An Introduction to Description Logic VI

Relations to Formal Concept Analysis

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, November 27th 2014

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UP)

Description Logic VI

Introduction

・ロト ・聞ト ・ヨト ・ヨト

General Remarks

- **Differently** from the case of modal and first order logics, Formal Concept Analysis is a formalism that appears to be **deeply dissimilar** from DL.
- The result of an account of the relations between FCA and DL can **depend on the point of view** or on the goals of this account.
- We are mainly following the ideas provided in the PhD thesis Learning Description Logic Knowledge Bases from Data using methods from Formal Concept Analysis by F. Distel.
- Nevertheless, **our purpose** is to see each formalism from the point of view of the other.
- This makes our exposition quite different from Distel's one.

Marco Cerami (UP)

Description Logic VI

Some dissimilarities

At first sight there are **deep differences** between both formalisms. Some of them are among the following:

- The **formal language** of FCA is quite limited if compared to the variety of concept constructors in DL.
- The basic information is usually **entirely determined** in FCA, while in DL is left open to interpretation.
- The **goals** of each formalism appear to be hardly performed by the other.

In the following we discuss these items with some more detail.

A B A A B A

Language limitations

- FCA lacks concept constructors, like disjunction or negation, but above all the use of **roles**.
- The lack of roles could be overcome by considering the framework of **relational concept analysis**, but this goes beyond our scope.
- Other concept constructors are not expressible in FCA.
- We will consider the **fragment** of DL with only □ in the language. Following Distel's dissertation, we call this fragment L_□.
- For reasons related to the particular nature of FCA, we will consider L_□ with the constructor for nominals L_□O.

Marco Cerami (UP)

Description Logic VI

Closed vs open world assumption

- In FCA is usually accepted the **closed world assumption**. That is, if a relation *xly* between an object end an attribute is not explicitly stated in a context, then it does not hold.
- In DL is usually accepted the **open world assumption**. That is, even though a relation C(a) between an individual and a concept is not explicitly stated in a context, it does not mean that it does not hold.
- The open and closed world assumption are concerned also with the **existence** of objects or individuals not explicitly defined at the beginning, but, without roles and negation, there is no difference between DL and FCA under this point of view.

Interpretaions and tables

- This difference is related to the former one.
- Indeed, the **closed world assumption** is due to the fact that a **formal context** is a basic starting point for analysis in FCA.
- In a table all the **basic information is exhaustively stated**.
- In DL, the place where all the information is exhaustively stated are **interpretations**.
- But interpretations in DL are not a basic starting point, rather a **complementary tool**.
- The basic information contained in a **knowledge base** is open to be **realized**, **enriched and fixed** by interpretations.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Example

According to the KB $\mathcal{K} = (\mathcal{T}, \mathcal{A})$, where:

```
 \begin{array}{l} \mathcal{T} = \{ & \texttt{Female} \sqcap \texttt{Male} \sqsubseteq \bot \\ \mathcal{A} = \{ & \forall \texttt{hasChild.Male(Marco)} \end{array} \} \end{array}
```

individual Marco **can be interpreted** as an instance of Male or Female or neither, but not both.

According to the following formal context, that carries part of the information in $\ensuremath{\mathcal{K}}$:

1	Female	Male	hasChild.Male	
Marco			×	

object Marco is definitely neither Male nor Female.

Marco Cerami (UP)

イロト イポト イヨト イヨト 二日

Reasoning services

- In this sense, notions such **satisfiability of concepts** do not make sense in FCA, even though we can entirely translate concepts.
- On the other side, the **extensional determinacy** of attributes and classes is hardly accounted by DL syntax, and a constant appeal to **a particular interpretation** is always needed when translating concepts.
- This is due to the fact that in FCA there is no need to **range** over different contexts, while in DL this is the expected behavior.

Preliminaries:

Formal Concept Analysis

Marco Cerami (UP)

Description Logic VI

 ↓
 ∃
 >

 >

 </

< ロ > < 同 > < 三 > < 三

Formal concepts

Formal contexts

A formal context is a triple $\langle X, Y, I \rangle$ where:

- X is a set of **objects**,
- Y is a set of **attributes**,
- $I \subseteq X \times Y$ is a **binary relation** between X and Y.

1	<i>y</i> 1	<i>y</i> ₂	<i>y</i> 3	<i>y</i> 4
<i>x</i> ₁	×	×	×	×
<i>x</i> ₂	×		×	×
<i>x</i> ₃		×	×	×
<i>x</i> ₄		×	×	×
<i>x</i> 5	×			

A B A A B A

Formal concepts

Formal Concepts

- The operator $\cdot^{\uparrow}: 2^X \longrightarrow 2^Y$ is defined on every $A \subseteq X$ by: $A^{\uparrow} = \{y \in Y | \text{ for each } x \in A \colon \langle x, y \rangle \in I\}$
- The operator $\cdot^{\downarrow}: 2^Y \longrightarrow 2^X$ is defined on every $B \subseteq Y$ by: $B^{\downarrow} = \{x \in X | \text{ for each } y \in B : \langle x, y \rangle \in I\}$
- A formal concept is a pair $\langle A, B \rangle$, with $A \subseteq X$ and $B \subseteq Y$ such that:

$$A = B^{\downarrow}$$
 and $B = A^{\uparrow}$

- For two formal concepts $\langle A_1, B_1 \rangle$ and $\langle A_2, B_2 \rangle$, we have that: $\langle A_1, B_1 \rangle < \langle A_2, B_2 \rangle$ iff $A_1 \subset A_2$ iff $B_2 \subset B_1$
- A concept lattice $\mathcal{B}(X, Y, I)$ is the collection of all formal concepts of a formal context $\langle X, Y, I \rangle$.

Attribute Implications

• An attribute implication is an expression of the form:

 $A \Rightarrow B$

where $A, B \subseteq Y$ are sets of attributes.

An attribute implication A ⇒ B is true in a set M ⊆ Y of attributes iff

 $A \subseteq M$ imples $B \subseteq M$

An attribute implication A ⇒ B is true in a formal context (X, Y, I) iff it is true in every set of the family:

$$\mathcal{M} = \{\{x\}^{\uparrow} \mid x \in X\}$$

• • = • • = • =

Translating Description Logic into Formal Concept Analysis

(日) (同) (三) (三)

Syntax

- Given a description signature $\mathbf{D} = \langle N_I, N_C \rangle$, we define a sets of objects an attributes:
 - \blacktriangleright $N_I \subset X$
 - $N_C \subset Y$
- We can define the **translation** $\tau : \mathbf{D} \longrightarrow X \cup Y$ from the signature into the sets of objects and attributes:

$$au(a) := x \in X$$

 $au(A) := y \in Y$

and **extend** the translation to **complex concepts**:

$$\tau(\{a_1,\ldots,a_n\}) := \{\tau(a_1),\ldots,\tau(a_n)\}$$

$$\tau(\{A_1 \sqcap \ldots \sqcap A_m\}) := \{\tau(A_1),\ldots,\tau(A_m)\}$$

Semantics

An interpretation \mathcal{I} is translated into a formal context

 $\langle X_{\mathcal{T}}, Y_{\mathcal{T}}, I_{\mathcal{T}} \rangle$

where:

- $X_{\tau} = \Delta^{\mathcal{I}}$.
- $Y_{\mathcal{T}} = \{A^{\mathcal{I}} : A \in N_{\mathcal{C}}\},\$
- for every $v \in \Delta^{\mathcal{I}}$ and $A \in N_{C}$, it holds that $(v, A^{\mathcal{I}}) \in I_{\mathcal{I}}$ iff $v \in A^{\mathcal{I}}$.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Assertion axioms

A set \mathcal{A} of **concept assertion axioms** or ABox can be viewed as a partial context.

$$\langle X_{\mathcal{A}}, Y_{\mathcal{A}}, I_{\mathcal{A}} \rangle$$

where:

- X_A are the individual names appearing in \mathcal{A}_A .
- Y_A are the atomic concept appearing in \mathcal{A} ,

• for every
$$a \in X_A$$
 and $A \in Y_A$, it holds that
 $(\tau(a), \tau(A)) \in I_A$ iff $A(a) \in A$.

Hence, an ABox \mathcal{A} is **satisfiable** if its translation $\langle X_{\mathcal{A}}, Y_{\mathcal{A}}, I_{\mathcal{A}} \rangle$ can be extended to a formal context. That is, it is always trivially satisfiable.

Marco Cerami (UP)

Inclusion axioms

A set \mathcal{T} of **concept inclusion axioms** or TBox can be viewed as a set $T_{\mathcal{T}}$ of **attribute implications** or theory, where

$$\tau(C \sqsubseteq D) = \tau(C) \Rightarrow \tau(D).$$

Hence. a TBox \mathcal{T} is **satisfiable** if there exists a formal context $\langle X, Y, I \rangle$ such that $T_{\mathcal{T}}$ is true in $\langle X, Y, I \rangle$.

Reasoning tasks

- A knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A})$ is **consistent** if there exists a formal context $\langle X, Y, I \rangle$ which extends $\langle X_A, Y_A, I_A \rangle$ where T_T is true.
- A concept C is satisfiable w.r.t. a knowledge base \mathcal{K} if there exists a formal context $\langle X, Y, I \rangle$ satisfying \mathcal{K} , where $\tau(C)^{\downarrow} \neq \emptyset$.
- A concept C is **subsumed** by concept D w.r.t. a knowledge base \mathcal{K} if for every formal context $\langle X, Y, I \rangle$ satisfying \mathcal{K} , it holds that $\tau(C) \Rightarrow \tau(D)$.
- An axiom φ is **entailed** by a knowledge base \mathcal{K} if every formal context $\langle X, Y, I \rangle$ satisfying \mathcal{K} satisfies $\tau(\varphi)$.

イロト 不得 トイヨト イヨト 二日

Translating Formal Concept Analysis into Description Logic

Objects and attributes

Given a formal context $\mathbb{K} = \langle X, Y, I \rangle$, we define the description signature $\mathbf{D}_{\mathbb{K}} = \langle N_I^{\mathbb{K}}, N_C^{\mathbb{K}} \rangle$, where:

- $N_I^{\mathbb{K}} := X$,
- $N_C^{\mathbb{K}} := Y$,

We can define the **translation** $\rho : X \cup Y \longrightarrow \mathbf{D}_{\mathbb{K}}$ from the sets of objects and attributes into the signature:

$$egin{array}{rcl}
ho(x) & := & x \
ho(y) & := & A_y \end{array}$$

and extend the translation to sets of objects and attributes:

$$\rho(\{x_1,\ldots,x_n\}) := \{x_1,\ldots,x_n\}$$

$$\rho(\{y_1,\ldots,y_m\}) := \rho(y_1) \sqcap \ldots \sqcap \rho(y_m)$$

Marco Cerami (UP)

The binary relation

Given a formal context $\mathbb{K} = \langle X, Y, I \rangle$, we define the interpretation $\mathcal{I}_{\mathbb{K}} = (\Delta^{\mathcal{I}_{\mathbb{K}}}, \cdot^{\mathcal{I}_{\mathbb{K}}})$ where:

• $\Delta^{\mathcal{I}_{\mathbb{K}}}$ is a non-empty set.

 \bullet $\cdot^{\mathcal{I}_{\mathbb{K}}}$, is a function with the signature $\boldsymbol{D}_{\mathbb{K}}$ as domain such that:

•
$$x^{\mathcal{I}_{\mathbb{K}}} \in \Delta^{\mathcal{I}_{\mathbb{K}}}$$
, for every $x \in N_{I}^{\mathbb{K}}$,

•
$$\rho(y)^{\mathcal{I}_{\mathbb{K}}}$$
 is a set in $\Delta^{\mathcal{I}_{\mathbb{K}}}$, for every $\rho(y) \in N_{\mathcal{C}}^{\mathbb{K}}$.

•
$$x^{\mathcal{I}_{\mathbb{K}}} \in \rho(y)^{\mathcal{I}_{\mathbb{K}}}$$
 iff $(x, y) \in I$.

イロト 不得下 イヨト イヨト 二日

The operator \cdot^{\uparrow}

A translation of the operator \cdot^\uparrow can be defined in the following way:

$$ho(A^{\uparrow}) = \sqcap \{A_y \in \mathit{N}_C^{\mathbb{K}} \colon
ho(A)^{\mathcal{I}_{\mathbb{K}}} \subseteq A_y^{\mathcal{I}_{\mathbb{K}}} \}, \qquad ext{for every } A \subseteq X.$$

that is:

- take a set of **objects** $A = \{x_1, \ldots, x_n\}$,
- **2** obtain the **nominal concept** $\rho(A) = \{\rho(x_1), \ldots, \rho(x_n)\},\$
- **o** obtain the **interpretation** $\rho(A)^{\mathcal{I}_{\mathbb{K}}}$,
- consider all the **atomic concepts** $A_y \in N_C^{\mathbb{K}}$ such that $\rho(A)^{\mathcal{I}_{\mathbb{K}}} \subseteq A_y^{\mathcal{I}_{\mathbb{K}}}$,
- the conjunction of those A_y 's is exactly the concept $\rho(A^{\uparrow})$.

(日) (同) (三) (三)

The operator \cdot^{\downarrow}

A translation of the operator \cdot^{\downarrow} can be defined in the following way:

$$ho(B^{\downarrow})=\{x\in \mathsf{N}_{\mathsf{I}}^{\mathbb{K}}\colon x\in
ho(B)^{\mathcal{I}_{\mathbb{K}}}\}, \qquad ext{for every }B\subseteq Y.$$

that is:

- take a set of **attributes** $B = \{y_1, \ldots, y_m\}$,
- **2** obtain the **concept conjunction** $\rho(B) = \rho(y_1) \sqcap \ldots \sqcap \rho(y_m)$,
- **③** obtain the **interpretation** $\rho(B)^{\mathcal{I}_{\mathbb{K}}}$,
- consider all the **individual names** $x \in N_I^{\mathbb{K}}$ such that $x^{\mathcal{I}_{\mathbb{K}}} \in B^{\mathcal{I}_{\mathbb{K}}}$,
- So the nominal concept {x₁,..., x_n} built up from these x's is exactly the concept ρ(B[↓]).

イロト 不得下 イヨト イヨト 二日

Formal concepts

The translation $\rho(\langle A, B \rangle)$ of a **formal concept** is then a pair

 $\langle \rho(A), \rho(B) \rangle$,

where:

- ρ(A) = {ρ(x₁),..., ρ(x_n)} is a nominal concept, built up from
 the translations of the elements of A,
- ρ(B) = ρ(y₁) □ ... □ ρ(y_m) is a conjunction of atomic concepts, built up from the translations of the elements of A,

•
$$\rho(A)^{\mathcal{I}_{\mathbb{K}}} = \rho(B)^{\mathcal{I}_{\mathbb{K}}}$$

イロト 不得下 イヨト イヨト 二日

Formal concepts

Attribute Implications

A set T of **attribute implications** or theory can be translated as a set $\mathcal{T}_{\mathcal{T}}$ of **concept inclusion axioms** or TBox, where

$$\rho(A \Rightarrow B) = \rho(A) \sqsubseteq \rho(B).$$

Hence, a theory T is true in a formal context $\mathbb{K} = \langle X, Y, I \rangle$ if the interpretation $\mathcal{I}_{\mathbb{K}}$ satisfies every inclusion axiom in $\mathcal{T}_{\mathcal{T}}$.

A B F A B F

More expressive languages

→ Ξ →

-

< 67 ▶

Adding further constructors

- Even though **other concept constructors** are not expressible in FCA, we can consider complex concepts as basic attributes.
- The obvious shortcoming is that, even with a limited machinery, we can have **infinite complex concepts**:
 - ▶ ∃isMarriedTo.⊤,
 - ► ∃isMarriedTo.∃isMarriedTo.⊤,
 - ► ∃isMarriedTo.∃isMarriedTo.∃isMarriedTo.⊤,
 - ...
- So, there is the need of **limiting the number** of complex concepts in order to manage them by means of a finite set of attributes.

Effects of the open world assumption

• Consider the KB $\mathcal{K}=(\mathcal{A})$, where:

$$\mathcal{T} = \{ Female \sqcap Male \sqsubseteq \bot \} \\ \mathcal{A} = \{ Male \sqcap \exists isMarriedTo.Female(Marco) \}$$

- If we use **our former definition** for the operator \cdot^{\downarrow} we obtain the undesired consequence that $\rho(\{\texttt{Female}\})^{\downarrow} = \emptyset$.
- For this reason Distel defines the operator .↓ directly on interpretations:

$$C^{\downarrow} = C^{\mathcal{I}}$$
, for every concept C .

< □ > < ---->

• As a consequence, the representation of a **formal concept** in DL is no more a pair of DL concepts.

Model based most specific concept

- Let *L* be the set of all possible concepts from a given signature, *I* = (Δ^{*I*}, ·^{*I*}) an interpretation and *X* ⊆ Δ^{*I*}. The model based most specific concept of *X* is a concept *C* such that:
 - $X \subseteq C^{\mathcal{I}}$,
 - for every concept $D \in \mathcal{L}$ such that $X \subseteq D^{\mathcal{I}}$ it holds that $C \sqsubseteq D$.
- The model based most specific concept is the way to represent the ·[↑] operator in DL.
- Now the representation of a formal concept in DL is a pair:

$$\langle X, C
angle \in \Delta^{\mathcal{I}} imes \mathcal{L}$$

where

•
$$X = C^{\mathcal{I}}$$
,

• *C* is the most specific concept of *X*.

Cyclic interpretations

Let's take an example from Distel's dissertation. Consider the signature $\mathbf{D} = (N_C, N_R)$, where:

- $N_C = \{ Male, Female \},$
- $N_R = \{ isMarriedTo \},$

and the interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, with

- $\Delta^{\mathcal{I}} = \{ \texttt{Homer,Marge} \}$,
- $Male^{\mathcal{I}} = \{Homer\},\$
- Female $^{\mathcal{I}} = \{ \texttt{Marge} \}$,
- $isMarriedTo^{I} = \{(Homer,Marge),(Marge,Homer)\},\$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

• Define the concept:

 $C_k = \exists isMarriedTo.^k \stackrel{\text{times}}{\dots} \exists isMarriedTo. \top$

• For every $k \in \mathbb{N}$ we have that $C_k^{\mathcal{I}} = \{ \text{Homer,Marge} \}$:

• Moreover, $C_k \sqsubseteq Cj$ if and only if $k \ge j$, for every $k, j \in \mathbb{N}$.

A B b

- Now, suppose that D is the most specific concept of the set {Homer,Marge}, that is, $D = \{\text{Homer,Marge}\}^{\uparrow}$, then:
 - since {Homer,Marge} $\subseteq D^{\mathcal{I}}$, then $D \neq \bot$,
 - ▶ since for every $k \in \mathbb{N}$ it holds that {Homer,Marge} $\subseteq C^{\mathcal{I}}$, then $D \sqsubseteq C_k$, for every $k \in \mathbb{N}$.
- Hence {Homer, Marge}[↑] can not exists.
- This is true for **standard semantics**. In the dissertation Distel proves that a model based most specific concept always exists if we consider the so-called **greatest-fixpoint semantics**.
- Under greatest-fixpoint semantics it can be defined a general framework for using FCA methods inside DL.

Marco Cerami (UP)

Description Logic VI

27.11.2014 33 / 34

Induced contexts

- A central notion of this general framework is that of **induced contexts**.
- The starting point are a finite interpretation \mathcal{I} and a finite set of complex concepts Y.
- The context induced by ${\mathcal I}$ and Y is the formal context

$$\mathbb{K}_{\mathcal{I},Y} = \langle \Delta^{\mathcal{I}}, Y, I_{\mathcal{I},Y} \rangle$$

where

$$I_{\mathcal{I},Y} = \{ (v, C) \colon C \in Y \text{ and } v \in C^{\mathcal{I}} \}.$$