An Introduction to Description Logic V

Relations to Modal Logic

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, November 27th 2014

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UP)

Description Logic \

Preliminaries:

Modal Logic

Marco Cerami (UP)

イロト イヨト イヨト イヨト

Language and formulas

Language

- A countable set of propositional variables $Prop = \{p, q, \ldots\}$,
- \bullet the classical propositional constants \top and $\bot,$
- \bullet the classical propositional connectives $\wedge,\,\vee,\,\rightarrow$ and $\neg,$
- two unary modal connectives \Box and \diamondsuit .

Formulas

The set Φ of modal formulas is inductively built from *Prop* in the following way:

- Propositional variables and constants are formulas,
- if φ and ψ are formulas, then $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \to \psi$ and $\neg \varphi$ are formulas,
- if φ is a formula, then $\Box \varphi$ and $\Diamond \varphi$ are formulas.

- 本間 ト 本 ヨ ト - オ ヨ ト - ヨ

Semantics

Kripke models

A Kripke frame is a structure $\mathfrak{F}=\langle W,R\rangle$, where:

- W is a non-empty set of elements, often called **possible worlds**,
- *R* ⊆ *W* × *W* is a binary relation on *W*, called the accessibility relation of *W*.

A **Kripke model** is a structure $\mathfrak{M} = \langle W, R, V \rangle$, where:

- $\langle W, R \rangle$ is a Kripke frame,
- V: Prop $\longrightarrow \mathcal{P}(W)$ is a function that assigns a set of possible worlds to every propositional variable.

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

Satisfaction of a formula

Let $\mathfrak{M} = \langle W, R, V \rangle$	be a n	nodel and $w \in W$, then:
$\mathfrak{M}, w \vDash ho$	iff	$w \in V(p)$
$\mathfrak{M}, w \vDash op$		always
$\mathfrak{M},$ w $Dash \perp$		never
$\mathfrak{M}, \mathbf{w} \vDash \neg \varphi$	iff	$\mathfrak{M}, w \nvDash \varphi$
$\mathfrak{M}, \mathbf{w} \vDash \varphi \wedge \psi$	iff	both $\mathfrak{M}, \textit{w} \vDash \varphi$ and $\mathfrak{M}, \textit{w} \vDash \psi$
$\mathfrak{M}, \mathbf{w} \vDash \varphi \lor \psi$	iff	either $\mathfrak{M}, \mathbf{w} \vDash \varphi$ or $\mathfrak{M}, \mathbf{w} \vDash \psi$
$\mathfrak{M}, w \vDash \Box \varphi$	iff	for every $v \in W$ s.t. $R(w, v)$,
		it holds that $\mathfrak{M}, \mathbf{v} \vDash \varphi$
$\mathfrak{M}, w \vDash \Diamond \varphi$	iff	there exists $v \in W$ s.t. $R(w, v)$
		and $\mathfrak{M}, \mathbf{v} \vDash \varphi$

* ロ > * 個 > * 注 > * 注 >

Local and Global Satisfiability

We say that a formula φ is locally satisfiable, if there exists a model M = ⟨W, R, V⟩ and w ∈ W, such that

 $\mathfrak{M}, \mathbf{w} \vDash \varphi$

 We say that a formula φ is globally satisfiable, in a model *M* = ⟨W, R, V⟩, if φ is (locally) satisfiable in every point *w* ∈ W. In symbols:

$$\mathfrak{M}\vDash\varphi$$

A B A A B A

Validity

• We say that a formula φ is valid in a frame $\mathfrak{F} = \langle W, R \rangle$, if for every model $\mathfrak{M} = \langle W, R, V \rangle$ and every $w \in W$, it holds that $\mathfrak{M}, w \vDash \varphi$. In symbols

$$\mathfrak{F} \vDash \varphi$$

• We say that a formula φ is valid in a class of frames F if it is valid in every frame $\mathfrak{F} \in \mathbf{F}$. In symbols:

$$\mathbf{F}\vDash\varphi$$

• We say that a formula φ is **valid**, if it is valid in every class of frames **F**. In symbols:

< □ > < ---->

Semantic Consequence relations

Let $\Gamma\cup\varphi$ be a set of modal formulas and ${\bf M}$ a class of models, then:

We say that a formula φ is a local consequence of Γ over M, if for all models M = ⟨W, R, V⟩ ∈ M and all points w ∈ W, it holds that

• if
$$\mathfrak{M}, w \vDash \Gamma$$
, then $\mathfrak{M}, w \vDash \varphi$.

In symbols:
$$\Gamma \vDash^{l}_{\mathbf{M}} \varphi$$
.

We say that a formula φ is a global consequence of Γ over M, if for all models M = ⟨W, R, V⟩ ∈ M it holds that

• if $\mathfrak{M} \vDash \Gamma$, then $\mathfrak{M} \vDash \varphi$.

In symbols: $\Gamma \models^{g}_{\mathbf{M}} \varphi$.

A B F A B F

Logic

Further notions

- A **universal modality** \Box_U is a modality whose accessibility relation is the total relation $W \times W$.
- A multi-modal language, is a modal language with more than one couple of modal operators in the same language.
- For different couples $(\Box_1, \diamond_1), \ldots, (\Box_m, \diamond_m)$ of modal operators of a multi-modal languages, the respective accessibility **relations** R_1, \ldots, R_m are supposed to be different relations on the domain.
- We are considering the framework of the **minimal multi-modal** logic K_m.

イロト 不得下 イヨト イヨト 二日

Translating Description Logic into Multi-Modal Logic

- 4 同 ト 4 ヨ ト 4 ヨ

Translation of the signature

Given a description signature $\mathbf{D} = \langle N_I, N_C, N_R \rangle$, we define the multi-modal language

$$\mathbf{L}_{\mathbf{D}} := \mathbf{L} \cup \{\Box_R, : R \in N_R\} \cup \{\diamondsuit_R, : R \in N_R\}$$

where:

- $Prop_{D} = \{p_{A} : A \in N_{C}\}$ is the set of propositional variables,
- L is the set of propositional connectives,
- $\{\Box_R, : R \in N_R\} \cup \{\diamondsuit_R, : R \in N_R\}$ is a set of unary modal operators.

We can define the **translation** $\tau : N_C \longrightarrow Prop_D$ from the set of concept names into the set of propositional variables:

$$\tau(A) := p_A$$

イロト 不得下 イヨト イヨト 二日

Translation of complex concepts in \mathcal{ALC}

This translation can be inductively extended over the set of complex concept in \mathcal{ALC} in the following way:

$$\tau(\neg C) := \neg \tau(C),$$

$$\tau(C \sqcap D) := \tau(C) \land \tau(D)$$

$$\tau(C \sqcup D) := \tau(C) \lor \tau(D)$$

$$\tau(\forall R.C) := \Box_R \tau(C)$$

$$\tau(\exists R.C) := \diamondsuit_R \tau(C)$$

Semantics

Translation of DL interpretations

Let $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ be a DL interpretation, then we can **define the Kripke model** $\mathfrak{M}_{\mathcal{I}} = \langle W_{\mathcal{I}}, \{R_{\mathcal{I}} : R \in N_R\}, V_{\mathcal{I}} \rangle$, where:

•
$$W_{\mathcal{I}} = \Delta^{\mathcal{I}}$$
,

• for each role name $R \in N_R$, R_I is an accessibility relation on $W_{\mathcal{I}}$, i.e. a binary relation $R_{\mathcal{I}} \subseteq W_{\mathcal{I}} \times W_{\mathcal{I}}$, such that, for every $v, w \in W_{\tau}$, it holds that

$$R_{\mathcal{I}}(v,w)$$
 iff $R^{\mathcal{I}}(v,w)$,

• for each element $v \in W_{\mathcal{T}}$ and for every **propositional variable** $p_A \in Prop_{\mathcal{D}}$, it holds that

$$v \in V_{\mathcal{I}}(p_A)$$
 iff $v \in A^{\mathcal{I}}$.

- 本間 と えき と えき とうき

Soundness of the translation

For every \mathcal{ALC} concept C and every $v \in \Delta^{\mathcal{I}}$, it holds that

$$\mathsf{v}\in \mathsf{V}_{\mathcal{I}}(au(\mathsf{C})) \qquad ext{iff} \qquad \mathsf{v}\in \mathsf{C}^{\mathcal{I}}.$$

Translation of axioms

$$\Box_U(\tau(C) \to \tau(D))$$

• Nevertheless, the satisfiability of an axiom in an interpretation \mathcal{I} corresponds to the notion of global satisfiability:

$$\mathcal{I} \vDash C \sqsubseteq D$$
 iff $\mathfrak{M}_{\mathcal{I}} \vDash_{g} \tau(C) \rightarrow \tau(D)$

• An **assertion axiom** can not be translated into any modal formula.

Logic

Translation of the reasoning tasks

- Since we have not a translation of assertions:
 - we can not obtain a translation of every reasoning task from a translation of knowledge base consistency,
 - subsumption and entailment coincide.

• A **TBox**
$$\mathcal{T} = \{C_i \sqsubseteq D_i : 0 \le i \le n\}$$
 is satisfiable iff the formula
 $\bigwedge_{i=0}^n \tau(C_i) \to \tau(D_i)$

is globally satisfiable.

• A concept C is satisfiable w. r. t. a **TBox** \mathcal{T} iff $\tau(C)$ is **locally satisfiable** in a model of \mathcal{T} .

• An inclusion axiom $C \sqsubset D$ is **entailed by a TBox** \mathcal{T} iff the formula $\tau(C) \to \tau(D)$ is a global consequence of $\tau[\mathcal{T}]$.

Translating Modal Logic into Description Logic

- 4 同 6 4 日 6 4 日 6

Svntax

Translation of the signature

Given a multi-modal language $\mathbf{L} = \{\land, \lor, \neg\} \cup \{\Box_i, : i \in I\} \cup$ $\{\diamondsuit_i, : i \in I\}$ and a set of propositional variables $Prop = \{p_1, p_2, \ldots\}$, we define the description signature $\mathcal{D}_{L} = \langle N_{L}^{L}, N_{C}^{L}, N_{P}^{L} \rangle$. where:

- $N_{\iota}^{\mathsf{L}} := \emptyset$.
- $N_C^{\mathsf{L}} := \{A_p : p \in Prop\},\$
- $N_{\mathsf{P}}^{\mathsf{L}} := \{ R_i : \Box_i \in \mathsf{L} \}.$

We can define the **translation** $\rho: Prop \longrightarrow N_{C}^{L}$ from the set of propositional variable into the set of concept names:

$$\rho(p) := A_p$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Translation of multi-modal formulas

This translation can be inductively extended over the set of complex concepts in the following way:

$$egin{aligned} &
ho(
eg arphi) &:= &
eg
ho(arphi) \ &
ho(arphi \wedge \psi) &:= &
ho(arphi) \Box
ho(\psi) \ &
ho(arphi \vee \psi) &:= &
ho(arphi) \sqcup
ho(\psi) \ &
ho(\Box_i arphi) &:= & orall R_i.
ho(arphi) \ &
ho(arphi) &
ho(arphi) \ &
ho(arphi$$

(日) (同) (三) (三)

Translation of Kripke models

Let $\mathfrak{M} = \langle W, \{R_1, \ldots, R_m\}, V \rangle$ be a Kripke model, then we can define the DL interpretation $\mathcal{I}_{\mathfrak{M}} = (\Delta^{\mathcal{I}_{\mathfrak{M}}}, \cdot^{\mathcal{I}_{\mathfrak{M}}})$, where:

• $\Delta^{\mathcal{I}_{\mathfrak{M}}} := W.$

- for each concept name $A_p \in N_C^{\mathsf{L}}$, the interpretation $A_p^{\mathcal{I}_{\mathfrak{M}}}$ is a **subset** of $\Delta^{\mathcal{I}_{\mathfrak{M}}}$, such that, for every $v \in \Delta^{\mathcal{I}_{\mathfrak{M}}}$, it holds that $v \in A_p^{\mathcal{I}_{\mathfrak{M}}}$ iff $v \in V(p)$,
- for each role name $R_i \in N_R^L$, $R_i^{\mathcal{I}_{\mathfrak{M}}}$ is a **binary relation** $R_i^{\mathcal{I}_{\mathfrak{M}}}$ in $\Delta^{\mathcal{I}_{\mathfrak{M}}}$, such that, for every $v, w \in \Delta^{\mathcal{I}_{\mathfrak{M}}}$, it holds that

$$R_i^{\mathcal{I}_{\mathfrak{M}}}(v,w)=R_i(v,w).$$

Soundness of the translation

For every \mathbf{K}_m formula φ and every $v \in W$, it holds that

$$\mathbf{v} \in (
ho(arphi))^{\mathcal{I}_{\mathfrak{M}}}$$
 iff $\mathbf{v} \in V(arphi).$

Logic

Translation of the logic

- A formula φ is **locally satisfiable**, iff the concept $\rho(\varphi)$ is satisfiable w.r.t. the empty TBox.
- A formula φ is **globally satisfiable**, in a model $\mathfrak{M} = \langle W, R, V \rangle$, iff the inclusion axiom $\top \sqsubseteq \rho(\varphi)$ is satisfied in the interpretation $\mathcal{I}_{\mathfrak{M}}$.
- A formula φ is **valid** iff the concept $\rho(\varphi)$ is subsumed by concept \top .
- A formula φ is a **local consequence** of a set of formulas Γ iff the assertion axiom $\rho(\varphi)(a)$ is entailed by the ABox $\{\rho(\psi)(a): \psi \in \Gamma\}.$
- A formula φ is a **global consequence** of Γ over **M**, iff the inclusion axiom $\top \sqsubseteq \rho(\varphi)$ is entailed by the TBox $\{\top \sqsubseteq \rho(\psi) \colon \psi \in \Gamma\}$ イロト 不得下 イヨト イヨト 二日

Bilateral relations

・ロト ・ 日 ・ ・ 目 ト ・

Translations between the syntaxes

For every DL Concept C and every modal formula φ it holds that:

•
$$\rho(\tau(C)) = C$$
,

•
$$\tau(\rho(\varphi)) = \varphi$$
.

Translations between the semantics

For every DL interpretation ${\mathcal I}$ and every Kripke model ${\mathfrak M}$ it holds that:

•
$$\mathcal{I}=\mathcal{I}_{\mathfrak{M}_{\mathcal{I}}}$$
 ,

• $\mathfrak{M} = \mathfrak{M}_{\mathcal{I}_{\mathfrak{M}}}.$

The respective loics do not coincide

- Some intermediate notions proper of Modal Logic, such as **validity w.r.t. a frame** or a **class of frames** are not expressible in DL, due to its lack of structurality.
- Even though an ABox is considered as a translation of local consequence, this notion is not a translation of the notion of general ABox reasoning, since it is related to a particular form of what in the literature is called **local ABox**.
- The notions of **global consequence** in ML and **entailment from a TBox** in DL seem to coincide.
- The notions of **local satisfiability** in ML and **satisfiability** w.r.t. an empty TBox in DL seem to coincide.