An Introduction to Description Logic VIII Inherent intractability of terminological reasoning

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, December 4th 2014

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UP)

Description Logic VIII

4.12.2014

1 / 25

Introduction

イロト イヨト イヨト イヨト

Introduction

- Structural subsumption algorithms can be used to reason with acyclic TBoxes.
- In the 80's **it was supposed** that it could keep the good computational performance as with respect to empty TBoxes.
- In 1990, Nebel indeed proves that reasoning with acyclic TBoxes in a language even simpler than \mathcal{FL}^- is **co**-NP-**complete**.
- We are mainly following the 1990 paper **Terminological Reasoning is Inherently Intractable**, by B. Nebel.
- The hardness proof is obtained by means of a reduction of a problem from **automata theory**.

- 4 週 ト - 4 三 ト - 4 三 ト

The language \mathcal{TL}

Marco Cerami (UP)

Description Logic VIII

4.12.2014 4 / 25

イロト イヨト イヨト イヨト

The language \mathcal{TL}

- The name \mathcal{TL} stands for **terminological language**.
- It is a **fragment of** \mathcal{FL}^- obtained by omitting existential quantifications.
- Below we define the language \mathcal{TL} :

$$C, D \longrightarrow A$$
 atomic concept
 $C \sqcap D$ conjunction
 $\forall R.C$ value restriction

(3)

Reasoning in \mathcal{TL}

- In *TL* concepts and axioms are trivially satisfiable, exactly like in *FL*⁻.
- Concept subsumption w.r.t. the empty KB is clearly polynomial, exactly like in \mathcal{FL}^- .
- Concept equivalence and subsumtion can be **linearly reduced** to each other in the following way:

$$C \equiv D$$
 iff $C \sqsubseteq D$ and $D \sqsubseteq C$
 $C \sqsubseteq D$ iff $C \sqcap D \equiv C$

• We will consider the problem of subsumption with respect to acyclic KBs.

Marco Cerami (UP)

Acyclic TBoxes

An Acyclic TBox is a **definitional** TBox without cycles, that is:

• a TBox is said to be **definitional** when there appear at most one inclusion axiom of the form:

$$A \equiv C$$

for each atomic concept A;

• a TBox is said to be **cyclic** or a set of **General Concept Inclusions** (GCIs), when there is a sequence of inclusion axioms $C_1 \equiv D_1, \ldots, C_n \equiv D_n$ and a set of concepts A_1, \ldots, A_{n-1} , such that, for every 1 < m < n, A_m appears both in D_{m-1} and in C_m and A_1 appears both in D_n and in C_1 .

伺下 イヨト イヨト

Reasoning with non-empty TBoxes

• If we consider the empty TBox, concept

 $\forall \texttt{hasParent.Human}$

is **not subsumed** by concept

∀hasParent.Mammal.

• If we consider the knowledge base $\mathcal{K} = (\mathcal{T})$, where:

 $\mathcal{T} = \{ \hspace{1mm} \texttt{Human} \sqsubseteq \texttt{Mammal} \hspace{1mm} \}$

we have that concept $\forall hasParent.Human is subsumed by concept <math>\forall hasParent.Mammal in every model of K$.

イロト イポト イヨト イヨト

Expanded terminologies

(日) (同) (三) (三)

Primitive and defined concepts

Let \mathcal{T} be an **acyclic TBox**, then:

• An atomic concept A is said to be **defined** if axiom $A \sqsubseteq C$

appears in \mathcal{T} , for some C.

- An atomic concept is said to be **primitive** if it is not defined.
- If concept name A is defined by axiom $A \sqsubseteq C \in \mathcal{T}$, hence $\mathcal{T}(A) = C$
 - is said to be the **definition** of A.

(B)

Expanded concepts and terminologies

• The definition function can be extended to complex concepts, in order to obtain **expanded concepts**:

$$\begin{aligned}
\hat{T}(A) &= T(A) \\
\hat{T}(C \sqcap D) &= \hat{T}(C) \sqcap \hat{T}(D) \\
\hat{T}(\forall R.C) &= \forall R.\hat{T}(C)
\end{aligned}$$

• If the TBox is **acyclic**, then the expansion process is **finite**, that is, there is a natural *n* such that:

$$\hat{T}^n = \hat{T}^{n+1}$$

• In this case we call *n* the **depth** of \mathcal{T} and $\hat{\mathcal{T}}^n = \tilde{\mathcal{T}}$, the **completely expanded terminology**.

Marco Cerami (UP)

Example

Consider the knowledge base $\mathcal{K}=(\mathcal{T})\text{, where:}$

```
\mathcal{T} = \{ Human \equiv Mammal \sqcap Biped, \\ Man \equiv Human \sqcap Male, \\ Son \equiv Human \sqcap Male \sqcap \forall hasParents.Human \}
```

Then:

$$\tilde{T} = \{ \text{Human} \equiv \text{Mammal} \sqcap \text{Biped}, \\ \text{Man} \equiv \text{Mammal} \sqcap \text{Biped} \sqcap \text{Male}, \\ \text{Son} \equiv \text{Mammal} \sqcap \text{Biped} \sqcap \text{Male} \sqcap \\ \forall \text{hasParents.} (\text{Mammal} \sqcap \text{Biped}) \}$$

Reducing acyclic to empty TBoxes

• Is is easy to show by **induction on the depth** of \mathcal{T} , that, for every concept *C* and every model \mathcal{I} of \mathcal{T} it holds:

$$C^{\mathcal{I}} = (\tilde{T}(C))^{\mathcal{I}}.$$

• Moreover, the following statements are equivalent:

- concept C is subsumed by concept D w.r.t. terminology \mathcal{T} ,
- concept $\tilde{T}(C)$ is subsumed by concept $\tilde{T}(D)$ w.r.t. the empty terminology.
- Hence, we can define algorithm *TSUBS*?[*D*, *C*, *T*] from algorithm *SUBS*?[*D*, *C*]:

 $TSUBS?[D, C, \mathcal{T}] = SUBS?[\tilde{T}(D), \tilde{T}(C)]$

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

The expansion is not polynomial

Let $n \in \mathbb{N}$ and consider the following terminology \mathcal{T}_n :

 $T_n(C_0) = C_0$ $T_n(C_1) = \forall R.C_0 \sqcap \forall P.C_0$ $T_n(C_2) = \forall R.C_1 \sqcap \forall P.C_1$ \vdots $T_n(C_n) = \forall R.C_{n-1} \sqcap \forall P.C_{n-1}$

Hence, even though the size of \mathcal{T}_n grows linearly in *n*, the size of $\tilde{\mathcal{T}}_n(C_n)$ grows exponentially in *n*.

co-NP-hardness

イロト イヨト イヨト イヨト

Unfolded terminologies

• We define the **unfolding function** *U* which returns sets of concepts from concepts:

$$U(A) = \{A\}$$
$$U(C \sqcap D) = U(C) \cup U(D)$$
$$U(\forall R.C) = \{\forall R.D \mid D \in U(C)\}$$

• The **completely unfolded form** U_T of a terminology T is defined by:

$$U_T = U \circ \tilde{T}$$

A B A A B A

Unfolding

Example

Consider the knowledge base $\mathcal{K} = (\mathcal{T})$, where:

```
\mathcal{T} = \{ \text{Human} \equiv \text{Mammal} \sqcap \text{Biped}, \}
             Man \equiv Human \sqcap Male,
            Son \equiv Human \sqcap Male \sqcap \forallhasParents.Human }
```

Then:

$$\begin{split} U_{\mathcal{T}} &= \{ \ \{ \texttt{Human} \} = \{ \texttt{Mammal}, \texttt{Biped} \}, \\ &\{ \texttt{Man} \} = \{ \texttt{Mammal}, \texttt{Biped}, \texttt{Male} \}, \\ &\{ \texttt{Son} \} = \{ \texttt{Mammal}, \texttt{Biped}, \texttt{Male}, \forall \texttt{hasParents}. \texttt{Mammal}, \\ &\forall \texttt{hasParents}. \texttt{Biped} \} \ \end{split}$$

Marco Cerami (UP)

▶ < E > < E >

Properties of the unfolded form

• Is is easy to show that, for every concept C and every model ${\cal I}$ of ${\cal T}$ it holds:

$$C^{\mathcal{I}} = (U_{\mathcal{T}}(C))^{\mathcal{I}}.$$

Every concept D ∈ U_T(C) is a linear description, that is a concept of the form:

$$\forall R_1.\forall R_2\ldots\forall R_n.A$$

where A is **primitive** in T.

- Moreover, the following statements are **equivalent**:
 - concept C is equivalent to concept D w.r.t. terminology \mathcal{T} ,
 - $U_T(C) = U_T(D).$

A B F A B F

Nondeterministic finite state automata

A nondeterministic finite state automaton (NDFA) is a tuple:

$$\mathcal{A} = (\Sigma, \mathcal{Q}, \delta, q_0, \mathcal{F})$$

where:

- Σ is a set of symbols or **alphabet**,
- \mathcal{Q} is a set of **states**,
- $\delta: \Sigma \times \mathcal{Q} \longrightarrow 2^{\mathcal{Q}}$ is a transition function,
- $q_0 \in \mathcal{Q}$ is the **initial state**,
- $\mathcal{F} \subseteq \mathcal{Q}$ is a set of **accepting states**.

A B M A B M

Properties of NDFAs

- A state q' ∈ Q is reachable from a state q by word w = s₁...s_n iff there exists a sequence of states q₁,..., q_{n+1} with:
 - $q = q_1$,
 - $q' = q_{n+1}$,
 - $q_{i+1} \in \delta(q_i, s_i)$, for $1 \leq i \leq n$.
- The set $\mathcal{L}(\mathcal{A})$ of words w such that some final state is reachable from q_0 is called the **language accepted by** \mathcal{A} .
- Two automata \mathcal{A}_1 and \mathcal{A}_2 are **equivalent** iff $\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$.
- A state q ∈ Q is redundant either if it can not be reached from the initial state or if it can not reach any final state.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Acyclic nonredundant NDFAs

- An automaton is called **nonredundant** if ti does not contain any redundant state.
- A NDFA is called acyclic if no state is reachable from itself.
- Let $\mathcal{L}(\mathcal{A})$ be the language of a nonredundant NDFA $\mathcal{A}.$ Then the following are equivalent:
 - A is acyclic,
 - $\mathcal{L}(\mathcal{A})$ is finite.
- If L(A₁) and L(A₂) are finite, then determining equivalence between A₁ and A₂ is co-NP-complete.
- In what follows we will consider **acyclic nonredundant NDFAs** (ANDFAs).

- * @ * * 注 * * 注 * - 注

Reduction of ANDFAs

Let $\mathcal{A}_1 = (\Sigma, \mathcal{Q}_1, \delta_1, q_{0_1}, \mathcal{F}_1)$ and $\mathcal{A}_2 = (\Sigma, \mathcal{Q}_2, \delta_2, q_{0_2}, \mathcal{F}_2)$ be two **acyclic nonredundant NDFAs** with $\mathcal{Q}_1 \cap \mathcal{Q}_2 = \emptyset$. Then we can construct a **terminology** $\mathcal{T}_{\mathcal{A}}$ in the following way:

•
$$N_R = \Sigma$$
,

•
$$N_C = \mathcal{Q}_1 \cup \mathcal{Q}_2 \cup F$$
,

• $\mathcal{T}_{\mathcal{A}}(F) = F$ is the only primitive concept,

•
$$\mathcal{T}_{\mathcal{A}}(q) = \begin{cases} \mathsf{F}, & \text{if } q \in \mathcal{F}_1 \cup \mathcal{F}_2 \\ \prod \{ \forall s.q' \colon q' \in \delta_i(q,s), i = 1, 2 \} & \text{otherwise} \end{cases}$$

Since A_1 and A_2 are **nonredundant**, then the concepts are **well-defined**. Since A_1 and A_2 are **acyclic**, then so in \mathcal{T}_A and it is possible to define $U_{\mathcal{T}_A}$.

Marco Cerami (UP)

Reduction

Example

Let $\Sigma = \{s, r, t\}$ and $q \in \mathcal{Q}$ be such that:

•
$$\delta(q, s) = \{q_1, q_2\},$$

•
$$\delta(q, r) = \{q_2, q_3, q_4\},$$

•
$$\delta(q, t) = \{q_5, q_6\},\$$

Then

$$\mathcal{T}_{\mathcal{A}}(q) = orall s. q_1 \sqcap orall s. q_2 \sqcap orall r. q_2 \sqcap orall r. q_3 \sqcap orall r. q_4 \sqcap orall t. q_5 \sqcap orall t. q_6$$

Where the states q_1, q_2, q_3, q_4, q_5 and q_6 , if are not final states, can be further expanded according to the function δ , but in the same way as for \hat{T} .

A B F A B F

Completeness of the reduction

Let
$$w = s_1 \dots s_n \in \Sigma^*$$
 and $i = 1, 2$, then:

 $w \in \mathcal{L}(\mathcal{A}_i)$ iff $\forall s_1 \dots \forall s_n. F \in U_{\mathcal{T}_{\mathcal{A}_i}}(q_{0_i})$

 (\Rightarrow) Assume that w is a word **accepted** by A_i . Then there is a sequence of states q_1, \ldots, q_{n+1} such that

•
$$q_1 = q_{0_i}$$
,

•
$$q_n \in \mathcal{F}_i$$
,

$$\vdash q_{j+1} \in \delta(q_j, s_j), \text{ for } 1 \leqslant j \leqslant n.$$

By the way in which T_A is constructed and the definition of $U_{T_{A_i}}$, it is possible to prove by induction on the length of w, that

$$\forall s_1 \ldots \forall s_n. F \in U_{\mathcal{T}_{\mathcal{A}_i}}(q_{0_i}).$$

(\Leftarrow) Conversely, if $\forall s_1 \dots \forall s_n . F \in U_{T_{\mathcal{A}_i}}(q_{0_i})$, then by the way $T_{\mathcal{A}}$ is constructed, we have that a state $q \in \mathcal{F}_i$ is reachable from q_{0_i} by w in \mathcal{A}_i . That is, $w \in \mathcal{L}(\mathcal{A}_i)$.

Marco Cerami (UP)

Reduction

Conclusions

Hence

$$\mathcal{L}(\mathcal{A}_1) = \mathcal{L}(\mathcal{A}_2)$$
 iff $q_{0_1} \equiv_{\mathcal{T}_{\mathcal{A}}} q_{0_2}$.

- Therefore, concept equivalence and subsumption in \mathcal{TL} are co-NP-hard problems.
- The fact that these problem are also in **co**-NP is easy to prove: think on an algorithm guessing a linear description of concept Cand checks whether it belongs to the completely unfolded form of concept D.

< 3 > < 3 >