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Lewis' System of Spheres for Classical Counterfactuals

I As commonly understood, a counterfactual is a conditional

sentence whose antecedent is false.

I Material implication (from e.g. classical logic) makes

conditional sentences with a false antecedent unconditionally

true.

I In contrast with material implication sentences, a false

antecedent does not make the counterfactual conditional

automatically true.



Lewis' Semantics for Classical Counterfactuals

Lewis (1973) provided a semantics for classical logic counterfactuals

based on a type of structures called Systems of Spheres.

De�nition
A system of spheres on a set W , denoted by $, is a subset of

P(W ) such that $ is

1. totally ordered by inclusion, and

2. closed under arbitrary unions and non-empty intersections.



Let [ϕ] ⊆W denote the set of possible worlds in which ϕ is true.

De�nition
Let W be a set of possible worlds, $ a system of spheres on W ,

i ∈W and, for every formula ϕ, then:
A counterfactual ϕ 2→ ψ is true in a world i , iff

1. either [ϕ] = ∅,
2. or w |= ψ, for every w ∈ [ϕ] which belongs to the sphere

S ∈ $i closest to i , such that S ∩ [ϕ] 6= ∅.

A counterfactual ϕ 3→ ψ is true in a world i , iff

1. either [ϕ] = ∅
2. or w |= ψ, for some w ∈ [ϕ] which belongs to the sphere

S ∈ $i closest to i , such that S ∩ [ϕ] 6= ∅.



Figure: Semantics for would-counterfactuals



Figure: Semantics for might-counterfactuals



Would-might interde�nability in the classical case.

In the classical framework, like in Modal Logic, it is usually

su�cient to assume as primitive only one of the above symbols and

to de�ne the other by means of negation.

Proposition

Let ϕ,ψ be arbitrary formulas, then:

1. ϕ 2→ ψ ≡ ¬(ϕ 3→¬ψ)

2. ϕ 3→ ψ ≡ ¬(ϕ 2→¬ψ)



Vague Sentences

I We consider a vague sentence as a sentence that, by the

nature of the meaning involved cannot be understood as

merely true or false.

I As an example, if we �x that a tall man is a man whose height

is greater or equal to 1.80 m, we cannot consider a man who is

1.79 m tall as a short man, even if he is not tall.

Considerations like these drove to the ancient Sorites paradox;

a modern way to overcome such paradox has been to consider

fuzzy sets.



I Zadeh (1965) de�ned a fuzzy set M as a set whose

characteristic function χM , is a function which returns a real

value between 0 and 1, i.e. χM(x) ∈ [0, 1].

I A characteristic function, in the classical framework, is a

function χ such that χM(x) = 1 if an individual x is element

of a set M and χM(x) = 0 otherwise.

I Intuitively, if M is the set of tall men and x is a man who is

1,79 m tall, then we may have, say, χM(x) = 0.95.



Example of vague sentences (i)

The mountain x is height.
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Example of vague sentences (ii)

The place x is near from Salzburg.
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t-norms

De�nition
A t-norm is a binary operation ∗ : [0, 1]2 → [0, 1] such that:

1. ∗ is commutative and associative.

2. ∗ is non-decreasing in both arguments.

3. For every x ∈ [0, 1], it holds that 1 ∗ x = x and 0 ∗ x = 0.

If, moreover, ∗ is a continuous mapping from [0, 1]2 to [0, 1], we
talk about a continuous t-norm.



The main examples of continuous t-norms are:

1. �ukasiewicz t-norm (denoted by �), de�ned by the function:

x ∗ y = max(0, x + y − 1),

2. Gödel t-norm (denoted by G ), de�ned by the function:

x ∗ y = min(x , y),

3. Product t-norm (denoted by Π), de�ned by the function:

x ∗ y = x · y .



Residua

De�nition
Let ∗ be a t-norm, then its residuum is a binary operation

⇒∗ : [0, 1]2 → [0, 1] such that, for every x , y ∈ [0, 1]:

x ⇒∗ y = sup{z ∈ [0, 1] | x ∗ z ≤ y}

Intuitively, residua are the semantics of implications, indeed, it the

framework of Fuzzy Logic, the expression material implication is

substituted by the more general residuated implication.



The main examples of residua are:

1. �ukasiewicz, de�ned by the function:

x ⇒∗ y = min(1, 1− x + y),

2. Gödel, de�ned by the function: x ⇒∗ y = 1, if x ≤ y , y ,
otherwise,

3. Product, de�ned by the function: x ⇒∗ y = min(1, y
x

).



Quantitative vs meta-linguistic criteria

I In a classical framework, it is the same to say that a given

sentence ϕ is true, holds or that it has value 1.

I So, in this case, it is possible to express the truth value of a

sentence by means of a meta-linguistic expression.

I For this reason, Lewis does not consider important to give a

quantitative de�nition of his truth conditions for

counterfactuals.



I In a context of multi-valued sentences, we deal with a di�erent

situation: as a simple remark, to give meta-linguistic account

for each truth value, we would need an in�nite set of

adjectives ranging between true and false...

I ...and we are not sure that there exists any natural language

that posses all these expressions.

I The natural choice seems then to be using numbers.



Vague counterfactuals

I By a vague counterfactual we understand a counterfactual

involving vague sentences, i.e., sentences, that are not merely

true or false, but can be evaluated in [0, 1].

I This implies that the counterfactual, as a formula, can be

evaluated in [0, 1] as well.

I The most widely accepted de�nition of a (classical)

counterfactual is to be a conditional with a false (within the

actual world) antecedent, but...

I while in the classical framework there is no di�erence between

speaking about a false antecedent and about an antecedent

that is not true, in a multi-valued framework we have the

chance of smarter speci�cations which allow a wider

expressivity.



The value of the antecedent

As an example, consider the sentence:

�If I was tall, I would touch the roof�

I This sentence assumes that, in the actual world, I am not tall

in degree 1... not that I am tall in degree 0,

I in other words, I can think that I'm not tall even without

thinking that I'm short.



I A �rst choice would be simply to consider worlds where the

antecedent ϕ takes value 1;

I more generally, we could consider worlds where ϕ takes a value

higher than, say, r ;

I a particular case of the latter would consist in setting r to be

the actual value for ϕ.

I In what follows we consider these accounts and present a

possible way to formalize them.



De�nition of 1-semantics

I We de�ne �rst a simple extension of the semantics for the

crisp case, now de�ning ϕ-worlds as worlds w where ϕ is

1-true: e$
w (ϕ) = 1.

I Intuitively, our de�nition tries to select those worlds w such

that ew (ϕ) = 1 and belong to the nearest sphere where there

is some world w ′ such that ew ′(ϕ) = 1.

_e?
w

(ϕ)

ew (ϕ)=1_

_0



De�nition
The 1-semantics of would counterfactuals ϕ 2→ ψ and might
ϕ 3→ ψ is de�ned by:

I e1w?(ϕ 2→ ψ) = inf{ew (ψ)}, where ew (ϕ) = 1 and w belongs

to the sphere S ∈ $i closest to i which contains a world w ′

such that ew ′(ϕ) = 1.

I e1w?(ϕ 3→ ψ) = sup{ew (ψ)} where ew (ϕ) = 1 and w belongs

to the sphere S ∈ $i closest to i which contains a world w ′

such that ew ′(ϕ) = 1



A troubling example

I It is indeed possible to further generalize such a semantics to

the > r -case, in order to obtain a more re�ned tool with

respect to vague counterfactual.
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I The task, however, seems to be non-trivial: observe �rst that a

simple (further) generalization of the previous 1-semantics to

the > r -case will have the counterintuitive result of making

ϕ 2→ ϕ non-tautological (i.e. not 1-true).



Example

I For a �xed r < 1, replace (in the 1-semantics above) in each

e(·)(ϕ) = 1 clause, the expression = 1 by expression ≥ r .

I Also assume the actual world assigns ϕ a degree < r .

I Now, say the $-system contains a ϕ-world w (i.e. e$
w (ϕ) ≥ r)

in the closest sphere S .

I Then, according to this semantics, we would have

e≥rw?(ϕ 2→ ψ) = inf{ew (ψ)} where ew (ϕ) ≥ r and w belongs

to the sphere S ∈ $i closest to i which contains a world w ′

such that ew ′(ϕ) ≥ r .

I With such a de�nition, inf{ew (ψ)} in the desired world w
turns out to be equal to r < 1

I Hence e≥rw?(ϕ 2→ ϕ) < 1, i.e. the sentence "if I was tall, then I

would be tall" is not a tautology.



De�nition of ≥ r -semantics

A simple way to overcome such a problem, inspired on Modal Logic,

is to de�ne the value of the counterfactual from the value of the

corresponding residuated implication in the possible world w , such

that ew (ϕ) ≥ r and w is in the closest sphere to the actual world.



A formal account of this condition is given in the following

de�nition:

De�nition
For a given r ∈ [0, 1]0, let

Kr = {w ∈W : ew (ϕ) ≥ r and w belongs to the sphere S ∈ $i

closest to i which contains a world w ′ such that

ew ′(ϕ) ≥ r}

Then we de�ne the ≥ r -semantics of 2→ and 3→ as follows:

e≥rw?(ϕ 2→ ψ) = inf{ ew (ϕ→∗ ψ) | w ∈ Kr}
e≥rw?(ϕ 3→ ψ) = sup{ ew (ϕ ∗ ψ) | w ∈ Kr}



Intuitive interpretation

Intuitively, this kind of implication is appropriate when we can give

an exact degree (lower bound) to the expected value of the

antecedent

Example

I Assume we interpret truth at degree (at least) 0.8 as very true

(correspondingly, very [humanely] tall, very [mountainly] tall,
. . . ).

I Then we can formalize the following sentences by means of a

≥ r -semantics:

(1) If I was very rich, I would be happy. (ϕ, 0.8) 2→ ψ
(2) If I was very rich I might be happy. (ϕ, 0.8) 3→ ψ



De�nition of more-than-actual Semantics

The main goal of a semantics for vague counterfactual is, however,

to de�ne the truth value of a counterfactual in the case when the

antecedent has a value greater than the actual one.
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Taking as a starting point the last de�nition, the weakest condition

to be imposed on antecedents of vague counterfactuals will

consider worlds where its truth-value is (at least) just slightly higher

than in the actual world.

De�nition
Let W be a set of possible worlds, w? ∈W and $ a system of

spheres, then:

(1) e>w?−
w? (ϕ 2→ ψ) = infr>e

w
? (ϕ){erw?(ϕ 2→ ψ)}

(2) e>w?+
w? (ϕ 2→ ψ) = supr>e

w
? (ϕ){erw?(ϕ 2→ ψ)}



Intuitive interpretation (i)

I As we have seen above, starting from the same ≥ r -semantics,

we can obtain two di�erent kind of de�nition.

I By means of such a di�erence it is possible to give account of

di�erent natural language counterfactuals.

I By (1) it is possible to give truth conditions for

counterfactuals with antecedents that, in the possible world

considered, have a value just higher than the actual one.



An example can be:

If Salzburg was nearer, there would be a tube line to arrive there.

However, even if this seems to be the proper semantics for vague

would counterfactual, it make sense with a �nite set of truth

values, since, with a dense one, the value of the antecedent seems

to collapse to the actual one.



An example

To show that, in �nitely-valued fuzzy logics, the > w?-semantics is

a particular case of ≥ r -semantics consider:

e>w?

w? (ϕ 2→ ψ) = inf { ew (ϕ→ ψ) | ew (ϕ) ≥ r , and w ∈ Kr}

where r is the least value higher than ew?(ϕ) in a �nite set of truth

values.



The more-than-actual semantics in the dense-valued case, typically

[0, 1] ∩Q, leads to a di�erent situation, since, this time, de�nition

(1) is not a particular case of the ≥ r -semantics.

Example

I To see this fact, let ϕ,ψ be two vague sentences such that, for

each possible world w ∈W , ew (ψ) = 1− ew (ϕ) and suppose

that, for each S , S ′ ∈ $, it holds that if S ′ is outer than S , then
there exist w ∈ S and w ′ ∈ S ′, such that ew (ϕ) < ew ′(ϕ).

I So, if we consider the counterfactual ϕ 2→ ψ, we have that,

for each r ≥ ew?(ϕ), it holds that
erw?(ϕ 2→ ψ) > e>w?−

w? (ϕ 2→ ψ).



Figure: ≥ r -semantics when ew (ϕ) > ew?(ϕ)



Figure: More-than-actual semantics



Intuitive interpretation (ii)

I By (2) it is possible to give truth conditions for

counterfactuals with antecedents that, in the possible world

considered, have a value enough higher than the actual one.

I An example can be:

If Salzburg was near enough, we would come each weekend.

I This settling works also with a dense set of truth values, but is

indeed too narrow to give an account for each kind of

counterfactual.



Dual counterfactuals

In the �ukasiewicz framework we have that the dual of the above

de�nitions are:

(1) e>w?−
w? (ϕ 3→ ψ) = supr>e

w
? (ϕ){erw?(ϕ 3→ ψ)}

(2) e>w?+
w? (ϕ 3→ ψ) = infr>e

w
? (ϕ){erw?(ϕ 3→ ψ)}



An example of (1) can be:

If Salzburg was near enough, we might come each weekend.

An example of (2) can be:

If Prague was nearer, there might be a tube line to arrive there.



Counterfactuals in semantics without an involutive negation

I For the cases of Gödel and Product, we have v(ϕ) > 0 implies

v(¬ϕ) = 0, and v(ϕ) = 0 implies v(¬ϕ) = 1.

I This causes a problem when naively adopting the semantics of

the classical case. Suppose we want to evaluate the

counterfactual:

(ϕ) = If I was tall, I would reach the roof.



I Suppose in the actual world, I'm tall with degree 0.4, i.e.
ew∗(ϕ) = 0.4.

I By the properties of Gödel negation, this implies that

ew∗(¬ϕ) = 0.

I If we look at possible worlds w where the antecedent is true,

that is, worlds w where ew (ϕ) = 1 we �nd that in all these

worlds w , ew (¬ϕ) = 0...

I ...just like in the actual one.



Reduction of the classical framework to ours

I The restriction to crisp systems makes the inf- and ∀- clauses
(and, hence, the respective semantics) equivalent.

I In other words, it is possible to prove that Lewis' semantics for

counterfactuals is a particular case of the preceding semantics

under the condition that the evaluations are restricted to

{0, 1}, as in classical logic.



Proposition

Let ecw (·) denote Lewis' semantics and W a set of classical possible
worlds (i.e. W ⊆ {ecw : Var→ {0, 1}}). For any classical system of
spheres $ and any world w ∈W, the 1-semantics e1w (·) de�nition
gives:

ecw (ϕ 2→ ψ) = e1w (ϕ 2→ ψ)

and
ecw (ϕ 3→ ψ) = e1w (ϕ 3→ ψ)



Interde�nability

I In the particular case of �ukasiewicz, we also have that

classical inter-de�nability of would and might counterfactuals
is preserved (this is due to the fact that ∗� is the only t-norm

whose negation e(ϕ)⇒ 0 is involutive, and hence behaves well

with inf).

I In the next result, in � logic, we assume non-counterfactual

connectives are evaluated according to �ukasiewicz semantics:

e(ϕ ∗ ψ) = max{0, e(ϕ) + e(ψ)− 1}, and
e(ϕ→� ψ) = min{1, 1− e(ϕ) + e(ψ)}.



Proposition

Let W be a set of possible worlds, w ∈W and let ¬ denote
�ukasiewicz negation, then:

e1w (ϕ 3→ ψ) = e1w (¬(ϕ 2→¬ψ))

and
e1w (ϕ 2→ ψ) = e1w (¬(ϕ 3→¬ψ))



Reduction of Lewis' semantics to ours

This last kind of de�nition, does not violate Lewis' truth condition

in the classical case, but it is a generalization of it.

Indeed, if we restrict the truth values of the sentences involved in

the counterfactual to {0, 1}, we obtain Lewis' truth conditions:

Proposition

Setting r = 1 for a given system of spheres $ and world w?,
≥ r -semantics (in classical valuations only) collapses to Lewis'.

ew?(ϕ 2→ ψ) = er=1
w? (ϕ 2→ ψ)

ew?(ϕ 3→ ψ) = er=1
w? (ϕ 3→ ψ)



Interde�nability

In this case, too, �ukasiewicz semantics allows us to obtain an

interde�nability result of the kind of Lewis.

Proposition

Let W be a set of possible worlds, w ∈W and let ¬ denote
�ukasiewicz negation, then:

e≥rw (ϕ 3→ ψ) = e≥rw (¬(ϕ 2→¬ψ))

and
e≥rw (ϕ 2→ ψ) = e≥rw (¬(ϕ 3→¬ψ))


	Preliminaries
	Classical Counterfactuals and Lewis' Semantics
	Vague sentences

	Vague Counterfactuals
	Presentation of the problem
	Consequent-based 1-semantics for vague counterfactuals
	Implication-based r-semantics for vague counterfactuals.
	More-than-actual Semantics
	Reductions


