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Introduction

Introduction

Structural subsumption algorithms can be used to reason
with acyclic TBoxes.

In the 80’s it was supposed that it could keep the good
computational performance as with respect to empty TBoxes.

In 1990, Nebel indeed proves that reasoning with acyclic TBoxes
in a language even simpler than FL� is co-NP-complete.

We are mainly following the 1990 paper Terminological
Reasoning is Inherently Intractable, by B. Nebel.

The hardness proof is obtained by means of a reduction of a
problem from automata theory.
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The language T L

The language T L

The name T L stands for terminological language.

It is a fragment of FL� obtained by omitting existential
quantifications.

Below we define the language T L:

C ,D ÝÑ A atomic concept

C [ D conjunction

@R .C value restriction
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The language T L Reasoning in T L

Reasoning in T L
In T L concepts and axioms are trivially satisfiable, exactly like
in FL�.

Concept subsumption w.r.t. the empty KB is clearly
polynomial, exactly like in FL�.

Concept equivalence and subsumtion can be linearly reduced
to each other in the following way:

C � D iff C � D and D � C

C � D iff C [ D � C

We will consider the problem of subsumption with respect to
acyclic KBs.
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The language T L Reasoning in T L

Acyclic TBoxes

An Acyclic TBox is a definitional TBox without cycles, that is:

a TBox is said to be definitional when there appear at most
one inclusion axiom of the form:

A � C

for each atomic concept A;

a TBox is said to be cyclic or a set of General Concept
Inclusions (GCIs), when there is a sequence of inclusion axioms
C1 � D1, . . . ,Cn � Dn and a set of concepts A1, . . . ,An�1, such
that, for every 1   m   n, Am appears both in Dm�1 and in Cm

and A1 appears both in Dn and in C1.
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The language T L Reasoning in T L

Reasoning with non-empty TBoxes

If we consider the empty TBox, concept

@hasParent.Human

is not subsumed by concept

@hasParent.Mammal.

If we consider the knowledge base K � pT q, where:

T � t Human � Mammal }

we have that concept @hasParent.Human is subsumed by
concept @hasParent.Mammal in every model of K.
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Expanded terminologies

Primitive and defined concepts

Let T be an acyclic TBox, then:

An atomic concept A is said to be defined if axiom

A � C

appears in T , for some C .

An atomic concept is said to be primitive if it is not defined.

If concept name A is defined by axiom A � C P T , hence

T pAq � C

is said to be the definition of A.
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Expanded terminologies

Expanded concepts and terminologies

The definition function can be extended to complex concepts, in
order to obtain expanded concepts:

T̂ pAq = T pAq

T̂ pC [ Dq = T̂ pC q [ T̂ pDq

T̂ p@R .C q = @R .T̂ pC q

If the TBox is acyclic, then the expansion process is finite, that
is, there is a natural n such that:

T̂ n � T̂ n�1

In this case we call n the depth of T and T̂ n � T̃ , the
completely expanded terminology.
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Expanded terminologies

Example

Consider the knowledge base K � pT q, where:

T = { Human � Mammal[ Biped,

Man � Human[ Male,

Son � Human[ Male[@hasParents.Human }

Then:

T̃ = { Human � Mammal[ Biped,

Man � Mammal[ Biped[ Male,

Son � Mammal[ Biped[ Male[

@hasParents.(Mammal[ Biped) }
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Expanded terminologies

Reducing acyclic to empty TBoxes
Is is easy to show by induction on the depth of T , that, for
every concept C and every model I of T it holds:

C I � pT̃ pC qqI .

Moreover, the following statements are equivalent:

� concept C is subsumed by concept D w.r.t. terminology T ,

� concept T̃ pC q is subsumed by concept T̃ pDq w.r.t. the empty
terminology.

Hence, we can define algorithm TSUBS?rD,C , T s from
algorithm SUBS?rD,C s:

TSUBS?rD,C , T s = SUBS?rT̃ pDq, T̃ pC qs
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Expanded terminologies

The expansion is not polynomial

Let n P N and consider the following terminology Tn:

TnpC0q = C0

TnpC1q = @R .C0 [ @P .C0

TnpC2q = @R .C1 [ @P .C1

...

TnpCnq = @R .Cn�1 [ @P .Cn�1

Hence, even though the size of Tn grows linearly in n, the size of
T̃npCnq grows exponentially in n.

Marco Cerami (UP) Description Logic VIII 4.12.2014 14 / 25



co-NP-hardness

co-NP-hardness

Marco Cerami (UP) Description Logic VIII 4.12.2014 15 / 25



co-NP-hardness Unfolding

Unfolded terminologies

We define the unfolding function U which returns sets of
concepts from concepts:

UpAq = tAu

UpC [ Dq = UpC q Y UpDq

Up@R .C q = t@R .D | D P UpC qu

The completely unfolded form UT of a terminology T is
defined by:

UT � U � T̃
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co-NP-hardness Unfolding

Example

Consider the knowledge base K � pT q, where:

T = { Human � Mammal[ Biped,

Man � Human[ Male,

Son � Human[ Male[@hasParents.Human }

Then:

UT = { {Human}={Mammal,Biped},

{Man}={Mammal,Biped,Male},

{Son}={Mammal,Biped,Male,@hasParents.Mammal,

@hasParents.Biped} }
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co-NP-hardness Unfolding

Properties of the unfolded form

Is is easy to show that, for every concept C and every model I
of T it holds:

C I � pUT pC qq
I .

Every concept D P UT pC q is a linear description, that is a
concept of the form:

@R1.@R2 . . . @Rn.A

where A is primitive in T .

Moreover, the following statements are equivalent:

� concept C is equivalent to concept D w.r.t. terminology T ,

� UT pC q � UT pDq.
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co-NP-hardness Nondeterministic finite state automata

Nondeterministic finite state automata

A nondeterministic finite state automaton (NDFA) is a tuple:

A � pΣ,Q, δ, q0,Fq

where:

Σ is a set of symbols or alphabet,

Q is a set of states,

δ : Σ �Q ÝÑ 2Q is a transition function,

q0 P Q is the initial state,

F � Q is a set of accepting states.
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co-NP-hardness Nondeterministic finite state automata

Properties of NDFAs

A state q1 P Q is reachable from a state q by word w � s1 . . . sn
iff there exists a sequence of states q1, . . . , qn�1 with:

� q � q1,

� q1 � qn�1,

� qi�1 P δpqi , si q, for 1 ¤ i ¤ n.

The set LpAq of words w such that some final state is reachable
from q0 is called the language accepted by A.

Two automata A1 and A2 are equivalent iff LpA1q � LpA2q.

A state q P Q is redundant either if it can not be reached from
the initial state or if it can not reach any final state.
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co-NP-hardness Nondeterministic finite state automata

Acyclic nonredundant NDFAs

An automaton is called nonredundant if ti does not contain
any redundant state.

A NDFA is called acyclic if no state is reachable from itself.

Let LpAq be the language of a nonredundant NDFA A. Then
the following are equivalent:

� A is acyclic,

� LpAq is finite.

If LpA1q and LpA2q are finite, then determining equivalence
between A1 and A2 is co-NP-complete.

In what follows we will consider acyclic nonredundant NDFAs
(ANDFAs).
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co-NP-hardness Reduction

Reduction of ANDFAs
Let A1 � pΣ,Q1, δ1, q01 ,F1q and A2 � pΣ,Q2, δ2, q02 ,F2q be two
acyclic nonredundant NDFAs with Q1 XQ2 � H. Then we can
construct a terminology TA in the following way:

NR � Σ,

NC � Q1 YQ2 Y F ,

TApF q � F is the only primitive concept,

TApqq �

#
F , if q P F1 Y F2�
t@s.q1 : q1 P δipq, sq, i � 1, 2u otherwise

Since A1 and A2 are nonredundant, then the concepts are
well-defined. Since A1 and A2 are acyclic, then so in TA and it is
possible to define UTA .
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co-NP-hardness Reduction

Example

Let Σ � ts, r , tu and q P Q be such that:

δpq, sq � tq1, q2u,

δpq, rq � tq2, q3, q4u,

δpq, tq � tq5, q6u,

Then

TApqq � @s.q1 [ @s.q2 [ @r .q2 [ @r .q3 [ @r .q4 [ @t.q5 [ @t.q6

Where the states q1, q2, q3, q4, q5 and q6,, if are not final states, can
be further expanded according to the function δ, but in the same
way as for T̂ .
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co-NP-hardness Reduction

Completeness of the reduction
Let w � s1 . . . sn P Σ� and i � 1, 2, then:

w P LpAiq iff @s1 . . . @sn.F P UTAi
pq0i q

(ñ) Assume that w is a word accepted by Ai . Then there is a
sequence of states q1, . . . , qn�1 such that

� q1 � q0i ,
� qn P Fi ,
� qj�1 P δpqj , sjq, for 1 ¤ j ¤ n.

By the way in which TA is constructed and the definition of
UTAi

, it is possible to prove by induction on the length of w , that

@s1 . . . @sn.F P UTAi
pq0i q.

(ð) Conversely, if @s1 . . . @sn.F P UTAi
pq0i q, then by the way TA is

constructed, we have that a state q P Fi is reachable from q0i by
w in Ai . That is, w P LpAiq.
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co-NP-hardness Reduction

Conclusions

Hence

LpA1q � LpA2q iff q01 �TA q02 .

Therefore, concept equivalence and subsumption in T L are
co-NP-hard problems.

The fact that these problem are also in co-NP is easy to prove:
think on an algorithm guessing a linear description of concept C
and checks whether it belongs to the completely unfolded form
of concept D.
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