
units.sty – nicefrac.sty

Axel Reichert

1998-08-04

Abstract

units.sty is a package for setting units in a typographi-
cally correct way. It is based upon nicefrac.sty, a package
for nice fractions. See the files README and COPYING for addi-
tional information.

1 Loading

Only nice fractions: \usepackage{nicefrac}
Only units or both: \usepackage{units}

2 Options

Tight spacing for units (default): \usepackage[tight]{units}
Loose spacing for units: \usepackage[loose]{units}

“Nice” fractions (default): \usepackage[nice]{nicefrac}

“Ugly” fractions: \usepackage[ugly]{nicefrac}

The options nice and ugly can also be used for the units pack-
age, they will simply be passed to the nicefrac package, so you can
combine the options, e. g.: \usepackage[loose,ugly]{units}

Tight spacing means \, for the space between the value and the
dimension, loose spacing uses ~, like 1 m and 1 m. Nice fractions look
like m/s, ugly fractions look like m/s in text mode and m

s
in math

mode.

1

3 Commands

Units: \unit[〈val〉]{〈dim〉}
Fractions of units: \unitfrac[〈val〉]{〈num〉}{〈denom〉}
Nice fractions: \nicefrac[〈fontcmd〉]{〈num〉}{〈denom〉}

In these list, 〈val〉 and 〈dim〉 denote the value and the dimension of
the unit, respectively. 〈num〉 and 〈denom〉 are the numerator and de-
nominator of the fraction, and 〈fontcmd〉 can be an author command
for fonts or a math alphabet, see fntguide.dvi.

Typically, 〈val〉 is only a number and 〈num〉 and 〈denom〉 are
relatively simple LATEX expressions. If you really feel the need for
putting whole paragraphs or complex formula into such a fraction,
you have misunderstood the purpose of this package. (-;

A common mistake is to forget the enclosing braces when using
the optional argument of the commands inside another optional argu-
ment. This is no package bug, but a LATEX feature. Correct example:
\section[{\unit[1]{m}}]{...}.1

It is very important to be aware of the fact that all these commands
distinguish between text mode and math mode. Within text mode,
the font of the surrounding text will be used by default, for math
mode \mathrm is the default.

This is quite sensible, because you would not want your collection
of delicious recipes (typeset in a mega-cool ultra condensed bold italic
calligraphical font) contain those spindle Computer Modern Roman
just for half a litre of milk. (-;

Otherwise, when working on scientific papers, strict and consistent
notation is really a virtue, and, like it or not, units are typeset with
upright fonts. So take great care when deciding about math mode or
not.

4 Examples

\sffamily\bfseries\unit{m} m
\sffamily\bfseries\unit{m} m
\sffamily\itshape\unit[1]{m} 1m
\sffamily\itshape$\unit[1]{m}$ 1 m
\sffamily\bfseries\unitfrac{m}{s} m/s

\sffamily\bfseries$\unitfrac{m}{s}$ m/s

1Credits go to Frank Knappe for suggesting this documentation update.

2

\sffamily\itshape\unitfrac[1]{m}{s} 1 m/s

\sffamily\itshape$\unitfrac[1]{m}{s}$ 1 m/s

As you can see, font changes are ignored in math mode . . .

\scriptsize\sffamily\itshape\unitfrac[1]{m}{s} 1 m/s

\scriptsize\sffamily\itshape$\unitfrac[1]{m}{s}$ 1 m/s

. . . except for the fontsize.

\bfseries\itshape\nicefrac{1}{2} 1/2

\bfseries\itshape$\nicefrac{1}{2}$ 1/2

\nicefrac[\texttt]{1}{2} 1/2
\nicefrac[\texttt]{\textit{1}}{2} 1/2
$\nicefrac[\mathcal]{A}{B}$ A/B

The \nicefrac command can deal even with quite strange font chang-
ing commands.

5 Typography

Why should units be typeset in upright fonts, not in italics? Because
they have to be distinguished from normal variables: “m” is meter,
“m” is a variable, for example a mass.

Why should the space between the value and the dimension be
non-breakable? Because the reader is disturbed by linebreaks like 1
m.

Why should the space between the value and the dimension be a
half word space only? Because things belonging together are typeset
tighter. Compare 1 m with 1 m and the normal word spacing, which
can vary from line to line.

Why should nice fractions be typeset so that the numerator does
not extend above the height of the letter “M” and the denominator
does not extend below the baseline? Because otherwise a stretching
of the baselineskip could be necessary due to descenders.

By the way, a very common mistake is to place units into brackets,
like [N]. The correct notation is [F] = N. The brackets indeed are a
function with a variable as an argument. The value returned is the
unit. If you need to specify units in table headings, then use a single
row for the units, where you put them into parentheses instead.

3

6 Bugs

None, are you kidding?

7 Features

• Consistent and logical markup of units is enhanced instead of
fiddling around with spacing and fonts.

• The same command works in text mode and math mode, font
and size are adjusted automatically for nice integration within
text mode while forcing strict notation in math mode.

• Basic requirements of typography are fulfilled: Forbidden line-
breaks, correct spacing and the numerator automatically align-
ing with the height of an “M”.

• Easy configuration by use of package options.

8 Bugs again (-;

Ok, ok, you got me.

• Fonts without “M” do not work correctly. Do you know one?

• Fractions in \scriptscriptstyle look ugly because they exceed
the height of an “M”. As far as I know this is a LATEX problem,
because there are no smaller math fonts available.

• The kerning between numerator and slash or denominator and
slash is bad. In fact, there is none.

• The combination of the ugly option with text mode can lead to
ambiguous fractions. Be happy that a warning is issued. Why
do you use this option? Your boss? Ah, I see.

9 Implementation

9.1 Documentation Driver

1 〈∗driver〉
2 \documentclass[12pt,a4paper]{ltxdoc}

4

3 \usepackage{units}
4 \begin{document}
5 \DocInput{units.dtx}
6 \end{document}
7 〈/driver〉

9.2 units.sty

8 〈∗units〉
9.2.1 Identification

As this package uses the \RequirePackage command, it does not work
with older LATEX2ε versions.

9 \NeedsTeXFormat{LaTeX2e}[1995/12/01]

The package identifies itself with its release date, a version number,
and a short description.

10 \ProvidesPackage{units}[1998/08/04 v0.9b Typesetting units]

9.2.2 Initialization

The ifthen package is loaded because a new boolean variable has to
be declared.

11 \RequirePackage{ifthen}
12 \newboolean{B@UnitsLoose}

9.2.3 Option Declaration

This boolean variable is set according to the package options.

13 \DeclareOption{tight}{\setboolean{B@UnitsLoose}{false}}
14 \DeclareOption{loose}{\setboolean{B@UnitsLoose}{true}}

Other options will be passed to the nicefrac package.

15 \DeclareOption*{%
16 \PassOptionsToPackage{\CurrentOption}{nicefrac}%
17 }

9.2.4 Option Processing

If no options are specified, tight spacing between the value and the
dimension of a unit is used by default. Otherwise the options are
processed in the order given by the calling command.

18 \ExecuteOptions{tight}
19 \ProcessOptions*

5

9.2.5 Loading Files

Because the macro used for fractions of units is also helpful for other
nice fractions, it is build into a stand-alone package called nicefrac,
which therefore is required by units.sty.

20 \RequirePackage{nicefrac}[1998/08/04]

9.2.6 Defining Commands

In order to make debugging easier for the package user (missing
braces or brackets), all commands are declared with the *-form of
\DeclareRobustCommand. The *-form does not allow “long” argu-
ments for the commands, so e. g. \par commands are forbidden inside
the arguments. This should be no serious restriction. (-;

\unit First, it is checked if the optional argument is empty.2

21 \DeclareRobustCommand*{\unit}[2][]{%
22 \begingroup
23 \def\0{#1}%
24 \expandafter
25 \endgroup

If it is, nothing happens.

26 \ifx\0\@empty

Otherwise it is typeset and followed by a space depending on the
boolean declared above.

27 \else
28 #1%
29 \ifthenelse{\boolean{B@UnitsLoose}}{~}{\,}%
30 \fi

The use of upright fonts for the dimension is forced in math mode.
Units in text mode are typeset with the currently active font.

31 \ifthenelse{\boolean{mmode}}{\mathrm{#2}}{#2}%
32 }

\unitfrac Fractions of units are typeset by means of the \nicefrac command.
Upright fonts are forced in math mode by use of the optional argu-
ment. The rest of code is identical to the former macro.

33 \DeclareRobustCommand*{\unitfrac}[3][]{%
34 \begingroup
35 \def\0{#1}%
36 \expandafter

2Credits go to Bernd Raichle for supplying this method.

6

37 \endgroup
38 \ifx\0\@empty
39 \else
40 #1%
41 \ifthenelse{\boolean{B@UnitsLoose}}{~}{\,}%
42 \fi
43 \ifthenelse{\boolean{mmode}}{%
44 \nicefrac[\mathrm]{#2}{#3}%
45 }%
46 {%
47 \nicefrac{#2}{#3}%
48 }%
49 }
50 〈/units〉

9.3 nicefrac.sty

51 〈∗nicefrac〉
9.3.1 Identification

52 \NeedsTeXFormat{LaTeX2e}[1995/12/01]
53 \ProvidesPackage{nicefrac}[1998/08/04 v0.9b Nice fractions]

9.3.2 Initialization

First, some new lengths are allocated.

54 \newlength{\L@UnitsRaiseDisplaystyle}
55 \newlength{\L@UnitsRaiseTextstyle}
56 \newlength{\L@UnitsRaiseScriptstyle}

9.3.3 Loading Files

The ifthen package is loaded for easier handling of decisions.

57 \RequirePackage{ifthen}

9.3.4 Defining Commands

\@UnitsNiceFrac Now the code used for nice fractions in math mode:

58 \DeclareRobustCommand*{\@UnitsNiceFrac}[3][]{%
59 \ifthenelse{\boolean{mmode}}{%

For each of the four different math styles the “M” height is measured,
taking specified font changing commands into account.

60 \settoheight{\L@UnitsRaiseDisplaystyle}{%

7

61 \ensuremath{\displaystyle#1{M}}%
62 }%
63 \settoheight{\L@UnitsRaiseTextstyle}{%
64 \ensuremath{\textstyle#1{M}}%
65 }%
66 \settoheight{\L@UnitsRaiseScriptstyle}{%
67 \ensuremath{\scriptstyle#1{M}}%
68 }%
69 \settoheight{\@tempdima}{%
70 \ensuremath{\scriptscriptstyle#1{M}}%
71 }%

The raise height is calculated by taking the difference between the
height of a normal “M” and the height of an “M” set in the correct
numerator size.

72 \addtolength{\L@UnitsRaiseDisplaystyle}{%
73 -\L@UnitsRaiseScriptstyle%
74 }%
75 \addtolength{\L@UnitsRaiseTextstyle}{%
76 -\L@UnitsRaiseScriptstyle%
77 }%
78 \addtolength{\L@UnitsRaiseScriptstyle}{-\@tempdima}%

The height of the numerator above the baseline is dependent on the
actual fontsize within the math environment.3 The numerator is put
into an appropriately raised box, within math mode (the additional
\ensuremath is necessary, because the \raisebox command leaves
math mode).

The fontsize for the numerator part is \scriptstyle within
\displaystyle and \textstyle, but \scriptscriptstyle within
\scriptstyle and \scriptscriptstyle context.

Then the numerator is typeset either with the upright math
font or using the font command specified in the optional argument
(if it is given). Only the math alphabet commands may be used:
\mathnormal, \mathrm, \mathbf, \mathsf, \mathit, \mathtt, and
\mathcal.

79 \mathchoice
80 {%
81 \raisebox{\L@UnitsRaiseDisplaystyle}{%
82 \ensuremath{\scriptstyle#1{#2}}%
83 }%
84 }%

3Credits go to Wolfgang May for telling me of the \mathchoice command.

8

85 {%
86 \raisebox{\L@UnitsRaiseTextstyle}{%
87 \ensuremath{\scriptstyle#1{#2}}%
88 }%
89 }%
90 {%
91 \raisebox{\L@UnitsRaiseScriptstyle}{%
92 \ensuremath{\scriptscriptstyle#1{#2}}%
93 }%
94 }%

Within \scriptscriptstyle context, LATEX does not use even
smaller fonts for numerator or denominator. Following the above cal-
culation scheme would lead to a raise height of 0 pt. Because this
could make fractions at least ambiguous (if not wrong, like J/kg ·K
for specific thermal capacity), the numerator in \scriptscriptstyle

context is raised by the same amount as in \scriptstyle context and
so exceeds the height of an adjacent “M”. This is ugly, but cannot be
avoided.

95 {%
96 \raisebox{\L@UnitsRaiseScriptstyle}{%
97 \ensuremath{\scriptscriptstyle#1{#2}}%
98 }%
99 }%

The slash is typeset with reduced spacing to the numerator and to the
denominator.

100 \mkern-2mu/\mkern-1mu%

The denominator needs a seperate group to delimit the range of the
font commands.4 The choice for the fontsize and the font changing
are made just like for the numerator.

101 \bgroup
102 \mathchoice
103 {\scriptstyle}%
104 {\scriptstyle}%
105 {\scriptscriptstyle}%
106 {\scriptscriptstyle}%
107 #1{#3}%
108 \egroup
109 }%

4Credits go to Michael Switkes for the bug report and to Heiko Oberdiek
for telling me why the fix works.

9

Now the code for nice fractions in text mode:

110 {%

First, the height of a normal “M” is measured.

111 \settoheight{\L@UnitsRaiseTextstyle}{#1{M}}%

LATEX offers no commands for relative fontsizes. To make the macro
work for example within footnotes or chapter headings, it is necessary
to avoid absolute sizing commands like \normalsize or \scriptsize.
To obtain a fontsize that suits for the numerator and denominator,
some code was taken from the LATEX kernel (latex.ltx, definition of
\textsuperscript).

In all these measurements the font changing effect of the optional
argument is taken into account. Only the following font commands
may be used: \textnormal, \textrm, \textsf, \texttt, \textbf,
\textmd, \textup, \textit, \textsc, and \textsl.

112 \settoheight{\@tempdima}{%
113 \ensuremath{%
114 \mbox{\fontsize\sf@size\z@\selectfont#1{M}}%
115 }%
116 }%

Both lengths are subtracted. The result is used for the raise of the
numerator.

117 \addtolength{\L@UnitsRaiseTextstyle}{-\@tempdima}%

Finally, the numerator is typeset in “relative scriptsize” either with the
normal text font or using the font command specified in the optional
argument (if it is given).

118 \raisebox{\L@UnitsRaiseTextstyle}{%
119 \ensuremath{%
120 \mbox{\fontsize\sf@size\z@\selectfont#1{#2}}%
121 }%
122 }%

The code for the slash and the denominator should now be straight
forward.

123 \ensuremath{\mkern-2mu}/\ensuremath{\mkern-1mu}%
124 \ensuremath{%
125 \mbox{\fontsize\sf@size\z@\selectfont#1{#3}}%
126 }%
127 }%
128 }

10

\@UnitsUglyFrac Ugly fractions in math mode . . .

129 \DeclareRobustCommand*{\@UnitsUglyFrac}[3][]{%
130 \ifthenelse{\boolean{mmode}}{%

. . . are typeset just like normal fractions.

131 \frac{#1{#2}}{#1{#3}}%
132 }%

In text mode . . .

133 {%

. . . they are typeset like J/kg·K.

134 #1{#2}/#1{#3}%

Because the fraction can get ambiguous or even wrong, a warning
message is issued.

135 \PackageWarning{nicefrac}{%
136 You used \protect\nicefrac\space or
137 \protect\unitfrac\space in text mode\MessageBreak
138 and specified the ‘‘ugly’’ option.\MessageBreak
139 The fraction may be ambiguous or wrong.\MessageBreak
140 Please make sure the denominator is
141 correct.\MessageBreak
142 If it is, you can safely ignore\MessageBreak
143 this warning
144 }%
145 }%
146 }

9.3.5 Option Declaration

Dependent on the package options, the \nicefrac command typesets
either nice or ugly fractions by means of the corresponding macros.

147 \DeclareOption{nice}{%
148 \DeclareRobustCommand*{\nicefrac}{\@UnitsNiceFrac}%
149 }
150 \DeclareOption{ugly}{%
151 \DeclareRobustCommand*{\nicefrac}{\@UnitsUglyFrac}%
152 }

9.3.6 Option Processing

If no options are specified, nice fractions are used by default. Oth-
erwise the options are processed in the order given by the calling
command.

11

153 \ExecuteOptions{nice}
154 \ProcessOptions*
155 〈/nicefrac〉

References

[1] Goossens, M.; Mittelbach, F.; Samarin, A.: Der LATEX-
Begleiter. Addison-Wesley, Bonn, 1st edn., 1994.

[2] Kopka, H.: Einführung, vol. 1 of LATEX. Addison-Wesley, Bonn,
1st edn., 1994.

[3] Kopka, H.: Ergänzungen – mit einer Einführung in METAFONT,
vol. 2 of LATEX. Addison-Wesley, Bonn, 1st edn., 1995.

[4] Kopka, H.: Erweiterungen, vol. 3 of LATEX. Addison-Wesley-
Longman, Bonn, 1997.

[5] Willberg, H. P.; Forssman, F.: Lesetypographie. Schmidt,
Mainz, 1997.

12

