-
rent page to determine whether
there is enough room for some
portion of multicolumn output.
This is controlled by the 〈dimen〉
variable \premulticols which
can be changed by the user
with ordinary LATEX command-
s. If the space is less than
\premulticols, a new page is s-
tarted. Otherwise, a \vskip of
\multicolsep is added.3

When the end of the multi-
cols environment is encountered,
an analogous mechanism is em-
ployed, but now we test whether
there is a space larger than
\postmulticols available. A-
gain we add \multicolsep or s-
tart a new page.

It is often convenient to spread
some text over all columns, just
before the multicolumn output,
without any page break in be-
tween. To achieve this the mul-
ticols environment has an option-
al second argument which can be
used for this purpose. For exam-
ple, the text you are now reading
was started with

\begin{multicols}{3}

[\section{The User

Interface}] ...

If such text is unusually

long (or short) the value of
\premulticols might need ad-
justing to prevent a bad page
break. We therefore provide a
third argument which can be
used to overwrite the default val-
ue of \premulticols just for this
occasion. So if you want to com-
bine some longer single column
text with a multicols environ-
ment you could write

\begin{multicols}{3}

[\section{Index}

This index contains ...]

[6cm]

...

Separation of columns with
vertical rules is achieved
by setting the parameter
\columnseprule to some posi-
tive value. In this article a value
of .4pt was used.

Since narrow columns tend
to need adjustments in in-
terline spacing we also pro-
vide a 〈skip〉 parameter called
\multicolbaselineskip which
is added to the \baselineskip
parameter inside the multicols en-
vironment. Please use this pa-
rameter with care or leave it
alone; it is intended only for
package file designers since even
small changes might produce to-
tally unexpected changes to your
document.

2.1 Balancing columns

Besides the previously mentioned
parameters, some others are pro-
vided to influence the layout of
the columns generated.

Paragraphing in TEX is con-
trolled by several parameters.
One of the most important is
called \tolerance: this control-
s the allowed ‘looseness’ (i.e. the

amount of blank space between
words). Its default value is 200
(the LATEX \fussy) which is too
small for narrow columns. On the
other hand the \sloppy declara-
tion (which sets \tolerance to
10000 = ∞) is too large, allow-
ing really bad spacing.4

We therefore use a
\multicoltolerance parameter
for the \tolerance value inside
the multicols environment. Its
default value is 9999 which
is less than infinity but ‘bad’
enough for most paragraphs
in a multicolumn environment.
Changing its value should be
done outside the multicols envi-
ronment. Since \tolerance is
set to \multicoltolerance at
the beginning of every multicols
environment one can locally
overwrite this default by as-
signing \toleranceÃ=Ã〈desired
value〉. There also exists a
\multicolpretolerance pa-
rameter holding the value
for \pretolerance within a
multicols environment. Both
parameters are usually used only
by package designers.

Generation of multicolumn
output can be divided into t-
wo parts. In the first part we are
collecting material for a page,
shipping it out, collecting mate-
rial for the next page, and so on.
As a second step, balancing will
be done when the end of the mul-
ticols environment is reached. In
the first step TEX might consid-
er more material whilst finding
the final columns than it actually
use when shipping out the page.
This might cause a problem if
a footnote is encountered in the
part of the input considered, but

2This is dictated by lack of time. To implement floats one has to reimplement the whole LATEX output routine.
3Actually the added space may be less because we use \addvspace (see the LATEX manual for further information about this

command).
4Look at the next paragraph, it was set with the \sloppy declaration.

2

not used, on the current page. In
this case the footnote might show
up on the current page, while the
footnotemark corresponding to
this footnote might be set on the
next one.5 Therefore the multi-
cols environment gives a warning
message6 whenever it is unable
to use all the material considered
so far.

If you don’t use footnotes too
often the chances of something
actually going wrong are very s-
lim, but if this happens you can
help TEX by using a \pagebreak
command in the final documen-
t. Another way to influence the
behavior of TEX in this respec-
t is given by the counter vari-
able ‘collectmore’. If you use the
\setcounter declaration to set
this counter to 〈number〉, TEX
will consider 〈number〉 more (or
less) lines before making its fi-
nal decision. So a value of −1
may solve all your problems at
the cost of slightly less optimal
columns.

In the second step (balanc-
ing columns) we have other bell-
s and whistles. First of al-
l you can say \raggedcolumns
if you don’t want the bottom
lines to be aligned. The default
is \flushcolumns, so TEX will
normally try to make both the
top and bottom baselines of all
columns align.

Additionally you can set
another counter, the ‘unbal-
ance’ counter, to some positive
〈number〉. This will make all but
the right-most column 〈number〉
of lines longer than they would
normally have been. ‘Lines’ in
this context refer to normal text
lines (i.e. one \baselineskip a-
part); thus, if your columns con-
tain displays, for example, you
may need a higher 〈number〉 to

shift something from one column
into another.

Unlike ‘collectmore,’ the ‘unbal-
ance’ counter is reset to zero at
the end of the environment so it
only applies to one multicols en-
vironment.

The two methods may be com-
bined but I suggest using these
features only when fine tuning
important publications.

Two more general tuning pos-
sibilities were added with ver-
sion 1.5. TEX allows to mea-
sure the badness of a column in
terms of an integer value, where
0 means optimal and any high-
er value means a certain amoun-
t of extra white space. 10000
is considered to be infinitely bad
(TEX does not distinguish any
further). In addition the special
value 100000 means overfull (i.e.,
the column contains more text
than could possibly fit into it).

The new release now measures
every generated column and ig-
nores solutions where at least one
column has a badness being larg-
er than the value of the counter
columnbadness. The default val-
ue for this counter is 10000, thus
TEX will accept all solutions ex-
cept those being overfull. By set-
ting the counter to a smaller val-
ue you can force the algorithm to
search for solutions that do not
have columns with a lot of white
space.

However, if the setting is too
low, the algorithm may not find
any acceptable solution at all and
will then finally choose the ex-
treme solution of placing all text
into the first column.

Often, when colunms are bal-
anced, it is impossible to find a
solution that distributes the text
evenly over all columns. If that
is the case the last column usu-

ally has less text than the other-
s. In the earlier releases this text
was stretched to produce a col-
umn with the same height as all
others, sometimes resulting in re-
ally ugly looking columns.

In the new release this stretch-
ing is only done if the badness
of the final column is not larg-
er than the value of the counter
finalcolumnbadness. The default
setting is 9999, thus preventing
the stretching for all columns
that TEX would consider infinite-
ly bad. In that case the final col-
umn is allowed to run short which
gives a much better result.

2.2 Not balancing the
columns

Although this package was writ-
ten to solve the problem of bal-
ancing columns, i got repeat-
ed requests to provide a version
where all white space is auto-
matically placed in the last col-
umn or columns. Since version
v1.5q this now exists: if you use
multicols* instead of the usu-
al environment the columns on
the last page are not balanced.
Of course, this environment on-
ly works on top-level, e.g., inside
a box one has to balance to deter-
mine a column height in absense
of a fixed value.

2.3 Floats inside a mul-
ticols environment

Within the multicols environmen-
t the usual star float commands
are available but their function is
somewhat different as in the two-
column mode of standard LATEX.
Stared floats, e.g., figure*, de-
note page wide floats that are
handled in a similar fashion as
normal floats outside the multi-

5The reason behind this behavior is the asynchronous character of the TEX page builder. However, this could be avoided
by defining very complicated output routines which don’t use TEX primitives like \insert but do everything by hand. This is
clearly beyond the scope of a weekend problem.

6This message will be generated even if there are no footnotes in this part of the text.

3

cols environment. However, they
will never show up on the page
where they are encountered. In
other words, one can influence
their placement by specifying a
combination of t, b, and/or p
in their optional argument, but
h doesn’t work because the first
possible place is the top of the
next page. One should also note,
that this means that their place-
ment behavior is determined by
the values of \topfraction, etc.
rather then by \dbl....

2.4 Warnings

Under certain circumstances the
use of the multicols environment
may result in in some warnings
from TEX or LATEX. Here is a
list of the important ones and the
possible cause:

Underfull \hbox (badness
...)

As the columns are often very
narrow TEX wasn’t able to find
a good way to break the para-
graph. Underfull denotes a loose
line but as long the badness val-
ues is below 10000 the result is
probably acceptable.

Underfull \vbox ... while
\output is active

If a column contains an charac-
ter with an unusual depth, for
example a ‘(’, in the bottom line
then this message may show up.

It usually has no significance as
long as the value is not more
than a few points.

LaTeX Warning: I moved
some lines to the next
page

As mentioned above, multicols
sometimes screws up the foot-
note numbering. As a pre-
caution, whenever there is a
footnote on a page that where
multicols had to leave a re-
mainder for the following page
this warning appears. Check
the footnote numbering on this
page. If it turns out that it
is wrong you have to manually
break the page using \newpage
or \pagebreak[..].

Floats and marginpars not
allowed inside ‘multicols’
environment!

This message appears if you try
to use the \marginpar com-
mand or an unstared version of
the figure or table environment.
Such floats will disappear!

2.5 Tracing the output

To understand the reasoning be-
hind the decisions TEX makes
when processing a multicols envi-
ronment, a tracing mechanism is
provided. If you set the counter
‘multicols’ to a positive 〈number〉
you then will get some tracing in-
formation on the terminal and in
the transcript file:

〈number〉 = 1. TEX will now
tell you, whenever it enters or
leaves a multicols environmen-
t, the number of columns it
is working on and its decision
about starting a new page be-
fore or after the environment.

〈number〉 = 2. In this case y-
ou also get information from
the balancing routine: the
heights tried for the left and
right-most columns, informa-
tion about shrinking if the
\raggedcolumns declaration is
in force and the value of the ‘un-
balance’ counter if positive.

〈number〉 = 3. Setting
〈number〉 to this value will ad-
ditionally trace the mark han-
dling algorithm. It will show
what marks are found, what
marks are considered, etc. To
fully understand this informa-
tion you will probably have to
read carefully trough the imple-
mentation.

〈number〉 ≥ 4. Setting
〈number〉 to such a high val-
ue will additionally place an
\hrule into your output, sep-
arating the part of text which
had already been considered
on the previous page from the
rest. Clearly this setting should
not be used for the final out-
put. It will also activate even
more debugging code for mark
handling.

3 Prefaces to older versions

3.1 Preface to version 1.4

Beside fixing some bugs as men-
tioned in the multicol.bug file this
new release enhances the multi-
cols environment by allowing for
balancing in arbitrary contexts.
It is now, for example, possible
to balance text within a multicols
or a minipage as shown in 2 where

a multicols environment within a
quote environment was used. It
is now even possible to nest mul-
ticols environments.

The only restriction to such in-
ner multicols environments (nest-
ed, or within TEX’s internal ver-
tical mode) is that such variants

will produce a box with the bal-
anced material in it, so that they
can not be broken across pages or
columns.

Additionally I rewrote the al-
gorithm for balancing so that it
will now produce slightly better
results.

4

I updated the source documen-
tation but like to apologize in ad-
vance for some ‘left over’ parts
that slipped through the revision.

A note to people who like
to improve the balancing algo-
rithm of multicols: The balanc-
ing routine in now placed into

a single macro which is called
\balance@columns. This mean-
s that one can easily try differ-
ent balancing routines by rewrit-
ing this macro. The interface for
it is explained in table 1. There
are several improvements possi-
ble, one can think of integrating

the \badness function of TEX3,
define a faster algorithm for find-
ing the right column height, etc.
If somebody thinks he/she has an
enhancement I would be pleased
to learn about it. But please obey
the copyright notice and don’t
change multicol.dtx directly!

3.2 Preface to version 1.2

After the article about the mul-
ticols environment was published
in TUGboat 10#3, I got numer-
ous requests for these macros.
However, I also got a changed
version of my style file, together
with a letter asking me if I would
include the changes to get better
paragraphing results in the case
of narrow lines. The main dif-
ferences to my original style op-
tion were additional parameter-
s (like \multicoladjdemerits to
be used for \adjdemerits, etc.)
which would influence the line
breaking algorithm.

But actually resetting such pa-
rameters to zero or even worse to
a negative value won’t give bet-
ter line breaks inside the multicol-
s environment. TEXs line break-
ing algorithm will only look at
those possible line breaks which
can be reached without a badness
higher than the current value of
\tolerance (or \pretolerance
in the first pass). If this isn’t pos-
sible, then, as a last resort, TEX
will produce overfull boxes. Al-
l those (and only those) possible

break points will be considered
and finally the sequence which re-
sults in the fewest demerits will
be chosen. This means that a val-
ue of−1000 for \adjdemerits in-
structs TEX to prefer visibly in-
compatible lines instead of pro-
ducing better line breaks.

However, with TEX 3.0 it is
possible to get decent line break-
s even in small columns by set-
ting \emergencystretch to an
appropriate value. I implement-
ed a version which is capable of
running both in the old and the
new TEX (actually it will sim-
ply ignore the new feature if it is
not available). The calculation of
\emergencystretch is probably
incorrect. I made a few tests but
of course one has have much more
experience with the new possi-
bilities to achieve the maximum
quality.

Version 1.1a had a nice ‘fea-
ture’: the penalty for using
the forbidden floats was their
ultimate removal from LATEXs
\@freelist so that after a few
\marginpars inside the multicol-

s environment floats where dis-
abled forever. (Thanks to Chris
Rowley for pointing this out.) I
removed this misbehaviour and
at the same time decided to al-
low at least floats spanning al-
l columns, e.g., generated by the
figure* environment. You can
see the new functionality in ta-
ble 2 which was inserted at this
very point. However single col-
umn floats are still forbidden and
I don’t think I will have time to
tackle this problem in the near fu-
ture. As an advice for all who
want to try: wait for TEX 3.0.
It has a few features which will
make life much easier in multi-
column surroundings. Neverthe-
less we are working here at the
edge of TEXs capabilities, real-
ly perfect solutions would need
a different approach than it was
done in TEXs page builder.

The text below is nearly un-
changed, I only added documen-
tation at places where new code
was added.

4 The Implementation

We are now switching to two-column output to show the abilities of this environment (and bad layout
decisions).

4.1 The documentation driver file

The next bit of code contains the documentation
driver file for TEX, i.e., the file that will produce the
documentation you are currently reading. It will be

extracted from this file by the docstrip program.
Since this is the first code in this file one can produce
the documentation simply by running LATEX on the

5

The macro \balance@columns that contains
the code for balancing gathered material is a
macro without parameters. It assumes that
the material for balancing is stored in the box
\mult@box which is a \vbox. It also “knows”
about all parameters set up by the multicol-
s environment, like \col@number, etc. It can
also assume that \@colroom is the still avail-
able space on the current page.
When it finishes it must return the individu-
al columns in boxes suitable for further pro-
cessing with \page@sofar. This means that
the left column should be stored in box reg-

ister \mult@gfirstbox, the next in register
\mult@firstbox + 2, . . . , only the last one
as an exception in register \mult@grightbox.
Furthermore it has to set up two the macros
\kept@firstmark and \kept@botmark to hold
the values for the first and bottom mark as
found in the individual columns. There are
some helper functions defined in section 5.1
which may be used for this. Getting the marks
right “by hand” is non-trivial and it may pay
off to first take a look at the documentation
and implementation of \balance@columns be-
low before trying anew.

Table 1: Interface description for \balance@columns

\setemergencystretch: This is a hook for people
who like to play around. It is supposed to set the
\emergencystretch 〈dimen〉 register provided in
the new TEX 3.0. The first argument is the num-
ber of columns and the second one is the current
\hsize. At the moment the default definition is

4pt × #1, i.e. the \hsize isn’t used at all. But
maybe there are better formulae.

\set@floatcmds: This is the hook for the expert-
s who like to implement a full float mechanism
for the multicols environment. The @ in the name
should signal that this might not be easy.

Table 2: The new commands of multicol.sty version 1.2. Both commands might be removed if good solutions
to these open problems are found. I hope that these commands will prevent that nearly identical style files
derived from this one are floating around.

.dtx file.
1 〈∗driver〉
2 \documentclass{ltxdoc}

We use the balancingshow option when loading
multicols so that full tracing is produced. This has to
be done before the doc package is loaded, since doc
otherwise requires multicols without any options.
3 \usepackage{multicol}[1999/03/22]

4 \usepackage{doc}

First we set up the page layout suitable for this ar-
ticle.
5 \setlength{\textwidth}{39pc}

6 \setlength{\textheight}{54pc}

7 \setlength{\parindent}{1em}

8 \setlength{\parskip}{0pt plus 1pt}

9 \setlength{\oddsidemargin}{0pc}

10 \setlength{\marginparwidth}{0pc}

11 \setlength{\topmargin}{-2.5pc}

12 \setlength{\headsep}{20pt}

13 \setlength{\columnsep}{1.5pc}

We want a rule between columns.
14 \setlength\columnseprule{.4pt}

We also want to ensure that a new multicols envi-
ronment finds enough space at the bottom of the
page.
15 \setlength\premulticols{6\baselineskip}

When balancing columns we disregard solutions that
are too bad. Also, if the last column is too bad we
typeset it without stretch.
16 \setcounter{columnbadness}{7000}

17 \setcounter{finalcolumnbadness}{7000}

The index is supposed to come out in four columns.
And we don’t show macro names in the margin.
18 \setcounter{IndexColumns}{4}

19 \let\DescribeMacro\SpecialUsageIndex

20 \let\DescribeEnv\SpecialEnvIndex

21 \renewcommand\PrintMacroName[1]{}

22 \CodelineIndex

23 %\DisableCrossrefs % Partial index

24 \RecordChanges % Change log

Line numbers are very small for this article.
25 \renewcommand{\theCodelineNo}

26 {\scriptsize\rm\arabic{CodelineNo}}

27 \settowidth\MacroIndent{\scriptsize\rm 00\ }

28

29 \begin{document}

30 \typeout

31 {**

32 ^^J* Expect some Under- and overfull boxes.

33 ^^J**}

34 \DocInput{multicol.dtx}

35 \end{document}

36 〈/driver〉

6

4.2 Identification and option processing

We start by identifying the package. Since it makes
use of features only available in LATEX2ε we ensure
that this format is available. (Now this is done ear-
lier in the file.)
37 〈∗package〉
38 % \NeedsTeXFormat{LaTeX2e}

39 % \ProvidesPackage{multicol}[..../../..

40 % v... multicolum formatting]

Next we declare options supported by multicols.
Twocolumn mode and multicols do not work togeth-
er so we warn about possible problems. However,
since you can revert to \onecolumn in which case
multicols does work, we don’t make this an error.
41 \DeclareOption{twocolumn}

42 {\PackageWarning{multicol}{May not work

43 with the twocolumn option}}

Tracing is done using a counter. However it is al-
so possible to invoke the tracing using the options
declared below.
44 \newcount\c@tracingmulticols

45 \DeclareOption{errorshow}

46 {\c@tracingmulticols\z@}

47 \DeclareOption{infoshow}

48 {\c@tracingmulticols\@ne}

49 \DeclareOption{balancingshow}

50 {\c@tracingmulticols\tw@}

51 \DeclareOption{markshow}

52 {\c@tracingmulticols\thr@@}

53 \DeclareOption{debugshow}

54 {\c@tracingmulticols5\relax}

55 \ProcessOptions

4.3 Starting and Ending the multicols Environment

As mentioned before, the multicols environment has
one mandatory argument (the number of columns)
and up to two optional ones. We start by reading
the number of columns into the \col@number regis-
ter.
56 \def\multicols#1{\col@number#1\relax

If the user forgot the argument, TEX will complain
about a missing number at this point. The error
recovery mechanism will then use zero, which isn’t
a good choice in this case. So we should now test
whether everything is okay. The minimum is two
columns at the moment.
57 \ifnum\col@number<\tw@

58 \PackageWarning{multicol}%

59 {Using ‘\number\col@number’

60 columns doesn’t seem a good idea.^^J

61 I therefore use two columns instead}%

62 \col@number\tw@ \fi

We have only enough box registers for ten columns,
so we need to check that the user hasn’t asked for
more.
63 \ifnum\col@number>10

64 \PackageError{multicol}%

65 {Too many columns}%

66 {Current implementation doesn’t

67 support more than 10 columns.%

68 \MessageBreak

69 I therefore use 10 columns instead}%

70 \col@number10 \fi

Within the environment we need a special version
of the kernel \@footnotetext command since the
original sets the the \hsize to \columnwidth which
is not correct in the multicol environment. Here

\columnwidth refers to the width of the individual
column and the footnote should be in \textwidth.
Since \@footnotetext has a different definition in-
side a minipage environment we do not redefine it
directly. Instead we locally set \columnwidth to
\textwidth and call the original (current) defini-
tion stored in \orig@footnotetext.
71 \let\orig@footnotetext\@footnotetext

72 \def\@footnotetext##1{\begingroup\columnwidth\textwidth

73 \orig@footnotetext{##1}\endgroup}%

Now we can safely look for the optional arguments.
74 \@ifnextchar[\mult@cols{\mult@cols[]}}

The \mult@cols macro grabs the first optional ar-
gument (if any) and looks for the second one.
75 \def\mult@cols[#1]{\@ifnextchar[%

This argument should be a 〈dimen〉 denoting the
minimum free space needed on the current page to
start the environment. If the user didn’t supply one,
we use \premulticols as a default.
76 {\mult@@cols{#1}}%

77 {\mult@@cols{#1}[\premulticols]}}

After removing all arguments from the input we are
able to start with \mult@@cols.
78 \def\mult@@cols#1[#2]{%

First thing we do is to decide whether or not this is
an unbounded multicols environment, i.e. one that
may split across pages, or one that has to be typeset
into a box. If we are in TEX’s “inner” mode (e.g.,
inside a box already) then we have a boxed version
of multicols therefore we set the @boxedmulticols

7

switch to true. The multicols should start in vertical
mode. If we are not already there we now force it
with \par since otherwise the test for “inner” mode
wouldn’t show if we are in a box.
79 \par

80 \ifinner \@boxedmulticolstrue

Otherwise we check \doublecol@number. This
counter is zero outside a multicols environment but
positive inside (this happens a little later on). In the
second case we need to process the current multicol-
s also in “boxed mode” and so change the switch
accordingly.
81 \else

82 \ifnum \doublecol@number>\z@

83 \@boxedmulticolstrue

84 \fi

85 \fi

Then we look to see if statistics are requested:
86 \mult@info\z@

87 {Starting environment with

88 \the\col@number\space columns%

In boxed mode we add some more info.
89 \if@boxedmulticols\MessageBreak

90 (boxed mode)\fi

91 }%

Then we measure the current page to see whether a
useful portion of the multicolumn environment can
be typeset. This routine might start a new page.
92 \enough@room{#2}%

Now we output the first argument and produce ver-
tical space above the columns. (Note that this ar-
gument corresponds to the first optional argument
of the multicols environment.) For many releases
this argument was typeset in a group to get a sim-
ilar effect as \twocolumn[..] where the argument
is also implicitly surrounded by braces. However,
this conflicts with local changes done by things like
sectioning commands (which account for the major-
ity of commands used in that argument) messing up
vertical spacing etc. later in the document so that
from version v1.5q on this argument is again typeset
at the outer level.
93 #1\par\addvspace\multicolsep

We start a new grouping level to hide all subsequen-
t changes (done in \prepare@multicols for exam-
ple).
94 \begingroup

95 \prepare@multicols

If we are in boxed mode we now open a box to type-
set all material from the multicols body into it, oth-
erwise we simply go ahead.

96 \if@boxedmulticols

97 \setbox\mult@box\vbox\bgroup

We may have to reset some parameters at this point,
perhaps \@parboxrestore would be the right action
but I leave it for the moment.
98 \fi

We finish by suppressing initial spaces.
99 \ignorespaces}

Here is the switch and the box for “boxed” multicols
code.

100 \newif\if@boxedmulticols

101 \@boxedmulticolsfalse

102 \newbox\mult@box

The \enough@room macro used above isn’t perfec-
t but works reasonably well in this context. We
measure the free space on the current page by sub-
tracting \pagetotal from \pagegoal. This isn’t
entirely correct since it doesn’t take the ‘shrinking’
(i.e. \pageshrink) into account. The ‘recent con-
tribution list’ might be nonempty so we start with
\par and an explicit \penalty.7 Actually, we use
\addpenalty to ensure that a following \addvspace
will ‘see’ the vertical space that might be present.
The use of \addpenalty will have the effect that all
items from the recent contributions will be moved
to the main vertical list and the \pagetotal value
will be updated correctly. However, the penalty will
be placed in front of any dangling glue item with
the result that the main vertical list may already
be overfull even if TEX is not invoking the output
routine.

103 \def\enough@room#1{%

Measuring makes only sense when we are not in
“boxed mode” so the routine does nothing if the
switch is true.

104 \if@boxedmulticols\else

105 \par

To empty the contribution list the first release con-
tained a penalty zero but this had the result that
\addvspace couldn’t detect preceding glue. So this
was changed to \addpenalty. But this turned out
to be not enough as \addpenalty will not add a
penalty when @nobreak is true. Therefore we force
this switch locally to false. As a result there may
be a break between preceding text and the start of
a multicols environment, but this seems acceptable
since there is the optional argument for exactly this
reason.

106 \bgroup\@nobreakfalse\addpenalty\z@\egroup

107 \page@free \pagegoal

108 \advance \page@free -\pagetotal

7See the documentation of \endmulticols for further details.

8

To be able to output the value we need to assign it
to a register first since it might be a register (de-
fault) in which case we need to use \the or it might
be a plain value in which case \the would be wrong.

109 \@tempskipa#1\relax

Now we test whether tracing information is required:
110 \mult@info\z@

111 {Current page:\MessageBreak

112 height=%

113 \the\pagegoal: used \the\pagetotal

114 \space -> free=\the\page@free

115 \MessageBreak

116 needed \the\@tempskipa

117 \space(for #1)}%

Our last action is to force a page break if there isn’t
enough room left.

118 \ifdim \page@free <#1\newpage \fi

119 \fi}

When preparing for multicolumn output several
things must be done.

120 \def\prepare@multicols{%

We start saving the current \@totalleftmargin
and then resetting the \parshape in case we are
inside some list environment. The correct inden-
tation for the multicols environment in such a case
will be produced by moving the result to the right
by \multicol@leftmargin later on. If we would
use the value of of \@totalleftmargin directly then
lists inside the multicols environment could cause a
shift of the output.

121 \multicol@leftmargin\@totalleftmargin

122 \@totalleftmargin\z@

123 \parshape\z@

We also set the register \doublecol@number for
later use. This register should contain 2 ×
\col@number. This is also an indicator that we are
within a multicols environment as mentioned above.

124 \doublecol@number\col@number

125 \multiply\doublecol@number\tw@

126 \advance\doublecol@number\mult@rightbox

127 \if@boxedmulticols

128 \let\l@kept@firstmark\kept@firstmark

129 \let\l@kept@botmark\kept@botmark

130 \global\let\kept@firstmark\@empty

131 \global\let\kept@botmark\@empty

132 \else

We add an empty box to the main vertical list to
ensure that we catch any insertions (held over or in-
serted at the top of the page). Otherwise it might
happen that the \eject is discarded without calling

the output routine. Inside the output routine we re-
move this box again. Again this code applies only
if we are on the main vertical list and not within
a box. However, it is not enough to turn off inter-
line spacing, we also have to clear \topskip before
adding this box, since \topskip is always inserted
before the first box on a page which would leave us
with an extra space of \topskip if multicols start on
a fresh sheet.

133 \nointerlineskip {\topskip\z@\null}%

134 \output{%

135 \global\setbox\partial@page\vbox

136 {%

Now we have to make sure that we catch one spe-
cial situation which may result in loss of text! If the
user has a huge amount of vertical material with-
in the first optional argument that is larger then
\premulticols and we are near the bottom of the
page then it can happen that not the \eject is
triggering this special output routine but rather the
overfull main vertical list. In that case we get an-
other breakpoint through the \eject penalty. As
a result this special output routine would be called
twice and the contents of \partial@page, i.e. the
material before the multicols environment gets lost.
There are several solutions to avoid this problem,
but for now we will simply detect this and inform the
user that he/she has to enlarge the \premulticols
by using a suitable value for the second argument.

137 〈∗check〉
138 \ifvoid\partial@page\else

139 \PackageError{multicol}%

140 {Error saving partial page}%

141 {The part of the page before

142 the multicols environment was

143 nearly full with^^Jthe result

144 that starting the environment

145 will produce an overfull

146 page. Some^^Jtext may be lost!

147 Please increase \premulticols

148 either generally or for this%

149 ^^Jenvironment by specifying a

150 suitable value in the second

151 optional argument to^^Jthe

152 multicols environment.}

153 \unvbox\partial@page

154 \box\last@line

155 \fi

156 〈/check〉
157 \unvbox\@cclv

158 \global\setbox\last@line\lastbox

159 }%

Finally we need to record the marks that are present
within the \partial@page so that we can construc-
t correct first and bottom marks later on. This is

9

done by the following code.
160 \prep@keptmarks

Finally we have to initialize \kept@topmark which
should ideally be initialized with the mark that is
current on “top” of this page. Unfortunately we
can’t use \topmark because this register will not al-
ways contain what its name promises because LATEX
sometimes calls the output routine for float manage-
ment.8 Therefore we use the second best solution by
initializing it with \firstmark. In fact, for our pur-
pose this doesn’t matter as we use \kept@topmark
only to initialize \firstmark and \botmark of a fol-
lowing page if we don’t find any marks on the current
one.

161 \global\let\kept@topmark\firstmark

162 }\eject

The next thing to do is to assign a new value to
\vsize. LATEX maintains the free room on the page
(i.e. the page height without the space for already
contributed floats) in the register \@colroom. We
must subtract the height of \partial@page to put
the actual free room into this variable.

163 \advance\@colroom-\ht\partial@page

Then we have to calulate the \vsize value to use
during column assembly. \set@mult@vsize takes
an argument which allows to make the setting local
(\relax) or global (\global). The latter variant is
used inside the output routine below. At this point
here we have to make a local change to \vsize be-
cause we want to get the original value for \vsize
restored in case this multicols environment ends on
the same page where it has started.

164 \set@mult@vsize\relax

Now we switch to a new \output routine which will
be used to put the gathered column material togeth-
er.

165 \output{\multi@column@out}%

Finally we handle the footnote insertions. We have
to multiply the magnification factor and the extra
skip by the number of columns since each footnote
reduces the space for every column (remember that
we have pagewide footnotes). If, on the other hand,
footnotes are typeset at the very end of the docu-
ment, our scheme still works since \count\footins
is zero then, so it will not change. To allow even
further customization the setting of the \footins
parameters is done in a separate macro.

166 \init@mult@footins

For the same reason (pagewide footnotes), the
〈dimen〉 register controlling the maximum space

used for footnotes isn’t changed. Having done this,
we must reinsert all the footnotes which are already
present (i.e. those encountered when the material
saved in \partial@page was first processed). This
will reduce the free space (i.e. \pagetotal) by the
appropriate amount since we have changed the mag-
nification factor, etc. above.

167 \reinsert@footnotes

All the code above was only necessary for the un-
restricted multicols version, i.e. the one that allows
page breaks. If we are within a box there is no point
in setting up special output routines or \vsize, etc.

168 \fi

But now we are coming to code that is necessary
in all cases. We assign new values to \vbadness,
\hbadness and \tolerance since it’s rather hard
for TEX to produce ‘good’ paragraphs within nar-
row columns.

169 \vbadness\@Mi \hbadness5000

170 \tolerance\multicoltolerance

Since nearly always the first pass will fail we ignore
it completely telling TEX to hyphenate directly. In
fact, we now use another register to keep the val-
ue for the multicol pre-tolerance, so that a designer
may allow to use \pretolerance.

171 \pretolerance\multicolpretolerance

For use with the new TEX we set
\emergencystretch to \col@number × 4pt. How-
ever this is only a guess so at the moment this is
done in a macro \setemergencystretch which gets
the current \hsize and the number of columns as
arguments. Therefore users are able to figure out
their own formula.

172 \setemergencystretch\col@number\hsize

Another hook to allow people adding their own
extensions without making a new package is
\set@floatcmds which handles any redefinitions of
LATEXs internal float commands to work with the
multicols environment. At the moment it is only
used to redefine \@dblfloat and \end@dblfloat.

173 \set@floatcmds

Additionally, we advance \baselineskip by
\multicolbaselineskip to allow corrections for
narrow columns.

174 \advance\baselineskip\multicolbaselineskip

The \hsize of the columns is given by the formula:

\linewidth− (\col@number− 1)× \columnsep

\col@number
8During such a call the \botmark gets globally copied to \topmark by the TEX program.

10

The formula above has changed from release to
release. We now start with the current value of
\linewidth so that the column width is properly
calculated when we are inside a minipage or a list
or some other environment. This will be achieved
with:

175 \hsize\linewidth \advance\hsize\columnsep

176 \advance\hsize-\col@number\columnsep

177 \divide\hsize\col@number

We also set \linewidth and \columnwidth to
\hsize In the past \columnwidth was left un-
changed. This is inconsistent, but \columnwidth is
used only by floats (which aren’t allowed in their
current implementation) and by the \footnote
macro. Since we want pagewide footnotes9 this sim-
ple trick saved us from rewriting the \footnote
macros. However, some applications refered to
\columnwidth as the “width of the current column”
to typeset displays (the amsmath package, for exam-
ple) and to allow the use of such applications to-
gether with multicol this is now changed.

Before we change \linewidth to the new val-
ue we record its old value in some register called
\full@width. This value is used later on when we
package all columns together.

178 \full@width\linewidth

179 \linewidth\hsize

180 \columnwidth\hsize

181 }

This macro is used to set up the parameters asso-
ciated with footnote floats. It can be redefined by
applications that require different amount of spaces
when typesetting footnotes.

182 \def\init@mult@footins{%

183 \multiply\count\footins\col@number

184 \multiply\skip \footins\col@number

185 }

Since we have to set \col@umber columns on one
page, each with a height of \@colroom, we have to
assign \vsize = \col@number × \@colroom in or-
der to collect enough material before entering the
\output routine again. In fact we have to ad-
d another (\col@number − 1) × (\baselineskip −
\topskip) if you think about it.

186 \def\set@mult@vsize#1{%

187 \vsize\@colroom

188 \@tempdima\baselineskip

189 \advance\@tempdima-\topskip

190 \advance\vsize\@tempdima

191 \vsize\col@number\vsize

192 \advance\vsize-\@tempdima

But this might not be enough since we use \vsplit
later to extract the columns from the gathered ma-
terial. Therefore we add some ‘extra lines,’ the num-
ber depending on the value of the ‘multicols’ counter.
The final value is assigned globally if #1 is \global
because we want to use this macro later inside the
output routine too.

193 #1\advance\vsize

194 \c@collectmore\baselineskip}

Here is the dimen register we need for saving away
the outer value of \@totalleftmargin.

195 \newdimen\multicol@leftmargin

When the end of the multicols environment is sensed
we have to balance the gathered material. Depend-
ing on whether or not we are inside a boxed multicol
different things must happen. But first we end the
current paragraph with a \par command.

196 \def\endmulticols{\par

197 \if@boxedmulticols

In boxed mode we have to close the box in which we
have gathered all material for the columns.

198 \egroup

Now we call \balance@columns the routine that
balances material stored in the box \mult@box.

199 \balance@columns

After balancing the result has to be returned by the
command \page@sofar. But before we do this we
reinsert any marks found in box \mult@box.

200 \return@nonemptymark{first}%

201 \kept@firstmark

202 \return@nonemptymark{bot}%

203 \kept@botmark

204 \page@sofar

205 \global\let\kept@firstmark

206 \l@kept@firstmark

207 \global\let\kept@botmark

208 \l@kept@botmark

209 〈∗marktrace〉
210 \mult@info\tw@

211 {Restore kept marks to\MessageBreak

212 first: \meaning\kept@firstmark

213 \MessageBreak bot\space\space:

214 \meaning\kept@botmark }%

215 〈/marktrace〉
9I’m not sure that I really want pagewide footnotes. But balancing of the last page can only be achieved with this approach

or with a multi-path algorithm which is complicated and slow. But it’s a challenge to everybody to prove me wrong! Another
possibility is to reimplement a small part of the fire up procedure in TEX (the program). I think that this is the best solution
if you are interested in complex page makeup, but it has the disadvantage that the resulting program cannot be called TEX
thereafter.

11

This finishes the code for the “boxed” case.
216 \else

If we are in an unrestricted multicols environment
we end the current paragraph with \par but this is-
n’t sufficient since TEXs page builder will not totally
empty the contribution list.10 Therefore we must
also add an explicit \penalty. Now the contribu-
tion list will be emptied and, if its material doesn’t
all fit onto the current page then the output routine
will be called before we change it. At this point we
need to use \penalty not \addpenalty to ensure
that a) the recent contributions are emptied and b)
that the very last item on the main vertical list is
a valid break point so that TEX breaks the page in
case it is overfull.

217 \penalty\z@

Now it’s safe to change the output routine in order
to balance the columns.

218 \output{\balance@columns@out}\eject

If the multicols environment body was completely
empty or if a multi-page multicols just ends at a
page boundary we have the unusual case that the
\eject will have no effect (since the main vertical
list is empty)—thus no output routine is called at
all. As a result the material preceding the multicols
(stored in \partial@page will get lost if we don’t
take of this by hand.

219 \ifvbox\partial@page

220 \unvbox\partial@page\fi

After the output routine has acted we restore the
kept marks to their initial value.

221 \global\let\kept@firstmark\@empty

222 \global\let\kept@botmark\@empty

223 〈∗marktrace〉
224 \mult@info\tw@

225 {Make kept marks empty}%

226 〈/marktrace〉
227 \fi

The output routine above will take care of the
\vsize and reinsert the balanced columns, etc. But
it can’t reinsert the \footnotes because we first
have to restore the \footins parameter since we
are returning to one column mode. This will be
done in the next line of code; we simply close the
group started in \multicols.

To fix an obscure bug which is the result of the
current definition of the \begin . . . \end macros,
we check that we are still (logically speaking) in the

multicols environment. If, for example, we forget to
close some environment inside the multicols environ-
ment, the following \endgroup would be incorrectly
considered to be the closing of this environment.

228 \@checkend{multicols}%

229 \endgroup

Now it’s time to return any footnotes if we are in
unrestricted mode:

230 \if@boxedmulticols\else

231 \reinsert@footnotes

232 \fi

We also set the ‘unbalance’ counter to its default.
This is done globally since LATEX counters are al-
ways changed this way.11

233 \global\c@unbalance\z@

We also take a look at the amount of free space on
the current page to see if it’s time for a page break.
The vertical space added thereafter will vanish if
\enough@room starts a new page.

234 \enough@room\postmulticols

235 \addvspace\multicolsep

If statistics are required we finally report that we
have finished everything.

236 \mult@info\z@

237 {Ending environment

238 \if@boxedmulticols

239 \space(boxed mode)\fi

240 }}

Let us end this section by allocating all the registers
used so far.

241 \newcount\c@unbalance

242 \newcount\c@collectmore

In the new LATEX release \col@number is already al-
located by the kernel, so we don’t allocate it again.

243 %\newcount\col@number

244 \newcount\doublecol@number

245 \newcount\multicoltolerance

246 \newcount\multicolpretolerance

247 \newdimen\full@width

248 \newdimen\page@free

249 \newdimen\premulticols

250 \newdimen\postmulticols

251 \newskip\multicolsep

252 \newskip\multicolbaselineskip

253 \newbox\partial@page

254 \newbox\last@line

10This once caused a puzzling bug where some of the material was balanced twice, resulting in some overprints. The reason
was the \eject which was placed at the end of the contribution list. Then the page builder was called (an explicit \penalty

will empty the contribution list), but the line with the \eject didn’t fit onto the current page. It was then reconsidered after
the output routine had ended, causing a second break after one line.

11Actually, we are still in a group started by the \begin macro, so \global must be used anyway.

12

And here are their default values:
255 \c@unbalance = 0

256 \c@collectmore = 0

To allow checking whether some macro is used
within the multicols environment the counter
\col@number gets a default of 1 outside the the en-
vironment.

257 \col@number = 1

258 \multicoltolerance = 9999

259 \multicolpretolerance = -1

260 \premulticols = 50pt

261 \postmulticols= 20pt

262 \multicolsep = 12pt plus 4pt minus 3pt

263 \multicolbaselineskip=0pt

4.4 The output routines

We first start with some simple macros. When type-
setting the page we save the columns either in the
box registers 0, 2, 4,. . . (locally) or 1, 3, 5,. . . (glob-
ally). This is Plain TEX policy to avoid an overflow
of the save stack.

Therefore we define a \process@cols macro to help
us in using these registers in the output routines
below. It has two arguments: the first one is a
number; the second one is the processing informa-
tion. It loops starting with \count@=#1 (\count@ is
a scratch register defined in Plain TEX), processes
argument #2, adds two to \count@, processes ar-
gument #2 again, etc. until \count@ is higher than
\doublecol@number. It might be easier to under-
stand it through an example, so we define it now
and explain its usage afterwards.

264 \def\process@cols#1#2{\count@#1\relax

265 \loop

266 〈∗debug〉
267 \typeout{Looking at box \the\count@}

268 〈/debug〉
269 #2%

270 \advance\count@\tw@

271 \ifnum\count@<\doublecol@number

272 \repeat}

We now define \page@sofar to give an example
of the \process@cols macro. \page@sofar should
output everything prepared by the balancing routine
\balance@columns.

273 \def\page@sofar{%

\balance@columns prepares its output in the even
numbered scratch box registers. Now we output
the columns gathered assuming that they are saved
in the box registers 2 (left column), 4 (second col-
umn), . . . However, the last column (i.e. the right-
most) should be saved in box register 0.12 First
we ensure that the columns have equal width. We
use \process@cols for this purpose, starting with
\count@ = \mult@rightbox. Therefore \count@

loops through \mult@rightbox, \mult@rightbox+
2,. . . (to \doublecol@number).

274 \process@cols\mult@rightbox

We have to check if the box in question is void, be-
cause the operation \wd〈number〉 on a void box will
not change its dimension (sigh).

275 {\ifvoid\count@

276 \setbox\count@\hbox to\hsize{}%

277 \else

278 \wd\count@\hsize

279 \fi}%

Now we give some tracing information.
280 \mult@info\z@

281 {Column spec:\MessageBreak

282 (\the\multicol@leftmargin\space -->

283 \the\full@width\space = \the\hsize

284 \space x \the\col@number)%

285 }%

At this point we should always be in vertical mode.
286 \ifvmode\else\errmessage{Multicol Error}\fi

Now we put all columns together in an
\hbox of width \full@width (shifting it by
\multicol@leftmargin to the right so that it will
be placed correctly if we are within a list environ-
ment)

287 \moveright\multicol@leftmargin

288 \hbox to\full@width{%

and separating the columns with a rule if desired.
289 \process@cols\mult@gfirstbox{\box\count@

290 \hss\vrule\@width\columnseprule\hss}%

As you will have noticed, we started with box regis-
ter \mult@gfirstbox (i.e. the left column). So this
time \count@ looped through 2, 4,. . . (plus the ap-
propriate offset). Finally we add box 0 and close the
\hbox.

291 \box\mult@rightbox

The depths of the columns depend on their last lines.
To ensure that we will always get a similar look as
far as the rules are concerned we force the depth at
least the depth of a letter ‘p’.

12You will see the reason for this numbering when we look at the output routines \multi@column@out and
\balance@columns@out.

13

292 % \strut

293 \rlap{\phantom p}%

294 }%

295 }

Before we tackle the bigger output routines we
define just one more macro which will help us
to find our way through the mysteries later.
\reinsert@footnotes will do what its name in-
dicates: it reinserts the footnotes present in
\footinbox so that they will be reprocessed by
TEX’s page builder.

Instead of actually reinserting the footnotes we
insert an empty footnote. This will trigger insertion
mechanism as well and since the old footnotes are
still in their box and we are on a fresh page \skip
footins should be correctly taken into account.

296 \def\reinsert@footnotes{\ifvoid\footins\else

297 \insert\footins{}\fi}

Now we can’t postpone the difficulties any longer.
The \multi@column@out routine will be called in
two situations. Either the page is full (i.e. we
have collected enough material to generate all the
required columns) or a float or marginpar (or a
\clearpage is sensed. In the latter case the
\outputpenalty is less than −10000, otherwise the
penalty which triggered the output routine is high-
er. Therefore it’s easy to distinguish both cases: we
simply test this register.

298 \def\multi@column@out{%

299 \ifnum\outputpenalty <-\@M

If this was a \clearpage, a float or a marginpar we
call \speci@ls

300 \speci@ls \else

otherwise we construct the final page. Let us now
consider the normal case. We have to \vsplit
the columns from the accumulated material in box
255. Therefore we first assign appropriate values to
\splittopskip and \splitmaxdepth.

301 \splittopskip\topskip

302 \splitmaxdepth\maxdepth

Then we calculate the current column height (in
\dimen@). Note that the height of \partial@page
is already subtracted from \@colroom so we can use
its value as a starter.

303 \dimen@\@colroom

But we must also subtract the space occupied by
footnotes on the current page. Note that we first
have to reset the skip register to its normal value.
Again, the actual action is carried out in a utility
macro, so that other applications can modify it.

304 \divide\skip\footins\col@number

305 \ifvoid\footins \else

306 \leave@mult@footins

307 \fi

Now we are able to \vsplit off all but the last col-
umn. Recall that these columns should be saved in
the box registers 2, 4,. . . (plus offset).

308 \process@cols\mult@gfirstbox{%

309 \setbox\count@

310 \vsplit\@cclv to\dimen@

After splitting we update the kept marks.

311 \set@keptmarks

If \raggedcolumns is in force we add a vfill at the
bottom by unboxing the split box.

312 \ifshr@nking

313 \setbox\count@

314 \vbox to\dimen@

315 {\unvbox\count@\vfill}%

316 \fi

317 }%

Then the last column follows.

318 \setbox\mult@rightbox

319 \vsplit\@cclv to\dimen@

320 \set@keptmarks

321 \ifshr@nking

322 \setbox\mult@rightbox\vbox to\dimen@

323 {\unvbox\mult@rightbox\vfill}%

324 \fi

Having done this we hope that box 255 is emptied.
If not, we reinsert its contents.

325 \ifvoid\@cclv \else

326 \unvbox\@cclv

327 \penalty\outputpenalty

In this case a footnote that happens to fall into
the leftover bit will be typeset on the wrong page.
Therefore we warn the user if the current page con-
tains footnotes. The older versions of multicols pro-
duced this warning regardless of whether or not foot-
notes were present, resulting in many unnecessary
warnings.

328 \ifvoid\footins\else

329 \PackageWarning{multicol}%

330 {I moved some lines to

331 the next page.\MessageBreak

332 Footnotes on page

333 \thepage\space might be wrong}%

334 \fi

If the ‘tracingmulticols’ counter is 4 or higher we also
add a rule.

335 \ifnum \c@tracingmulticols>\thr@@

336 \hrule\allowbreak \fi

337 \fi

14

To get a correct marks for the current page
we have to (locally redefine \firstmark and
\botmark. If \kept@firstmark is non-empty then
\kept@botmark must be non-empty too so we can
use their values. Otherwise we use the value of
\kept@topmark which was first initialized when we
gathered the \partical@page and later on was up-
dated to the \botmark for the preceding page

338 \ifx\@empty\kept@firstmark

339 \let\firstmark\kept@topmark

340 \let\botmark\kept@topmark

341 \else

342 \let\firstmark\kept@firstmark

343 \let\botmark\kept@botmark

344 \fi

We also initalize \topmark with \kept@topmark.
This will make this mark okay for all middle pages
of the multicols environment.

345 \let\topmark\kept@topmark

346 〈∗marktrace〉
347 \mult@info\tw@

348 {Use kept top mark:\MessageBreak

349 \meaning\kept@topmark

350 \MessageBreak

351 Use kept first mark:\MessageBreak

352 \meaning\kept@firstmark

353 \MessageBreak

354 Use kept bot mark:\MessageBreak

355 \meaning\kept@botmark

356 \MessageBreak

357 Produce first mark:\MessageBreak

358 \meaning\firstmark

359 \MessageBreak

360 Produce bot mark:\MessageBreak

361 \meaning\botmark

362 \@gobbletwo}%

363 〈/marktrace〉
With a little more effort we could have done bet-
ter. If we had, for example, recorded the shrinkage
of the material in \partial@page it would be now
possible to try higher values for \dimen@ (i.e. the
column height) to overcome the problem with the
nonempty box 255. But this would make the code
even more complex so I skipped it in the current
implementation.

Now we use LATEX’s standard output mechanis-
m.13 Admittedly this is a funny way to do it.

364 \setbox\@cclv\vbox{\unvbox\partial@page

365 \page@sofar}%

The macro \@makecol adds all floats assigned for
the current page to this page. \@outputpage ships
out the resulting box. Note that it is just possible

that such floats are present even if we do not allow
any inside a multicols environment.

366 \@makecol\@outputpage

After the page is shipped out we have to pre-
pare the kept marks for the following page.
\kept@firstmark and \kept@botmark reinitilized
by setting them to \@empty. The value of \botmark
is then assigned to \kept@topmark.

367 \global\let\kept@topmark\botmark

368 \global\let\kept@firstmark\@empty

369 \global\let\kept@botmark\@empty

370 〈∗marktrace〉
371 \mult@info\tw@

372 {(Re)Init top mark:\MessageBreak

373 \meaning\kept@topmark

374 \@gobbletwo}%

375 〈/marktrace〉
Now we reset \@colroom to \@colht which is
LATEX’s saved value of \textheight.

376 \global\@colroom\@colht

Then we process deferred floats waiting for their
chance to be placed on the next page.

377 \process@deferreds

378 \@whilesw\if@fcolmade\fi{\@outputpage

379 \global\@colroom\@colht

380 \process@deferreds}%

If the user is interested in statistics we inform him
about the amount of space reserved for floats.

381 \mult@info\@ne

382 {Colroom:\MessageBreak

383 \the\@colht\space

384 after float space removed

385 = \the\@colroom \@gobble}%

Having done all this we must prepare to tackle the
next page. Therefore we assign a new value to
\vsize. New, because \partial@page is now emp-
ty and \@colroom might be reduced by the space
reserved for floats.

386 \set@mult@vsize \global

The \footins skip register will be adjusted when
the output group is closed.

387 \fi}

This macro is used to subtract the amount of space
occupied by footnotes for the current space from the
space available for the current column. The space
current column is stored in \dimen@. See above for
the description of the default action.

388 \def\leave@mult@footins{%

389 \advance\dimen@-\skip\footins

390 \advance\dimen@-\ht\footins

391 }

13This will produce a lot of overhead since both output routines are held in memory. The correct solution would be to
redesign the whole output routine used in LATEX.

15

We left out two macros: \process@deferreds and
\speci@ls.

392 \def\speci@ls{%

393 \ifnum\outputpenalty <-\@Mi

If the document ends in the middle of a mul-
ticols environment, e.g., if the user forgot the
\end{multicols}, TEX adds a very negative penal-
ty to the end of the galley which is intended to sig-
nal the output routine that it is time to prepare
for shipping out everything remaining. Since insid-
e multicols the output routine of LATEX is disabled
sometimes we better check for this case: if we find a
very negative penalty we produce an error message
and run the default output routine for this case.

394 \ifnum \outputpenalty<-\@MM

395 \PackageError{multicol}{Document end inside

396 multicols environment}\@ehd

397 \@specialoutput

398 \else

If we encounter a float or a marginpar in the cur-
rent implementation we simply warn the user that
this is not allowed. Then we reinsert the page and
its footnotes.

399 \PackageWarning{multicol}%

400 {Floats and marginpars not

401 allowed inside ‘multicols’

402 environment!

403 \@gobble}%

404 \unvbox\@cclv\reinsert@footnotes

Additionally we empty the \@currlist to avoid lat-
er error messages when the LATEX output routine is
again in force. But first we have to place the box-
es back onto the \@freelist. (\@elts default is
\relax so this is possible with \xdef.)

405 \xdef\@freelist{\@freelist\@currlist}%

406 \gdef\@currlist{}%

407 \fi

If the penalty is −10001 it will come from a
\clearpage and we will execute \@doclearpage to
get rid of any deferred floats.

408 \else \@doclearpage \fi

409 }

\process@deferreds is a simplified version of
LATEX’s \@startpage. We first call the macro
\@floatplacement to save the current user parame-
ters in internal registers. Then we start a new group
and save the \@deferlist temporarily in the macro
\@tempb.

410 \def\process@deferreds{%

411 \@floatplacement

412 \@tryfcolumn\@deferlist

413 \if@fcolmade\else

414 \begingroup

415 \let\@tempb\@deferlist

Our next action is to (globally) empty \@deferlist
and assign a new meaning to \@elt. Here
\@scolelt is a macro that looks at the boxes in
a list to decide whether they should be placed on
the next page (i.e. on \@toplist or \@botlist) or
should wait for further processing.

416 \gdef\@deferlist{}%

417 \let\@elt\@scolelt

Now we call \@tempb which has the form

\@elt〈box register〉\@elt〈box register〉. . .

So \@elt (i.e. \@scolelt) will distribute the boxes
to the three lists.

418 \@tempb \endgroup

419 \fi}

The \raggedcolumns and \flushcolumns declara-
tions are defined with the help of a new \if...
macro.

420 \newif\ifshr@nking

The actual definitions are simple: we just switch to
true or false depending on the desired action. To
avoid extra spaces in the output we enclose these
changes in \@bsphack. . . \@esphack.

421 \def\raggedcolumns{%

422 \@bsphack\shr@nkingtrue\@esphack}

423 \def\flushcolumns{%

424 \@bsphack\shr@nkingfalse\@esphack}

Now for the last part of the show: the column bal-
ancing output routine. Since this code is called with
an explicit penalty (\eject) there is no need to
check for something special (eg floats). We start
by balancing the material gathered.

425 \def\balance@columns@out{%

For this we need to put the contents of box 255 into
\mult@box.

426 \setbox\mult@box\vbox{\unvbox\@cclv}%

427 \balance@columns

This will bring us into the position to apply
\page@sofar. But first we have to set \vsize to
a value suitable for one column output.

428 \global\vsize\@colroom

429 \global\advance\vsize\ht\partial@page

Then we \unvbox the \partial@page (which may
be void if we are not prcessing the first page of this
multicols environment.

430 \unvbox\partial@page

16

Then we return the first and bottom mark and the
gathered material to the main vertical list.

431 \return@nonemptymark{first}\kept@firstmark

432 \return@nonemptymark{bot}\kept@botmark

433 \page@sofar

We need to add a penalty at this point which allows
to break at this point since calling the output rou-
tine may have removed the only permissible break
point thereby “glueing” any following skip to the
balanced box. In case there are any weird settings
for \multicolsep etc. this could produce funny re-
sults.

434 \penalty\z@

435 }

As we already know, reinserting of footnotes will be
done in the macro \endmulticols.

This macro now does the actual balancing.
436 \def\balance@columns{%

We start by setting the kept marks by updating
them with any marks from this box. This has to
be done before we add a penalty of −10000 to the
top of the box, otherwise only an empty box will be
considered.

437 \get@keptmarks\mult@box

We then contine by resetting trying to remove any
discardable stuff at the end of \mult@box. This is
rather experimental. We also add a forced break
point at the very beginning, so that we can split the
box to height zero later on, thereby adding a known
\splittopskip glue at the beginning.

438 \setbox\mult@box\vbox{%

439 \penalty-\@M

440 \unvbox\mult@box

441 \remove@discardable@items

442 }%

Then follow values assignments to get the
\vsplitting right. We use the natural part of
\topskip as the natural part for \splittopskip
and allow for a bit of undershoot and overshoot by
adding some stretch and shrink.

443 \@tempdima\topskip

444 \splittopskip\@tempdima

445 \@plus\multicolundershoot

446 \@minus\multicolovershoot

447 \splitmaxdepth\maxdepth

The next step is a bit tricky: when TEX assem-
bles material in a box, the first line isn’t preced-
ed by interline glue, i.e. there is no parameter like
\boxtopskip in TEX. This means that the baseline
of the first line in our box is at some unpredictable
point depending on the height of the largest charac-
ter in this line. But of course we want all columns

to align properly at the baselines of their first lines.
For this reason we have opened \mult@box with a
\penalty -10000. This will now allow us to split
off from \mult@box a tiny bit (in fact nothing since
the first possible break-point is the first item in the
box). The result is that \splittopskip is inserted
at the top of \mult@box which is exactly what we
like to achieve.

448 \setbox\@tempboxa\vsplit\mult@box to\z@

Next we try to find a suitable starting point for the
calculation of the column height. It should be less
than the height finally chosen, but large enough to
reach this final value in only a few iterations. The
formula which is now implemented will try to s-
tart with the nearest value which is a multiple of
\baselineskip. The coding is slightly tricky in TEX
and there are perhaps better ways . . .

449 \@tempdima\ht\mult@box

450 \advance\@tempdima\dp\mult@box

451 \divide\@tempdima\col@number

The code above sets \@tempdima to the length of
a column if we simply divide the whole box into e-
qual pieces. To get to the next lower multiple of
\baselineskip we convert this dimen to a num-
ber (the number of scaled points) then divide this
by \baselineskip (also in scaled points) and then
multiply this result with \baselineskip assigning
the result to \dimen@. This makes \dimen@ ≤ to
\@tempdimena.

452 \count@\@tempdima

453 \divide\count@\baselineskip

454 \dimen@\count@\baselineskip

Next step is to correct our result by taking in-
to account the difference between \topskip and
\baselineskip. We start by adding \topskip; if
this makes the result too large then we have to sub-
tract one \baselineskip.

455 \advance\dimen@\topskip

456 \ifdim \dimen@ >\@tempdima

457 \advance\dimen@-\baselineskip

458 \fi

At the user’s request we start with a higher value (or
lower, but this usually only increases the number of
tries).

459 \advance\dimen@\c@unbalance\baselineskip

We type out statistics if we were asked to do so.

460 \mult@info\@ne

461 {Balance columns\on@line:

462 \ifnum\c@unbalance=\z@\else

463 (off balance=\number\c@unbalance)\fi

464 \@gobbletwo}%

17

But we don’t allow nonsense values for a start.
465 \ifnum\dimen@<\topskip

466 \mult@info\@ne

467 {Start value

468 \the\dimen@ \space ->

469 \the\topskip \space (corrected)}%

470 \dimen@\topskip

471 \fi

Now we try to find the final column height. We s-
tart by setting \vbadness to infinity (i.e. 10000) to
suppress underfull box reports while we are trying
to find an acceptable solution. We do not need to do
it in a group since at the end of the output routine
everything will be restored. The setting of the final
columns will nearly always produce underfull boxes
with badness 10000 so there is no point in warning
the user about it.

472 \vbadness\@M

We also allow for overfull boxes while we trying to
split the columns.

473 \vfuzz \col@number\baselineskip

The variable \last@try will hold the dimension
used in the previous trial splitting. We initialize
it with a negative value.

474 \last@try-\p@

475 \loop

In order not to clutter up TEX’s valuable main mem-
ory with things that are no longer needed, we emp-
ty all globally used box registers. This is neces-
sary if we return to this point after an unsuccess-
ful trial. We use \process@cols for this purpose,
starting with \mult@grightbox. Note the extra
braces around this macro call. They are needed s-
ince Plain TEX’s \loop. . . \repeat mechanism can-
not be nested on the same level of grouping.

476 {\process@cols\mult@grightbox

477 {\global\setbox\count@

478 \box\voidb@x}}%

The contents of box \mult@box are now copied glob-
ally to box \mult@grightbox. (This will be the
right-most column, as we shall see later.)

479 \global\setbox\mult@grightbox

480 \copy\mult@box

We start with the assumption that the trial will be
successful. If we end up with a solution that is too
bad we set too@bad to true.

481 〈∗badness〉
482 \global\too@badfalse

483 〈/badness〉
Using \vsplit we extract the other columns from
box register \mult@grightbox. This leaves box reg-
ister \mult@box untouched so that we can start over
again if this trial was unsuccessful.

484 {\process@cols\mult@firstbox{%

485 \global\setbox\count@

486 \vsplit\mult@grightbox to\dimen@

After every split we check the badness of the result-
ing column, normally the amount of extra white in
the column.

487 〈∗badness〉
488 \ifnum\c@tracingmulticols>\@ne

489 \@tempcnta\count@

490 \advance\@tempcnta-\mult@grightbox

491 \divide\@tempcnta \tw@

492 \message{^^JColumn

493 \number\@tempcnta\space

494 badness: \the\badness\space}%

495 \fi

If this badness is larger than the allowed column
badness we reject this solution by setting too@bad
to true.

496 \ifnum\badness>\c@columnbadness

497 \ifnum\c@tracingmulticols>\@ne

498 \message{too bad

499 (>\the\c@columnbadness)}%

500 \fi

501 \global\too@badtrue

502 \fi

503 〈/badness〉
504 }}%

There is one subtle point here: while all other con-
structed boxes have a depth that is determined by
\splitmaxdepth the last box will get a natural
depth disregarding the original setting and the value
of \splitmaxdepth or \boxmaxdepth. This mean-
s that we may end up with a very large depth in
box \mult@grightbox which would make the result
of the testing incorrect. So we change the value by
unboxing the box into itself.

505 \boxmaxdepth\maxdepth

506 \global\setbox\mult@grightbox

507 \vbox{\unvbox\mult@grightbox}%

We also save a copy \mult@firstbox at its “natu-
ral” size for later use.

508 \setbox\mult@nat@firstbox

509 \vbox{\unvcopy\mult@firstbox}%

After \process@cols has done its job we have the
following situation:

box \mult@rightbox ←− all material
box \mult@gfirstbox ←− first column

box \mult@gfirstbox + 2 ←− second column
...

...
box \mult@grightbox ←− last column

18

We report the height of the first column, in brackets
the natural size is given.

510 \ifnum\c@tracingmulticols>\@ne

511 \message{^^JFirst column

512 = \the\dimen@\space

513 (\the\ht\mult@nat@firstbox)}\fi

If \raggedcolumns is in force older releases of this
file also shrank the first column to its natural height
at this point. This was done so that the first col-
umn doesn’t run short compared to later columns
but it is actually producing incorrect results (over-
printing of text) in boundary cases, so since version
v1.5q \raggedcolumns means allows for all columns
to run slightly short.

514 % \ifshr@nking

515 % \global\setbox\mult@firstbox

516 % \copy\mult@nat@firstbox

517 % \fi

Then we give information about the last column.14

518 \ifnum\c@tracingmulticols>\@ne

519 \message{<> last column =

520 \the\ht\mult@grightbox^^J}%

Some tracing code that we don’t compile into the
production version unless asked for. It will produce
huge listings of the boxes involved in balancing in
the transcript file.

521 〈∗debug〉
522 \ifnum\c@tracingmulticols>4

523 {\showoutput

524 \batchmode

525 \process@cols\@ne

526 {\showbox\count@}}%

527 \errorstopmode

528 \fi

529 〈/debug〉
530 \fi

We check whether our trial was successful. The test
used is very simple: we merely compare the first
and the last column. Thus the intermediate column-
s may be longer than the first if \raggedcolumns
is used. If the right-most column is longer than
the first then we start over with a larger value for
\dimen@.

531 \ifdim\ht\mult@grightbox >\dimen@

If the height of the last box is too large we mark this
trial as unsuccessful.

532 〈∗badness〉
533 \too@badtrue

534 \else

Otherwise we have a valid solution. In this case we
take a closer look at the last column to decide if this
column should be made as long as all other columns
or if it should be allowed to be shorter. For this
we first have to rebox the column into a box of the
appropriate height. If tracing is enabled we then
display the badness for this box.

535 \global\setbox\mult@grightbox

536 \vbox to\dimen@

537 {\unvbox\mult@grightbox}%

538 \ifnum\c@tracingmulticols>\@ne

539 \message{Final badness:

540 \the\badness}%

541 \fi

We then compare this badness with the allowed bad-
ness for the final column. If it does not exceed this
value we use the box, otherwise we rebox it once
more and add some glue at the bottom.

542 \ifnum\badness>\c@finalcolumnbadness

543 \global\setbox\mult@grightbox

544 \vbox to\dimen@

545 {\unvbox\mult@grightbox\vfill}%

546 \ifnum\c@tracingmulticols>\@ne

547 \message{ setting natural

548 (> \the\c@finalcolumnbadness)}%

549 \fi

550 \fi

551 \fi

552 \ifdim\ht\mult@nat@firstbox<\dimen@

553 \ifdim\ht\mult@nat@firstbox>\last@try

554 \too@badtrue

555 \dimen@\ht\mult@nat@firstbox

556 \last@try\dimen@

557 \advance\dimen@-\p@

558 \fi

559 \fi

Finally the switch too@bad is tested. If it was made
true either earlier on or due to a rightmost column
being too large we try again with a slightly larger
value for \dimen@.

560 \iftoo@bad

561 〈/badness〉
562 \advance\dimen@\p@

563 \repeat

At that point \dimen@ holds the height that was de-
termined by the balancing loop. If that height for
the columns turns out to be larger than the available
space (which is \@colroom) we sqeeze the columns
into the space assuming that they will have enough
shrinkability to allow this.15

564 \ifdim\dimen@>\@colroom

14With TEX version 3.141 it is now possible to use LATEX’s \newlinechar in the \message command, but people with older
TEX versions will now get ^^J instead of a new line on the screen.

15This might be wrong, since the shrinkability that accounts for the amount of material might be present only in some
columns. But it is better to try then to give up directly.

19

565 \dimen@\@colroom

566 \fi

Then we move the contents of the odd-numbered
box registers to the even-numbered ones, shrinking
them if requested. We have to use \vbox not \vtop
(as it was done in the first versions) since otherwise
the resulting boxes will have no height (TEXbook
page 81). This would mean that extra \topskip
is added when the boxes are returned to the page-
builder via \page@sofar.

567 \process@cols\mult@rightbox

568 {\@tempcnta\count@

569 \advance\@tempcnta\@ne

570 \setbox\count@\vbox to\dimen@

571 {%

572 \vskip \z@

573 \@plus-\multicolundershoot

574 \@minus-\multicolovershoot

575 \unvbox\@tempcnta

576 \ifshr@nking\vfill\fi}}%

577 }

4.5 The box allocations

Early releases of these macros used the first box
registers 0, 2, 4,. . . for global boxes and 1, 3, 5,. . .
for the corresponding local boxes. (You might still
find some traces of this setup in the documentation,
sigh.) This produced a problem at the moment we
had more than 5 columns because then officially allo-
cated boxes were overwritten by the algorithm. The
new release now uses private box registers

578 \newbox\mult@rightbox

579 \newbox\mult@grightbox

580 \newbox\mult@gfirstbox

581 \newbox\mult@firstbox

582 \newbox\@tempa\newbox\@tempa

583 \newbox\@tempa\newbox\@tempa

584 \newbox\@tempa\newbox\@tempa

585 \newbox\@tempa\newbox\@tempa

586 \newbox\@tempa\newbox\@tempa

587 \newbox\@tempa\newbox\@tempa

588 \newbox\@tempa\newbox\@tempa

589 \newbox\@tempa\newbox\@tempa

590 \newbox\@tempa

591 \let\@tempa\relax

5 New macros and hacks for version 1.2

If we don’t use TEX 3.0 \emergencystretch is un-
defined so in this case we simply add it as an unused
〈dimen〉 register.

592 \@ifundefined{emergencystretch}

593 {\newdimen\emergencystretch}{}

My tests showed that the following formu-
la worked pretty well. Nevertheless the
\setemergencystretch macro also gets \hsize as
second argument to enable the user to try different
formulae.

594 \def\setemergencystretch#1#2{%

595 \emergencystretch 4pt

596 \multiply\emergencystretch#1}

Even if this should be used as a hook we use a @ in
the name since it is more for experts.

597 \def\set@floatcmds{%

598 \let\@dblfloat\@dbflt

599 \def\end@dblfloat{\par

600 \vskip\z@

601 \egroup

602 \color@endbox

603 \@largefloatcheck

604 \outer@nobreak

This is cheap (defering the floats until after the cur-
rent page) but any other solution would go deep into
LATEX’s output routine and I don’t like to work on it
until I know which parts of the output routine have
to be reimplemented anyway for LATEX3.

605 \ifnum\@floatpenalty<\z@

We have to add the float to the \@deferlist be-
cause we assume that outside the multicols environ-
ment we are in one column mode. This is not entire-
ly correct, I already used the multicols environment
inside of LATEXs \twocolumn declaration but it will
do for most applications.

606 \@cons\@deferlist\@currbox

607 \fi

608 \ifnum\@floatpenalty=-\@Mii

609 \@Esphack

610 \fi}}

20

5.1 Maintaining the mark registers

This section contains the routines that set the marks
so that they will be handled correctly. They have
been introduced with version 1.4.

First thing we do is to reserve three macro names
to hold the replacement text for TEX’s primitives
\firstmark, \botmark and \topmark. We initial-
ize the first two to be empty and \kept@topmark to
contain two empty pair of braces. This is necessary
since \kept@topmark is supposed to contain the last
mark from a preceding page and in LATEX any “real”
mark must contain two parts representing left and
right mark information.

611 \def\kept@topmark{{}{}}

612 \let\kept@firstmark\@empty

613 \let\kept@botmark\@empty

Sometimes we want to return the value of a
“kept” mark into a \mark node on the main
vertical list. This is done by the function
\return@nonemptymark. As the name suggests it
only acts if the replacement text of the kept mark
is non-empty. This is done to avoid adding an emp-
ty mark when no mark was actually present. If we
would nevertheless add such a mark it would be re-
garded as a valid \firstmark later on.

614 \def\return@nonemptymark#1#2{%

615 \ifx#2\@empty

616 \else

For debugging purposes we take a look at the value
of the kept mark that we are about to return. This
code will get stripped out for production.

617 〈∗marktrace〉
618 \mult@info\tw@

619 {Returned #1 mark:\MessageBreak

620 \meaning#2}%

621 % \nobreak

622 % \fi

623 〈/marktrace〉
Since the contents of the mark may be arbitrary
LATEX code we better make sure that it doesn’t get
expanded any further. (Some expansion have been
done already during the execution of \markright or
\markboth.) We therefore use the usual mechanism
of a toks register to prohibit expansion.16

624 \toks@\expandafter{#2}%

625 \mark{\the\toks@}%

We don’t want any breakpoint between such a re-
turned mark and the following material (which is
usually just the box where the mark came from).

626 \nobreak

627 \fi}

If we have some material in a box register we may
want to get the first and the last mark out of this
box. This can be done with \get@keptmarks which
takes one argument: the box register number or its
nick name defined by \newbox.

628 \def\get@keptmarks#1{%

For debugging purposes we take a look at the cur-
rent dimensions of the box since in earlier versions
of the code I made some mistakes in this area.

629 〈∗debug〉
630 \typeout{Mark box #1 before:

631 ht \the\ht#1, dp \the\dp#1}%

632 〈/debug〉
Now we open a new group an locally copy the box to
itself. As a result any operation, i.e. \vsplit, will
only have a local effect. Without this trick the box
content would get lost up to the level where the last
assignment to the box register was done.

633 \begingroup

634 \vbadness\@M

635 \setbox#1\copy#1%

Now we split the box to the maximal possible di-
mension. This should split off the full contents of
the box so that effectively everything is split off. As
a result \splitfirstmark and \splitbotmark will
contain the first and last mark in the box respec-
tively.

636 \setbox#1\vsplit#1to\maxdimen

Therefore we can now set the kept marks which is
a global operation and afterwards close the group.
This will restore the original box contents.

637 \set@keptmarks

638 \endgroup

For debugging we take again a look at the box di-
mension which shouldn’t have changed.

639 〈∗debug〉
640 \typeout{Mark box #1 \space after:

641 ht \the\ht#1, dp \the\dp#1}%

642 〈/debug〉
643 }

The macro \set@keptmarks is responsible for set-
ting \kept@firstmark and \kept@botmark, by
checking the current values for \splitfirstmark
and \splitbotmark.

644 \def\set@keptmarks{%

16Due to the current definition of \markright etc. it wouldn’t help to define the \protect command to prohibit expansion
as any \protect has already vanished due to earlier expansions.

21

If \kept@firstmark is empty we assume that it is-
n’t set. This is strictly speaking not correct as we
loose the ability to have marks that are explicit-
ly empty, but for standard LATEX application it is
sufficient. If it is non-empty we don’t change the
value—within the output routines it will then be re-
stored to \@empty.

645 \ifx\kept@firstmark\@empty

We now put the contents of \splitfirstmark in-
to \kept@firstmark. In the case that there wasn’t
any mark at all \kept@firstmark will not change
by that operation.

646 \expandafter\gdef\expandafter

647 \kept@firstmark

648 \expandafter{\splitfirstmark}%

When debugging we show the assignment but only
when something actually happened.

649 〈∗marktrace〉
650 \ifx\kept@firstmark\@empty\else

651 \mult@info\tw@

652 {Set kept first mark:\MessageBreak

653 \meaning\kept@firstmark%

654 \@gobbletwo}%

655 \fi

656 〈/marktrace〉
657 \fi

We always try to set the bottom mark to the
\splitbotmark but of course only when there has
been a \splitbotmark at all. Again, we assume
that an empty \splitbotmark means that the split
off box part didn’t contain any marks at all.

658 \expandafter\def\expandafter\@tempa

659 \expandafter{\splitbotmark}%

660 \ifx\@tempa\@empty\else

661 \global\let\kept@botmark\@tempa

662 〈∗marktrace〉
663 \mult@info\tw@

664 {Set kept bot mark:\MessageBreak

665 \meaning\kept@botmark%

666 \@gobbletwo}%

667 〈/marktrace〉
668 \fi}%

The \prep@keptmarks function is used to initialize
the kept marks from the contents of \partial@page,
i.e. the box that holds everything from the top of the
current page prior to starting the multicols environ-
ment. However, such a box is only available if we
are not producing a boxed multicols.

669 \def\prep@keptmarks{%

670 \if@boxedmulticols \else

671 \get@keptmarks\partial@page

672 \fi}

673 \def\remove@discardable@items{%

674 〈∗debug〉
675 \edef\@tempa{s=\the\lastskip,

676 p=\the\lastpenalty,

677 k=\the\lastkern}%

678 \typeout\@tempa

679 〈/debug〉
680 \unskip\unpenalty\unkern

681 〈∗debug〉
682 \edef\@tempa{s=\the\lastskip,

683 p=\the\lastpenalty,

684 k=\the\lastkern}%

685 \typeout\@tempa

686 〈/debug〉
687 \unskip\unpenalty\unkern

688 〈∗debug〉
689 \edef\@tempa{s=\the\lastskip,

690 p=\the\lastpenalty,

691 k=\the\lastkern}%

692 \typeout\@tempa

693 〈/debug〉
694 \unskip\unpenalty\unkern

695 〈∗debug〉
696 \edef\@tempa{s=\the\lastskip,

697 p=\the\lastpenalty,

698 k=\the\lastkern}%

699 \typeout\@tempa

700 〈/debug〉
701 \unskip\unpenalty\unkern

702 }

703 〈∗badness〉
704 \newif\iftoo@bad

705 \newcount\c@columnbadness

706 \c@columnbadness=10000

707 \newcount\c@finalcolumnbadness

708 \c@finalcolumnbadness=9999

709

710 \newdimen\last@try

711

712 \newdimen\multicolovershoot

713 \multicolovershoot=2pt

714 \newdimen\multicolundershoot

715 \multicolundershoot=2pt

716 \newbox\mult@nat@firstbox

717 〈/badness〉

A helper for producing info messages
718 \def\mult@info#1#2{%

719 \ifnum\c@tracingmulticols>#1%

720 \GenericWarning

721 {(multicol)\@spaces\@spaces}%

722 {Package multicol: #2}%

723 \fi

724 }

22

6 Fixing the \columnwidth

If we store the current column width in
\columnwidth we have to redefine the internal
\@footnotetext macro to use \textwidth for the
width of the footnotes rather then using the original
definition.

Starting with version v1.5r this is now done in a
way that the original definition is still used, execpt
that locally \columnwidth is set to \textwidth.

This solves two problems: first redefinitions

of \@footnotetext done by a class will correct-
ly survive and second if multicols is used insid-
e a minipage environment the special definition of
\@footnotetext in that environment will be picked
up and not the one for the main galley (the lat-
ter would result in all footnotes getting lost in that
case).

See the definition of the \multicols command
further up for the exact code.

7 Further extensions

This section does contain code for extensions added
to this package over time. Not all of them may be
active, some might sit dormant and wait for being
activated in some later release.

7.1 Not balancing the columns

This is fairly trivial to implement. we just have to
disable the balancing output routine and replace it
by the one that ships out the other pages. This was
suggested by Matthias Clasen.

725 〈∗nobalance〉
726 \@namedef{multicols*}{%

If we are not on the main galley, i.e., inside a box
of some sort, that approach will not work since we
don’t have a vertical size for the box so we better
warn that we balance anyway.

727 \ifinner

728 \PackageWarning{multicol}%

729 {multicols* inside a box does

730 not make sense.\MessageBreak

731 Going to balance anyway}%

732 \else

733 \let\balance@columns@out

734 \multi@column@out

735 \fi

736 \begin{multicols}

737 }

When ending the environment we simply end the in-
ner multicols environment, except that we better
also stick in some stretchable vertical glue so that
the last column still containing text is not vertically
stretched out.

738 \@namedef{endmulticols*}{\vfill

739 \end{multicols}}

740 〈/nobalance〉
741 〈/package〉

23

Index

Numbers written in italic refer to the page where the corresponding entry is described, the ones underlined
to the code line of the definition, the rest to the code lines where the entry is used.

C
\c@collectmore . . 240
\col@number 240
\columnseprule 2

D
\doublecol@number 240

I
\ifshr@nking

420, 425, 436,
578, 592, 597,
611, 614, 628,
644, 669, 673,
705, 718, 725, 738

M

\multicolbaselineskip

. 2, 240

\multicolpretolerance

. . . 2, 56, 75,
78, 100, 103,
120, 182, 186,
195, 196, 240, 241

\multicolsep . . 2, 240

\multicoltolerance

. 2, 240

P

\page@free 240

\partial@page 240,
264, 273, 296,
298, 388, 392, 410

\postmulticols 2, 240

\premulticols . 2, 240

Change History

v1.0c
\enough@room: Penalty 0 added to empty the

contribution list. 8
v1.0d

General: All lines shortened to 72 or less. 1
v1.0e

General: Redefinition of description env. to
use \descriptionmargin=5pt in documenta-
tion. 1

\prepare@multicols: \textwidth changed to
\linewidth. 10

Setting of \columnwidth removed. 11
So this file will work with the ‘twocolumn’
command. 10

v1.0f
General: Changed \z@ to 0pt in redefinition of

description. 1
v1.1a

General: \multicolssep changed to
\multicolsep. 1

\flushcolumns: \flushedcolumns renamed to
\flushcolumns. 16

v1.2a
\balance@columns: Group around main loop re-

moved. 18
\prepare@multicols: \pretolerance -1 because

it nearly never succeeds. 10
\set@floatcmds added. 10
\setemergencystretch added. 10
\vbadness 10001 now. 10

\set@floatcmds: Macro added. 20
\setemergencystretch: Macro added. 20
\speci@ls: Float boxes freed. 16

v1.3a
\balance@columns: Changed \vtop to \vbox. . 20

v1.3b
\endmulticols: Do \penalty with \addpenalty 12
\enough@room: Do \penalty with \addpenalty . 8
\multicols: Minimum of two columns 7

v1.3c
\balance@columns: \global\advance left over

from older code . 19
Limit column height to \@colroom 19

\endmulticols: Check closing env. 12
\multi@column@out: \unboxing avoided. 14

Check if footnotes are actually present before
issuing a warning. 14

Unnecessary code removed 15
\prepare@multicols: \null inserted and re-

moved in output . 9
\reinsert@footnotes: \unboxing avoided. . . . 14

v1.3d
\c@unbalance: \col@number set to one 13

v1.4a
General: Added support for multicol in inner

mode . 1
\balance@columns: Changed to proper

\endlinechar in\message 19
\mult@@cols: Forgotten braces added 8
\multi@column@out: \botmark set to

\splitbotmark . 15
\prepare@multicols: Checking for text losses. . 9

Conditional code for boxed mode added. 9
kept marks initiated 10

v1.4d
\balance@columns: New algorithm for start

height . 17
v1.4e

\endmulticols: But ignore \@nobreak in
\addpenalty . 12

\enough@room: But ignore \@nobreak in
\addpenalty . 8

\mult@@cols: Typeset optional arg inside group 8
\prepare@multicols: Using 10

v1.4f
\balance@columns: \on@line added to tracing

info . 17
\mult@@cols: \on@line added to tracing info . . 8

24

\par added to allow for correct inner test . . . 8

v1.4g

\mult@@cols: \global was probably wrong but
at least unnecessary 8

\multi@column@out: Only change \kept@topmark
if \kept@botmark non-empty 15

v1.4h

General: Added mark tracing with
tracingmulticols≥ 2 1

\kept@topmark: Init to double brace pair 21

v1.4i

\multi@column@out: Set \kept@topmark to
\botmark . 15

\prepare@multicols: \kept@topmark initial-
ized. 10

v1.4j

\setemergencystretch: Setting of \emergencystretch
on top removed. 20

v1.4k

\multicols: Maximum of 5 columns (temp) . . . 7

v1.4l

\mult@@cols: \@totalleftmargin now in
\prepare@multicols 8

\page@sofar: use \multicol@leftmargin in-
stead of \@totalleftmargin 13

\prepare@multicols: saved \@totalleftmargin

. 9

v1.4m

\endmulticols: Check \partial@page being
emptied . 12

v1.4n

\return@nonemptymark: Make marks robust . . 21

v1.4o

\prepare@multicols: \topskip locally zeroed. . 9

v1.4p

\multi@column@out: Use different \vsize set-
ting . 15

\prepare@multicols: Code moved to
\set@mult@vsize 10

Use different \vsize setting 10

\set@mult@vsize: Macro added. 11

v1.5?

\balance@columns: Allow columns to come out
a bit long or short 17

Do splitting to zero here 17

Initialize \last@try 18

Show natural size . 19

\endmulticols: Splitting off zero box moved to
\balance@columns 11

\leave@mult@footins: Macro added 15

\mult@@cols: Penalty moved to later point 8

\multi@column@out: Use \leave@mult@footins 14

\prepare@multicols: Use \init@mult@footins 10

v1.5a

\balance@columns: New box mechanism 18

\multi@column@out: New box mechanism 14

\multicols: Allow 10 columns again 7

\page@sofar: New box mechanism 13

\prepare@multicols: Add offset to
\doublecolnumber 9

v1.5b

\balance@columns: New badness mechanism . . 18

v1.5c

\balance@columns@out: added penalty at output
routine exit . 17

\endmulticols: Again use \penalty 12

\multi@column@out: Support \clearpage 14

\speci@ls: Support \clearpage 16

v1.5d

\multi@column@out: reinit \topmark 15

v1.5e

\enough@room: Assign arg to skip register to be
able to output value 9

v1.5g

\set@floatcmds: Updated since floats have
changed . 20

v1.5h

\balance@columns: Get kept marks first 17

\page@sofar: Check for void boxes 13

v1.5i

\page@sofar: But don’t remove original code. . 13

v1.5j

\set@floatcmds: Updated since floats have
changed again . 20

v1.5l

General: Try hard to explain unresolved refer-
ence that happens if \OnlyDescription is
used . 5

\set@floatcmds: Added \largefloatcheck . . 20

v1.5n

General: Applied improvement of documenta-
tion, kindly done by Robin Fairbairns. 1

v1.5o

\@footnotetext: Redefinition added pr/2664. . 23

\prepare@multicols: Setting of \columnwidth

added again pr/2664. 11

v1.5p

\multicols: Redefinition of \@footnotetext on-
ly within env pr/2689. 7

v1.5q

\balance@columns: Do not reset \mult@firstbox
(pr2739) . 19

Removed setting \dimen@ (pr2739) 19

\endmulticols*: Macro added 23

\mult@@cols: And removed the group again six
years later . 8

\multicols*: Macro added 23

v1.5r

\@footnotetext: Use \@footnotetext but with
local change to \columnwidth. 23

\mult@footnotetext: Macro removed again. . . 23

\multicols: Use \@footnotetext but with local
change to \columnwidth. 7

v1.5s

\speci@ls: check for \stop penalty pr/2873 . . 16

25

v1.5t
\return@nonemptymark: re-add \mark command

which was commented out by mistake at
some point in 1998 (pr/2978) 21

26

