An Introduction to Modal Logic XI

PSPACE completeness (part I)

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, December 5th 2013

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UPOL)

Modal Logic X

Introduction

- We have proved that the satisfiability problem of the minimal normal modal logic *K* is PSPACE-**hard**;
- this means that every problem that is in PSPACE can be polynomially reduced to the satisfiability problem of K;
- but this still **does not mean** that the same problem can be solved using an amount of space that is polynomial on the size of the instance.
- Now, we are going to prove that this problem is in PSpace.
- In order to achieve this result, we are going to prove that this problem can be solved by a **non-deterministic** Turing machine that runs in PSPACE;
- the desired result will then follow from the fact that PSPACE = NPSPACE.

Marco Cerami (UPOL)

Structure of the proof

- We will prove that the algorithm **Witness** is sound and complete with respect to the satisfiability problem for *K*.
- The proof consists of two parts:
 - a modal formula φ is K-satisfiable if and only if there exists a structure called Witness set for φ;
 - there exists a Witness set if and only if algorithm Witness outputs true as answer.
- For each part **both** completeness and soundness will be proved.

Hintikka Sets

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Intuition

- A Witness set for a modal formula φ is a syntactical structure;
- it is built up from suitable sets of subformulas of φ, called Hintikka sets;
- the idea is building possible worlds of a Kripke model from subformulas of φ;
- intuitively, the **successor** in the accessibility relation of a given Hintikka set *H* contains some of the formulas ψ such that ψ appears with a modality in *H*;
- a Witness set is essentially a kind of **tableau** for φ .

・ロン ・四 ・ ・ ヨン ・ ヨン

Closed sets

- A set of formulas Σ is said to be closed if it is closed under subformulas and single negations, that is:
 - **1** if $\sigma \in \Sigma$ and θ is a **subformula** of σ , then $\theta \in \Sigma$,
 - **2** if $\sigma \in \Sigma$ and $\sigma \neq \neg \theta$ for any formula θ , then $\neg \sigma \in \Sigma$.
- If Γ is a set of formulas, then Cl(Γ) the closure of Γ is the smallest closed set of formulas containing Γ;
- a set of formulas Γ is closed if $CI(\Gamma) = \Gamma$;
- if Γ is a **finite** set of formulas, so is $Cl(\Gamma)$.

- 4 同 6 4 日 6 4 日 6

Closed sets: example

Consider the set of formulas:

$$\Sigma := \{\Box(p \wedge q), \neg \Box p, \neg \Box q\}$$

then $Cl(\Sigma)$ contains the following formulas:

 $\Box(p \land q), \neg \Box(p \land q),$ $p \land q, \neg (p \land q),$ $\neg \Box p, \Box p$ $\neg \Box q, \Box q,$ $p, \neg p,$ $q, \neg q.$

- 4 回 ト 4 ヨ ト - ヨ - シック

Hintikka sets

Let Σ be a closed set of formulas. A **Hintikka set** *H* over Σ is a **maximal** subset of Σ that satisfies the following conditions:

- $\bullet \perp \notin H,$
- **2** if $\neg \sigma \in \Sigma$, then $\neg \sigma \in H$ if and only if $\sigma \notin H$,
- **③** if $\sigma \land \theta \in \Sigma$, then $\sigma \land \theta \in H$ if and only if $\sigma \in H$ and $\theta \in H$,
- if $\sigma \lor \theta \in \Sigma$, then $\sigma \lor \theta \in H$ if and only if $\sigma \in H$ or $\theta \in H$,
- \circ all formulas in Σ are in Negation Normal Form.
- Hintikka sets do not contain any propositional inconsistencies;
- nevertheless they are not necessarily modally satisfiable;
- when a Hintikka set is modally satisfiable, we call it **atom**.

Hintikka sets: example

Consider again the set of formulas:

$$\Sigma \ := \ \{\Box(p \wedge q), \lnot \Box p, \lnot \Box q\}$$

and its closure $CI(\Sigma)$. Then we can obtain a Hintikka set H by dropping the red formulas:

$\Box(p\wedge q)$,	$ eg \square(p \land q),$		
$p \wedge q$,	$ eg(p \wedge q)$,	\rightsquigarrow	$ eg p \lor eg q$,
$\neg \Box p$,	$\Box p$	\rightsquigarrow	$\Diamond \neg p$,
$ eg \square q$,	<i>□q</i> ,	\rightsquigarrow	$\Diamond \neg q$
<i>p</i> ,	$\neg p$,		
<i>q</i> ,	$\neg q$.		

Nevertheless the above Hintikka set *H* is not an atom because the set $\{\Box(p \land q), \Diamond \neg p\}$ is inconsistent.

Demands

 Let Σ be a closed set, H a Hintikka set over Σ and ◊ψ ∈ H. Then the demand that ◊ψ creates in H is:

$$Dem(H, \Diamond \psi) := \{\psi\} \cup \{\theta \colon \Box \theta \in H\}.$$

- We will denote by $H_{\Diamond\psi}$ the set of Hintikka sets over $Cl(Dem(H, \Diamond\psi))$ that contain $Dem(H, \Diamond\psi)$.
- The operation of creating a demand, differently from chosing a Hintikka set, is **deterministic**.
- For every finite Hintikka set, the number of demands that can be created is **finite**.

A B F A B F

Demands: example

Consider again the set of formulas:

$$\Sigma := \{\Box(p \wedge q), \neg \Box p, \neg \Box q\}$$

its closure $CI(\Sigma)$ and the Hintikka set H formerly chosen:

$$\Box(p \wedge q), \quad \Diamond \neg p, \quad \neg \Diamond q, \quad \neg p \lor \neg q, \quad \neg p, \quad q.$$

Consider the demand $Dem(H, \Diamond \neg p)$ created in H by formula $\Diamond \neg p$:

$$\Box(p \land q), \quad \Diamond \neg p, \quad \neg \Diamond q, \quad \neg p \lor \neg q, \quad \neg p, \quad q.$$

Clearly, the set $\{p \land q, \neg p\}$ is not satisfiable, hence the set $H_{\neg \diamond p}$ of Hintikka sets over $Cl(Dem(H, \neg \diamond \psi))$ that contain $Dem(H, \neg \diamond \psi)$ is empty.

Marco Cerami (UPOL)

How to use these tools

• Intuitively:

- the closure of a set plays the role of a point in the model,
- the Hintikka set on a closure plays the role of a propositional valuation on that point,
- the demand in a Hintikka set plays the role of the relation between a point and an its successor.
- The idea is to check **all possible** demands on **all possible** Hintikka sets until either a satisfiable family is found or the search space has been fully checked.
- Clearly, for every formula, the search space is finite.

A B < A B <</p>

K-satisfiability

and Witness sets

Marco Cerami (UPOL)

Modal Logic XI

◆ □ ▶ ◆ 🗇

(目) 目 つへで 5.12.2013 13 / 22

< ≥ > < ≥ >

Definition

Witness Sets

Let Σ be a finite closed set, H a Hintikka set over Σ . Then $\mathcal{H} \subseteq \mathcal{P}(\Sigma)$ is a witness set generated by \mathcal{H} on Σ if:

- $I \in \mathcal{H}.$
- 2 if $I \in \mathcal{H}$, then for each $\Diamond \psi \in I$, there is $J \in I_{\Diamond \psi}$ such that $J \in \mathcal{H}$.
- \bigcirc if \triangleright $J \in \mathcal{H}$.
 - ► $J \neq H$,

then for some n > 0 there are I^0, \ldots, I^n such that:

- $H = I^0$.
- \blacktriangleright $J = I^n$.
- for each $0 \le i < n$ there is a formula $\Diamond \psi \in I^i$ such that $I^{i+1} \in I^i_{\Diamond u}$

Atoms and Witness Sets

Let Σ be a finite closed set of formulas and H a Hintikka set over Σ , then:

 $\begin{array}{ccc} \text{there is a Witness set} \\ H \text{ is an } \textbf{atom} & \Longleftrightarrow & \text{generated by } H \\ & & \text{on } \Sigma \end{array}$

The left to right direction is proved by induction on the modal degree deg(Σ) of Σ,

 the modal degree of a set of formulas Σ is the maximum of the modal degrees of the formulas belonging to Σ.

From models to Witness Sets

Suppose that *H* is an atom.

- 0 If $deg(\Sigma) = 0$, then it is a set of propositional formulas. Hence $\mathcal{H} = H$ is trivially a witness set.
- d Let $deg(\Sigma) = d$ and suppose that for every Σ' s.t. $deg(\Sigma') < d$, every atom H' over Σ generates a Witness set over Σ .
 - Since *H* is an atom, then there is a model $\mathcal{M} = \langle W, R, V \rangle$ and $w \in W$ such that $\mathcal{M}, w \models H$,
 - ▶ hence, for each $\diamond \psi \in H$ there is $v \in W$ such that R(w, v) and $\mathcal{M}, v \models Dem(H, \diamond \psi)$.

イロト 不得下 イヨト イヨト 二日

- Let Ψ be the set of formulas satisfied in v,
- then the set

$$W^{\psi} := \Psi \cap Cl(Dem(H, \Diamond \psi))$$

is an atom that contains $Dem(H, \Diamond \psi)$, that is $I^{\psi} \in H_{\Diamond \psi}$.

- ▶ By definition, $deg(Cl(Dem(H, \Diamond \psi)) = I^{\psi} < d$ for every $\Diamond \psi \in H$,
- hence, for every ◊ψ ∈ H, by h.i., I^ψ generates a Witness set I^ψ on Cl(Dem(H, ◊ψ)).
- Therefore, the set:

$$\mathcal{H} = \{H\} \cup \bigcup_{\Diamond \psi \in H} \mathcal{I}^{\psi}$$

is a Witness set generated by H on Σ .

From Witness Sets to models: building the model

Suppose that H generates a Witness set \mathcal{H} on Σ . We will build a model inductively.

Let $\{w_0, w_1, \ldots\}$ a countable set of points. Define:

$$W_0 = \{w_0\}, R_0 = \emptyset, f_0(w_0) = H.$$

n+1 Suppose that W_n , R_n and $f_n(w_n)$ have been already defined, then:

▶ if for all $w \in W_n$ such that $\Diamond \psi \in f_n(w)$ there exists $w' \in W_n$ such that

$$\ \, \bullet \in f_n(w'),$$

2
$$f_n(w') \in (f_n(w))_{\diamond \psi}$$

then halt the construction.

Otherwise, if there is w ∈ W_n such that ◊ψ ∈ f_n(w), but does not exist w' ∈ W_n such that the above condition are satisfied, define:

$$\star W_{n+1} = W_n \cup \{w_{n+1}\},$$

★
$$R_{n+1} = R_n \cup \{(w, w_{n+1})\},\$$

★ $f_{n+1} = f_n \cup \{(w_{n+1}, I)\},$

where $I \in (f_n(w))_{\Diamond \psi}$ (remind that there exists a Witness set \mathcal{H} and it always exists).

- Since deg(H) is finite, the construction halts at some finite m,
- Once the construction halted, define a propositional valuation V on every w ∈ W_m as:

$$V(w) := f_m(w) \cap Prop.$$

・ 日 ・ ・ ヨ ・ ・ ヨ ・

From Witness Sets to models: \mathfrak{M}_m is a model of H

Now we have to prove that $\mathfrak{M}_m, w_0 \vDash H$.

In order to achieve this result, we will prove, by induction on the modal degree of Hintikka sets I, that for every point $w \in W_m$ such that $f_m(w, I)$, it holds that

$$\mathfrak{M}_m, w \models I.$$

So, let $w \in W_m$ and $I \in \mathcal{H}$, then:

0 if deg(I) = 0, then it is straightforward from the definition of f_m and the fact that $f_m(w)$ is a Hintikka set.

イロト 不得下 イヨト イヨト 二日

- d Let deg(I) = d and suppose, by h.i., that for every $J \in \mathcal{H}$ with deg(J) < d and every point $w \in W_m$ such that $f_m(w, J)$, the statement holds. Then
 - for every the formulas $\theta \in I$ with $deg(\theta) = 0$ the result is straightforward again from the definition of f_m and the fact that $f_m(w)$ is a Hintikka set.
 - Let $\Diamond \psi \in I$,
 - ▶ by definition, there is $v \in W_m$ such that $R_m(w, v)$ and $f_m(v) \in I_{\Diamond \psi}$;
 - since $f_m(v) \in I_{\diamond \psi}$, then $deg(f_m(v)) < d$ and $\psi \in f_m(v)$;
 - ▶ by i.h. $\mathfrak{M}_m, v \vDash f_m(v)$, hence $\psi \in V(v)$.
 - Hence $\mathfrak{M}_m, w \vDash \Diamond \psi$,
 - therefore $\mathfrak{M}_m, w \models I$.

In particular $\mathfrak{M}_m, w_0 \vDash H$.

Conclusion of the proof

- We have proved that a Hintikka set H over a closed set Σ is an atom if and only if there is a Witness set generated by H on Σ.
- In particular, if we take Σ = Cl({φ}) for a given modal formula φ, we have that φ is satisfiable if and only if there is a Hintikka set H over Cl({φ}) which generates a Witness set on Cl({φ}).
- Moreover, the proof shows that if φ is satisfiable, it is in a model of φ that is:
 - tree-shaped,
 - **shallow**, since every path in the tree has at most length $deg(\varphi)$.
- This information will be useful later on when proving that the algorithm *Witness* can be implemented in PSPACE.

Marco Cerami (UPOL)