An Introduction to Description Logic III

Knowledge Bases and Reasoning Tasks

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, November 6th 2014

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UP)

Description Logic II

Knowledge Bases

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

General Remarks

- A Knowledge Base (KB) is the place where the information relative to an **Ontology** is stored.
- So, it is the place where the **background knowledge**, necessary to perform some kind of semantic reasoning, is stored.
- A KB provides basically three kinds of information:
 - terminological knowledge, true for every element of the domain, in form of definitions of concepts in term of other concepts, or subsumptions between concepts;
 - assertional knowledge, relative to particular individuals or pair of individuals, in form of assertions relating, e.g. that a particular individual is an instance of a concept;
 - relational knowledge, true for every pair of elements of the domain, in form of **definitions** of roles in term of other roles, or subsumptions between roles;

Marco Cerami (UP)

Description Logic II

6.11.2014 3 / 27

Terminological Knowledge

- The terminological knowledge is **true for every** individual in a given interpretation domain.
- A **Terminology**, Terminological Box or **TBox** is the place where this terminological knowledge about concepts is stored.
- Terminological information appears in form of **inclusions** or **subsumptions** between (complex) concepts.
- Inclusions **between concepts** are allowed in the more basic languages and are object of research since the 90's.

くほと くほと くほと

Concept Inclusions

• A concept inclusion axiom is an expression of the form:

$C \sqsubseteq D$

where C, D are concepts.

• Given an interpretation \mathcal{I} , the inclusion axiom $C \sqsubseteq D$ is **true** in \mathcal{I} iff:

$$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}.$$

 The presence of C ⊑ D in a knowledge base KB constraints all the interpretations I that are models of KB to satisfy the inclusion C^I ⊆ D^I.

< 回 ト < 三 ト < 三 ト

Examples

Mother \sqsubseteq Female \sqcap Person "every mother is a female person"

 $\texttt{Parent} \equiv \texttt{Father} \sqcup \texttt{Mother}$

"a parent is either a father or a mother (and nothing else)"

 $\texttt{Human} \equiv \texttt{Mammal} \sqcap \texttt{Biped}$

"a human is a biped mammal (and nothing else is)"

Region $\sqsubseteq \exists hasPart^-.Country$

"a region is a part of a country"

< <>></>

Assertional Knowledge

- The assertional knowledge is **true for a particular** individual or pair of individuals in a given interpretation domain.
- An **Assertional Box** or **ABox** is the place where this assertional knowledge about concepts, roles and individuals is stored.
- Assertional information appears in form of concept or role **assertions**.
- A **concept assertion** is a statement asserting that an individual *a* is an instance of a concept *C*.
- A **role assertion** is a statement asserting that a pair of individuals *a*, *b* is an instance of a role *R*.

A B F A B F

Concept Assertions

• A concept assertion axiom is an expression of the form:

where C is a concept and a is an individual.

• Given an interpretation \mathcal{I} , the assertion axiom C(a) is **true** in \mathcal{I} iff:

C(a)

$$a^{\mathcal{I}} \in \mathcal{C}^{\mathcal{I}}.$$

 The presence of C(a) in a knowledge base KB constraints all the interpretations I that are models of KB to satisfy the relation a^I ∈ C^I.

A B A A B A

Examples

Mammal □ Biped(Marco) "Marco is a biped mammal"

Region(Moravia) "Moravia is a region"

Town □ ∃hasCapital⁻.Country(Prague) "Prague is a town which is capital city of a country"

Country □∃hasBorderWith{Germany,Austria}(CzechRepublic) "Czech Republic is a country which has borders with Germany and Austria"

Role Assertions

• A role assertion axiom is an expression of the form:

R(a, b)

where R is a role and a, b are individuals.

• Given an interpretation \mathcal{I} , the role assertion axiom R(a, b) is **true** in \mathcal{I} iff:

$$\langle a^{\mathcal{I}}, b^{\mathcal{I}} \rangle \in R^{\mathcal{I}}.$$

 The presence of R(a, b) in a knowledge base KB constraints all the interpretations I that are models of KB to satisfy the relation ⟨a^I, b^I⟩ ∈ R^I.

Examples

hasRegion(CzechRepublic,Moravia)
"Czech Republic has Moravia as a region"

hasCapital(CzechRepublic,Prague)
"Czech Republic has capital city Prague"

• • = • • = •

Image: Image:

Relational Knowledge

Relational Knowledge

- The relational knowledge is true for every pair of individuals in a given interpretation domain.
- A **Role Box** or **RBox** is the place where this terminological knowledge about roles is stored.
- Relational information appears in form of inclusions or subsumptions between (complex) roles.
- Inclusions between roles are allowed in the more complex languages (those with \mathcal{H} or \mathcal{R}) and are object of research in the last 10 years.

A B M A B M

Role Inclusions

• A role inclusion axiom is an expression of the form:

$R \sqsubseteq P$

where R, P are roles.

Given an interpretation *I*, the role inclusion axiom *R* ⊑ *P* is true in *I* iff:

$$R^{\mathcal{I}} \subseteq P^{\mathcal{I}}.$$

 The presence of R ⊆ P in a knowledge base KB constraints all the interpretations I that are models of KB to satisfy the inclusion R^I ⊆ P^I.

A B F A B F

Examples

$hasMother \sqsubseteq hasParent$

"if a has b as mother, then a has b as parent"

$\texttt{isPartOf} \sqsubseteq \texttt{hasPart}^-$

"if a is part of b, then b has a as a part"

$\texttt{hasAncestor} \circ \texttt{hasAncestor} \sqsubseteq \texttt{hasAncestor}$

"the ancestor of an ancestor is an ancestor"

 $\texttt{hasPart} \sqcap \texttt{hasBorderWith} \sqsubseteq \bot$

"it is false that both a has b as a part and a has borders with b"

Marco Cerami (UP)

Acyclic TBoxes

- The presence of a TBox usually produces a great growth in the complexity of the calculus.
- For this reason, so-called **Acyclic TBoxes** are often considered.
- An Acyclic TBox is a **definitional** TBox **without cycles**, that is:
 - a TBox is said to be **definitional** when there appear at most one inclusion axiom of the form:

 $A \equiv C$

for each atomic concept A;

► a TBox is said to be cyclic or a set of General Concept Inclusions (GCls), when there is a sequence of inclusion axioms C₁ ⊆ D₁,..., C_n ⊆ D_n and a set of concepts A₁,..., A_{n-1}, such that, for every 1 < m < n, A_m appears both in D_{m-1} and in C_m and A₁ appears both in D_n and in C₁.

Marco Cerami (UP)

Summarv

Knowledge Bases

- A terminological box (TBox) is a finite set of concept inclusion axioms
- An assertional box (ABox) is a finite set of assertion axioms.
- A relational box (RBox) is a finite set of role inclusion axioms.
- An **Knowledge Base** (KB) is a triple

$$\mathcal{K} = (\mathcal{T}, \mathcal{A}, \mathcal{R})$$

where \mathcal{T} is a TBox, \mathcal{A} is an ABox and \mathcal{R} is an RBox (each one possibly empty).

A B F A B F

Reasoning

Marco Cerami (UP)

Description Logic II

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Reasoning tasks

Reasoning tasks

- A **Reasoning task** provided by a DL system is a property of concepts or knowledge bases that the system is supposed to compute or verify.
- A reasoning task can be considered either with respect to:
 - an empty knowledge base,
 - a non-empty knowledge base but with empty TBox and RBox,
 - a non-empty knowledge base with acyclic TBox and empty RBox,
 - a non-empty knowledge base with empty RBox, ►
 - a non-empty knowledge base with acyclic RBox.

- 4 同 6 4 日 6 4 日 6

Knowledge base consistency

- A knowledge base \mathcal{K} is said to be **consistent** when there is an interpretation \mathcal{I} that satisfies every axiom in \mathcal{K} .
- In symbols $\mathcal{I} \models \mathcal{K}$.
- The **empty Knowledge Base** *KB* = ∅ is assumed to be satisfied by every interpretation *I*.
- The notion of KB consistency, as we will see, is a **central notion** among the reasoning tasks for DL.

(B)

Example

The KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where:

$$\mathcal{T} = \{ \ \ \texttt{Female} \sqcap \texttt{Male} \sqsubseteq \perp \ \} \ \mathcal{A} = \{ \ \ \forall \texttt{hasChild.Male}(\texttt{Marco}) \ \}$$

is satisfiable in the interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where:

- $\Delta^{\mathcal{I}} = \{v\}$,
- $Marco^{\mathcal{I}} = v$,
- $\texttt{Male}^\mathcal{I} = \{v\}$,
- Female $^{\mathcal{I}} = \emptyset$,
- hasChild^{\mathcal{I}} = { $\langle v, v \rangle$ }.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Concept satisfiability

- A concept C is said to be satisfiable with respect to the knowledge base K when there exists an interpretation I satisfying K, such that C^I ≠ Ø.
- This notion has been often considered with respect to the **empty KB**.
- Since every interpretation *I* is a model of the empty KB, then a concept is satisfiable when there exists an interpretation *I* such that C^I ≠ Ø.

(B)

Example The concept:

$$C = \texttt{Female} \sqcap \forall \texttt{hasChild.Male}$$

is satisfiable with respect to the KB $\mathcal{K}=(\mathcal{T},\mathcal{A})$, where:

Since the interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where:

•
$$\Delta^{\mathcal{I}} = \{v, w\},\$$

- Marco $^{\mathcal{I}} = v$,
- $Male^{\mathcal{I}} = \{w\},\$
- Female $^{\mathcal{I}} = \{v\}$,
- hasChild^{\mathcal{I}} = { $\langle v, w \rangle$ }.
- is a model of \mathcal{K} that satisfies C.

Concept Subsumption

- A concept D is said to subsume a concept C with respect to the knowledge base K when, in every interpretation I that satisfies K, it holds that C^I ⊆ D^I.
- This notion has been often considered with respect to the **empty KB**.
- Since every interpretation *I* is a model of the empty KB, then a concept *D* subsumes a concept *C* when in every interpretation *I* it holds that C^I ⊆ D^I.

(B)

Example

The concept Male is subsumed by the concept \neg Female with respect to the KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where:

 $\mathcal{T} = \{ Female \sqcap Male \sqsubseteq \bot \} \\ \mathcal{A} = \{ \forall hasChild.Male(Marco) \} \}$

Suppose, on the contrary, that there is an interpretation \mathcal{I} that satisfies every axiom in \mathcal{K} but such that concept Male is not subsumed by the concept \neg Female. Hence $\operatorname{Male}^{\mathcal{I}} \nsubseteq \operatorname{Female}^{\mathcal{I}} \setminus \Delta^{\mathcal{I}}$. Then $\operatorname{Male}^{\mathcal{I}} \cap \operatorname{Female}^{\mathcal{I}} \neq \emptyset$. Hence \mathcal{I} does not satisfies axiom Female $\sqcap \operatorname{Male} \sqsubseteq \bot$ and, therefore, \mathcal{I} is not a model of \mathcal{K} , a contradiction.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Entailment

- An axiom φ is said to be entailed by a knowledge base K when, in every model I of K, it holds that φ^I = 1.
- In symbols $\mathcal{K} \models \varphi$.
- If φ is a concept inclusion axiom, this notion coincides with **concept subsumption**.
- Since every interpretation *I* is a model of the empty KB, then an axiom φ is entailed by the empty KB when it is true in every interpretation *I*.

< 回 ト < 三 ト < 三 ト

Example The axioms:

 $\neg \exists hasChild.Female(Marco)$ and $Female \sqsubseteq \neg Male$

are entailed by the KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where:

$$\mathcal{T} = \{ egin{array}{c} extsf{Female} \sqcap extsf{Male} \sqsubseteq ot \ \} \ \mathcal{A} = \{ egin{array}{c} extsf{HasChild.Male(Marco)} \end{array} \}$$

We prove the first one. Suppose, on the contrary, that there is an interpretation \mathcal{I} that satisfies every axiom in \mathcal{K} but such that Marco is not an instance of the concept $\neg \exists hasChild.Female$. Hence $Marco^{\mathcal{I}} \notin (\exists hasChild.Female)^{\mathcal{I}} \setminus \Delta^{\mathcal{I}}$. Then $Marco^{\mathcal{I}} \in (\exists hasChild.Female)^{\mathcal{I}}$. By axiom Female $\sqcap Male \sqsubseteq \bot$ we have that $Marco^{\mathcal{I}} \in (\exists hasChild.\neg Male)^{\mathcal{I}} = (\neg \forall hasChild.Male)^{\mathcal{I}}$, contradicting axiom $\forall hasChild.Male(Marco)$.

Marco Cerami (UP)

6.11.2014 26 / 27

Reduction to knowledge base consistency

Each one of the above reasoning problems can be **reduced to knowledge base (in)consistency** in the following way:

- Concept C is satisfiable with respect to the knowledge base K if and only if the new knowledge base K ∪ {C(a)} is consistent, where a is an individual name not occurring in K.
- Concept D subsumes concept C with respect to the knowledge base K if and only if the new knowledge base K ∪ {(C □ ¬D)(a)} is inconsistent, where a is a new individual name.
- An axiom φ (either inclusion or assertion) is entailed by a knowledge base K if and only if the new knowledge base K ∪ {¬φ} is inconsistent. Here ¬φ = ¬C(a), if φ = C(a) and ¬φ = C □ ¬D(a), for a new individual name a, if φ = C ⊑ D.

(日) (周) (三) (三)