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Syntax

Language and formulas
Language

A countable set of propositional variables Prop = {p, q, . . .},
the classical propositional constants > and ⊥,

the classical propositional connectives ∧, ∨, → and ¬,

two unary modal connectives 2 and 3.

Formulas
The set Φ of modal formulas is inductively built from Prop in the
following way:

Propositional variables and constants are formulas,

if ϕ and ψ are formulas, then ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ and ¬ϕ are
formulas,

if ϕ is a formula, then 2ϕ and 3ϕ are
formulas.
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Normal Modal Logics

Definition
A normal modal logic Λ is a set of formulas containing:

all classical tautologies (in the modal language),

2(p → q)→ (2p → 2q) (axiom (K)),

2 p ↔ ¬3¬p,

3p ↔ ¬2¬p,

and is closed under:

(MP) Modus Ponens: if ϕ ∈ Λ and ϕ→ ψ ∈ Λ, then ψ ∈ Λ,

(US) Uniform Substitution: if ϕ ∈ Λ, then ψ ∈ Λ, where ψ is
obtained from ϕ by replacing propositional variables by
arbitrary formulas,

(G) Generalization: if ϕ ∈ Λ, then 2ϕ ∈ Λ.
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Remarks
in this way a modal logic is defined as set of theorems, rather
than as a deducibility operator;

the set-like definition can be equivalently replaced by an
Hilbert-style axiomatic system based on the notion of
deducibility;

in this sense every modal logic is the expansion of CPL by
means of two (or more) modal connectives;

there exists a minimal normal modal logic and it is denoted
by K (after S. Kripke);

note that Lewis’ S1 system is not a normal modal logic;

we are indeed defining what a uni-modal logic is, but this
framework can be extended to any countable set of modalities;

nevertheless, normal modal logics are
defined semantically.
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Axiomatic Extensions: axioms

(4) 2p → 22p

(T) 2p → p

(B) p → 23p

(D) 2p → 3p

(E) 3p → 23p

(M) 23p → 32p

(G) 32p → 23p

(L) 2(2p → p)→ 2p
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Axiomatic Extensions: logics

T  KT

K 4  K 4

S4  KT 4

B  KTB

S5  KT 4B or KT 4E

GL  KL

D  KD

D4  KD4
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Semantics Kripke frames and models

Kripke frames

A Kripke frame is a structure F = 〈W ,R〉, where:

W is a non-empty set of elements, often called possible worlds,

R ⊆ W ×W is a binary relation on W , called the accessibility
relation of W .
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Semantics Kripke frames and models

Kripke models
A Kripke model is a structure M = 〈W ,R ,V 〉, where:

〈W ,R〉 is a Kripke frame,

V : Prop×W −→ {0, 1} is a function that assigns a boolean
value to every ordered pair of propositional variables and possible
worlds.

The evaluation relation can be also viewed in the two following
equivalent ways:

as a function V : W −→ P(Prop) such that, given a world
w ∈ W returns the set V (w) of propositional variables true in
w ;

as a function V : Prop −→ P(W) such that, given a
propositional variable p ∈ Prop returns
the set V (p) of worlds where p is true.
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Semantics Kripke frames and models

Evaluation of formulas
Given a Kripke model M = 〈W ,R ,V 〉 and a world w ∈ W , the
evaluation V of propositional variables can be inductively extended to
arbitrary formulas in the following way:

V (>,w) = 1,

V (⊥,w) = 0,

V (ϕ ∧ ψ,w) = min{V (ϕ,w),V (ψ,w)},
V (ϕ ∨ ψ,w) = max{V (ϕ,w),V (ψ,w)},
V (ϕ→ ψ,w) = max{1− V (ϕ,w),V (ψ,w)},
V (¬ϕ,w) = 1− V (ϕ,w),

V (2ϕ,w) = (∀v)(R(w , v)⇒ V (ϕ, v)),

V (3ϕ,w) = (∃v)(R(w , v) ∧ V (ϕ, v)).
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Semantics Kripke frames and models

Semantics of the necessity operator 2
The expression

V (2ϕ,w) = (∀v)(R(w , v)⇒ V (ϕ, v))

is equivalent to the condition:

formula 2ϕ is true in world w iff
ϕ is true in every world v accessible from w iff

for every world w ∈ W , if R(w , v), then V (ϕ, v) = 1;
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Semantics Kripke frames and models

Semantics of the possibility operator 3
The expression

V (3ϕ,w) = (∃v)(R(w , v) ∧ V (ϕ, v))

is equivalent to the condition:

formula 3ϕ is true in world w iff
there exists a world v accessible from w and ϕ is true in v iff

there exists a world v such that R(w , v) and V (ϕ, v) = 1;
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Semantics Kripke frames and models

Example: the theorem 3ϕ↔ ¬2¬ϕ (I)

Let M = 〈W ,R ,V 〉 be a model and w ∈ W , then:

formula 3ϕ is true in w iff

there exists v ∈ W such that both R(w , v) and ϕ is true in v , iff

it is not true that, in every v ∈ W such that R(w , v), formula ϕ
is false, iff

it is not true that, in every v ∈ W such that R(w , v), formula
¬ϕ is true, iff

it is not true that formula 2¬ϕ is true in w , iff

formula 2¬ϕ is false in w , iff

formula ¬2¬ϕ is true in w .
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Semantics Kripke frames and models

Example: the theorem 3ϕ↔ ¬2¬ϕ (II)

Let M = 〈W ,R ,V 〉 be a model and w ∈ W , then:

V (3ϕ,w) =

= (∃v)(R(w , v) ∧ V (ϕ, v)) =

= ¬¬(∃v)(R(w , v) ∧ V (ϕ, v)) =

= ¬(∀v)(¬(R(w , v) ∧ V (ϕ, v))) =

= ¬(∀v)(R(w , v)⇒ ¬V (ϕ,w)) =

= ¬V (2¬ϕ,w) =

= V (¬2¬ϕ,w)
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Logic

Satisfaction of a formula

Let M = 〈W ,R ,V 〉 be a model and w ∈ W , then:

M,w � p iff V (p,w) = 1

M,w � > always

M,w � ⊥ never

M,w � ¬ϕ iff M,w 2 ϕ
M,w � ϕ ∧ ψ iff both M,w � ϕ and M,w � ψ

M,w � ϕ ∨ ψ iff either M,w � ϕ or M,w � ψ

M,w � 2ϕ iff for every v ∈ W s.t. R(w , v),

it holds that M, v � ϕ

M,w � 3ϕ iff there exists v ∈ W s.t. R(w , v)

and M, v � ϕ
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Logic

Local and Global Satisfiability

We say that a formula ϕ is locally satisfiable, if there exists a
model M = 〈W ,R ,V 〉 and w ∈ W , such that

M,w � ϕ

We say that a formula ϕ is globally satisfiable, in a model
M = 〈W ,R ,V 〉, if ϕ is (locally) satisfiable in every point
w ∈ W . In symbols:

M � ϕ
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Remark
Both notions of local and global satisfiability do not coincide.
Consider M:

•�� •
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V (c)={¬p,...}

V (3p,a)=1
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Then

M, b � 2p and

M, c � 2p, but

M, a 2 2p, hence

M 2 2p
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Validity
We say that a formula ϕ is valid in a frame F = 〈W ,R〉, if for
every model M = 〈W ,R ,V 〉 and every w ∈ W , it holds that
M,w � ϕ. In symbols

F � ϕ

We say that a formula ϕ is valid in a class of frames F if it is
valid in every frame F ∈ F. In symbols:

F � ϕ

We say that a formula ϕ is valid, if it is valid in every class of
frames F. In symbols:

� ϕ
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Semantic Consequence relations

Let Γ ∪ ϕ be a set of modal formulas and M a class of models, then:

We say that a formula ϕ is a local consequence of Γ over M,
if for all models M = 〈W ,R ,V 〉 ∈M and all points w ∈ W , it
holds that

I if M,w � Γ, then M,w � ϕ.

In symbols: Γ �lM ϕ.

We say that a formula ϕ is a global consequence of Γ over M,
if for all models M = 〈W ,R ,V 〉 ∈M it holds that

I if M � Γ, then M � ϕ.

In symbols: Γ �gM ϕ.

Marco Cerami (UPOL) Modal Logic II 10.10.2013 21 / 22



Logic

Remark
Both notions of local and global consequence do not coincide.
Consider M:

• •

•

V (b)={p,...}

a

bbbEEEEEEEEEEEEEE

V (c)={¬p,...}
c

V (a)={p,...}
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Then

since M, a � p, but M, a 2 2p, then {p} 2l
{M} 2p;

since M 2 p, then {p} �g{M} 2p;

So, 2p is a global consequence,
but not a local consequence of p.

Marco Cerami (UPOL) Modal Logic II 10.10.2013 22 / 22


	Syntax
	Semantics
	Kripke frames and models

	Logic

