An Introduction to Description Logic VII

Structural subsumption algorithms

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, December 4th 2014

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UP)

Description Logic VII

Introduction

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Introduction

- A structural subsumption algorithm is one of first kind of procedures for DL. The name is due to the fact that they look at the syntactical structure of concepts.
- It is suitable for solving concept subsumption with respect to empty knowledge bases in DL languages with low expressivity.
- We are mainly following the 1984 paper The Tractability of Subsumption in Frame-Based Description Languages, by R.J. Brachman and H.J. Levesque.
- The advantage structural subsumption algorithms is that they are relatively **fast** and **simple**.
- The disadvantage is that they are **incomplete for more** expressive languages.

Marco Cerami (UP)

The language \mathcal{FL}^-

Marco Cerami (UP)

Description Logic VII

▲ ■ ▶ ■ つへへ
4.12.2014 4 / 19

<ロ> (日) (日) (日) (日) (日)

The language \mathcal{FL}^-

- The name \mathcal{FL} stands for **frame language** because it has more or less the same expressive power of frame-based systems.
- Frame languages were studied in the 80's.
- Below we define the language \mathcal{FL}^- :

$$C, D \longrightarrow A$$
 atomic concept
 $C \sqcap D$ conjunction
 $\forall R.C$ value restriction
 $\exists R.\top$ restricted existential quantif.

Consistency and satisfiability in \mathcal{FL}^-

- In \mathcal{FL}^- concepts and axioms are trivially satisfiable.
- The reason for this is that in \mathcal{FL}^- there is **no negation**.
- Hence a trivial model *I*_D = (Δ^{*I*_D}, *.^I*_D) for any concept or knowledge base on a given signature **D** = ⟨*N_I*, *N_C*, *N_R*⟩ in the following way:
 - $\Delta^{\mathcal{I}_{\mathbf{D}}} = \{v\},\$
 - $a^{\mathcal{I}_{\mathbf{D}}} = v$, for every individual name $a \in N_I$,
 - $A^{\mathcal{I}_{\mathsf{D}}} = \Delta^{\mathcal{I}_{\mathsf{D}}}$, for every concept name $A \in N_{\mathcal{C}}$,
 - $R^{\mathcal{I}_{\mathsf{D}}} = \Delta^{\mathcal{I}_{\mathsf{D}}} \times \Delta^{\mathcal{I}_{\mathsf{D}}}$, for every role name $R \in N_C$.

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

Concept Subsumption

• A concept *D* is said to **subsume** a concept *C* when, in every interpretation *I* it holds that

 $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}.$

- We will consider this notion with respect to the empty KB.
- Differently from satisfiability, in \mathcal{FL}^- it has **no trivial solution**, since the trivial model above is just one among all possible interpretations.

()

Example

For example, concept

Person

is not subsumed by concept

Person ⊓ Male.

Indeed, even though in the trivial model \mathcal{I}_D the inclusion $\texttt{Person}^{\mathcal{I}_D} \sqsubseteq \texttt{Person} \sqcap \texttt{Male}^{\mathcal{I}_D}$ holds, nevertheless, in the interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where:

- $\Delta^{\mathcal{I}} = \{v, w\},\$
- Person $^{\mathcal{I}} = \{v\}$,
- $Male^{\mathcal{I}} = \{w\},\$

we have that $\operatorname{Person}^{\mathcal{I}} = \{v\} \subsetneq \{w\} = \operatorname{Person}^{\mathcal{I}} \cap \operatorname{Male}^{\mathcal{I}}.$

The structural subsumption algorithm

for \mathcal{FL}^-

Marco Cerami (UP)

Description Logic VII

4.12.2014 9 / 19

< ロ > < 同 > < 三 > < 三

Structural subsumption algorithm SUBS?[D, C] from [Brachman and Levesque, 1984]

- 1: Flatten both C and D by removing all nested \sqcap operators.
- 2: Collect all arguments to an $\forall R$. for a given role R.
- 3: Assuming that $C := C_1 \sqcap \ldots \sqcap C_n$ and $D := D_1 \sqcap \ldots \sqcap D_m$, then return **true** iff for each C_i :

(a) if D_i is an atom or a $\exists R. \top$, then one of C_j is D_i .

(b) if D_i is $\forall R.E$ then one of the C_j is $\forall R.F$, where SUBS?[F, E].

イロト 不得下 イヨト イヨト 二日

Behavior

• From step 1 we have:

$$((C_1 \sqcap C_2) \sqcap C_3) \sqcap (C_4 \sqcap C_5) \quad \rightsquigarrow \quad C_1 \sqcap C_2 \sqcap C_3 \sqcap C_4 \sqcap C_5$$

which means that the conjunctions are treated as **sets of concepts**.

• From step 2 we have:

 $\forall R.C_1 \sqcap \forall R.(C_2 \sqcap \forall R.C_3) \quad \rightsquigarrow \quad \forall R.(C_1 \sqcap C_2 \sqcap \forall R.C_3)$

which is possible since with classical semantics the following equivalence **always holds**:

$$\forall R.C_1 \sqcap \forall R.C_2 \equiv \forall R.(C_1 \sqcap C_2)$$

A B < A B </p>

- After steps 1 and 2 we obtain normalized concepts with:
 - sets of atomic and quantified concepts...
 - which are eventually inside the scope of universal quantifiers...
 - that appear only once every role and nesting degree.
- From step 3 the algorithm **inductively checks** whether every concept in the consequent appears in the antecedent:

$$\underline{C_1} \sqcap C_2 \sqcap \forall R.(C_3 \sqcap \underline{C_4}) \qquad \stackrel{\checkmark}{\sqsubseteq} \qquad \underline{C_1} \sqcap \forall R.\underline{C_4}$$
$$\underline{C_1} \sqcap C_2 \sqcap \forall R.(C_3 \sqcap \underline{C_4}) \qquad \stackrel{\downarrow}{\Downarrow} \qquad \underline{C_1} \sqcap C_4 \sqcap \forall R.\underline{C_2}$$

Soundness

- By **induction** on the nesting degree of C and D.
- Suppose that *SUBS*?[*D*, *C*] returns "true".
- If the nesting degree of both concepts is 0 the result is straightforward.
- Let the nesting degree of some concept be ≥ 0 :
- then **either** every conjunct D_i appears in C,
- ... **or** it is of the form $\forall R.E$.
- In the second case there is a conjunct C_i in C of the form ∀R.E such that SUBS?[F, E] returns "true".
- By i.h. we have that for every interpretation \mathcal{I} it holds $E^{\mathcal{I}} \subseteq F^{\mathcal{I}}$.

• Hence for every interpretation \mathcal{I} it holds $C^{\mathcal{I}} \subseteq D^{\mathcal{I}}$.

Marco Cerami (UP)

Completeness

Completeness

- In order to prove completeness, we assume that SUBS?[D, C]returns "false".
- We will consider three cases and, for each of them, we **define** an interpretation \mathcal{I} that does not satisfy the subsumption.
- Let $C := C_1 \sqcap \ldots \sqcap C_n$ and $D := D_1 \sqcap \ldots \sqcap D_m$, then SUBS?[D, C] returns "false" when:
 - **1** some **atomic** D_i does not appear in C_i
 - **2** some D_i is an **existentially quantified concept** $\exists R. \top$ and does not appear in C,
 - **Some** D_i is a **universally quantified concept** $\forall R.F$ and for every concept $\forall R.E$ that appears in C, SUBS? [F, E] returns "false". (日) (同) (三) (三)

Marco Cerami (UP)

Completeness

Case 1

• Suppose that some **atomic** D_i does not appear in C and consider the **interpretation** $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$, where:

•
$$\Delta^{\mathcal{I}} = \{v, w\},\$$

- *R^I* = {⟨*v*, *w*⟩, ⟨*w*, *w*⟩}, for every role *R* that appears in *C* or *D*, *A^I* = {*v*, *w*}, for every atomic concept *A* different from *D_i*, *D_i^I* = {*w*}.
- Hence, for every role *R* we have:
 - $\label{eq:relation} \quad (\exists R.\top)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \colon R^{\mathcal{I}}(x,y) \text{ and } y \in \Delta^{\mathcal{I}}\} = \{v,w\},$
- Therefore $C^{\mathcal{I}} = \bigcap_{1 \leq j \leq n} C_j = \{v, w\} \notin \{w\} = \bigcap_{1 \leq i \leq m} D_i = D^{\mathcal{I}}.$

Case 2

- Suppose that some D_i is an existentially quantified concept ∃R.⊤ which does not appear in C and consider the interpretation I = (Δ^I, ^I), where:
 - $\Delta^{\mathcal{I}} = \{v, w\},$
 - $\mathsf{P}^{\mathcal{I}} = \{ \langle v, w \rangle, \langle w, w \rangle \}, \text{ for every role } P \text{ different from } R,$

•
$$A^{\mathcal{I}} = \{v, w\}$$
, for every atomic concept A ,

•
$$R_i^{\mathcal{I}} = \{ \langle w, w \rangle \}.$$

• Hence, for every role *P* different from *R* and every role *S* including *R* we have:

$$\label{eq:product} \ (\exists P.\top)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \colon P^{\mathcal{I}}(x,y) \text{ and } y \in \Delta^{\mathcal{I}} \} = \{ v,w \},$$

$$\label{eq:started_st$$

• Therefore
$$C^{\mathcal{I}} = \bigcap_{1 \leq j \leq n} C_j = \{v, w\} \not\subseteq \{w\} = \bigcap_{1 \leq i \leq m} D_i = D^{\mathcal{I}}_{O \setminus O}$$

Case 3

Suppose that some D_i is a universally quantified concept ∀R.F and for every concept ∀R.E that appears in C, SUBS?[F, E] returns "false" because of some concept G. Consider the interpretation *I* = (Δ^I, ^I), where:

$$\bullet \Delta^{\mathcal{I}} = \{v, w, z\},$$

- $\vdash P^{\mathcal{I}} = \{ \langle v, w \rangle, \langle w, w \rangle \}, \text{ for every role } P \text{ different from } R,$
- $A^{\mathcal{I}} = \{v, w\}$, for every atomic concept A, except for G.
- $\bullet \ R_i^{\mathcal{I}} = \{ \langle w, w \rangle, \langle v, z \rangle \}.$
- $G^{\mathcal{I}} = \{v, w, z\}$, for every atomic concept A,
- Hence, for every role S including R we have:

$$\leftarrow (\exists S.\top)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \colon S^{\mathcal{I}}(x, y) \text{ and } y \in \Delta^{\mathcal{I}} \} = \{ v, w \},$$

- for every role P different from R we have:
 - $\label{eq:product} \bullet \ (\forall P.F)^{\mathcal{I}} = \{ x \in \Delta^{\mathcal{I}} \colon \text{ if } P^{\mathcal{I}}(x,y) \text{ then } y \in F^{\mathcal{I}} \} = \{ v,w,z \},$
- for R we have:

$$\begin{array}{l} & (\forall R.F)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \colon \text{ if } R^{\mathcal{I}}(x,y) \text{ then } y \in F^{\mathcal{I}}\} = \{v,w,z\}. \\ & (\forall R.E)^{\mathcal{I}} = \{x \in \Delta^{\mathcal{I}} \colon \text{ if } R^{\mathcal{I}}(x,y) \text{ then } y \in E^{\mathcal{I}}\} = \{w,z\}. \end{array}$$

• Therefore $C^{\mathcal{I}} = \bigcap_{1 \leq j \leq n} C_j = \{v, w\} \notin \{w\} = \bigcap_{1 \leq i \leq m} D_i = D^{\mathcal{I}}.$

Concluding, in all three cases $C^{\mathcal{I}}$ is not a subset of $D^{\mathcal{I}}$ when SUBS?[D, C] returns "false".

イロト 不得 トイヨト イヨト 二日

Computational complexity

In order to define the complexity of algorithm SUBS?[D, C], let *n* be the **length of the longer argument**. Then:

- **Step 1** can be done in time linear in *n* (just erase parenthesis).
- Step 2 may require that the entire concepts C and D are checked out a number of times equal to their length. Hence it can be done in $\mathcal{O}(n^2)$ time.
- Step 3 may require that each of the concepts C and D is checked out a number of times equal to the length of the other. Hence it can be done in O(n²) time.

Hence, algorithm *SUBS*?[D, C] operates in $\mathcal{O}(n^2)$ time.

イロト 不得下 イヨト イヨト 二日