An Introduction to Modal Logic II

Syntax and Semantics

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, October 10th 2013

Modal Logic

Syntax

Marco Cerami (UPOL)

Modal Logic I

10.10.2013 2 / 22

Language and formulas

Language

- A countable set of propositional variables $Prop = \{p, q, \ldots\}$,
- \bullet the classical propositional constants \top and $\bot,$
- \bullet the classical propositional connectives $\wedge,\,\vee,\,\rightarrow$ and $\neg,$
- two unary modal connectives \Box and \diamondsuit .

Formulas

The set Φ of modal formulas is inductively built from *Prop* in the following way:

- Propositional variables and constants are formulas,
- if φ and ψ are formulas, then $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \to \psi$ and $\neg \varphi$ are formulas,
- if φ is a formula, then □φ and ◊φ are formulas.

Normal Modal Logics

Definition

A normal modal logic Λ is a set of formulas containing:

- all classical tautologies (in the modal language),
- $\Box(p
 ightarrow q)
 ightarrow (\Box p
 ightarrow \Box q)$ (axiom (K)),
- $\Box \ p \leftrightarrow \neg \Diamond \neg p$,
- $\Diamond p \leftrightarrow \neg \Box \neg p$,

and is closed under:

(MP) Modus Ponens: if $\varphi \in \Lambda$ and $\varphi \rightarrow \psi \in \Lambda$, then $\psi \in \Lambda$, (US) Uniform Substitution: if $\varphi \in \Lambda$, then $\psi \in \Lambda$, where ψ is

- obtained from φ by replacing propositional variables by arbitrary formulas,
- (G) Generalization: if $\varphi \in \Lambda$, then $\Box \varphi \in \Lambda$.

Remarks

- in this way a modal logic is defined as **set of theorems**, rather than as a deducibility operator;
- the **set-like definition** can be equivalently replaced by an Hilbert-style axiomatic system based on the notion of deducibility;
- in this sense every modal logic is the **expansion of CPL** by means of two (or more) modal connectives;
- there exists a **minimal normal modal logic** and it is denoted by K (after S. Kripke);
- note that Lewis' S1 system is not a normal modal logic;
- we are indeed defining what a **uni-modal logic** is, but this framework can be extended to any countable set of modalities;
- nevertheless, normal modal logics are defined semantically.

Axiomatic Extensions: axioms

(4) $\Box p \rightarrow \Box \Box p$ (T) $\Box p
ightarrow p$ (B) $p \rightarrow \Box \Diamond p$ (D) $\Box p \rightarrow \Diamond p$ (E) $\Diamond p \rightarrow \Box \Diamond p$ (M) $\Box \Diamond p \rightarrow \Diamond \Box p$ (G) $\Diamond \Box p \rightarrow \Box \Diamond p$ (L) $\Box(\Box p \rightarrow p) \rightarrow \Box p$

Axiomatic Extensions: logics

- $T \longrightarrow KT$
- $K4 \longrightarrow K4$
- $S4 \longrightarrow KT4$
- $B \longrightarrow KTB$
- $S5 \quad \rightsquigarrow \quad KT4B \text{ or } KT4E$
- $GL \longrightarrow KL$
- $D \longrightarrow KD$
- $D4 \longrightarrow KD4$

Semantics

Modal Logic

10.10.2013 8 / 22

Kripke frames

A Kripke frame is a structure $\mathfrak{F} = \langle W, R \rangle$, where:

- W is a non-empty set of elements, often called **possible worlds**,
- *R* ⊆ *W* × *W* is a binary relation on *W*, called the accessibility relation of *W*.

Kripke models

A **Kripke model** is a structure $\mathfrak{M} = \langle W, R, V \rangle$, where:

- $\langle W, R \rangle$ is a Kripke frame,
- $V: \operatorname{Prop} \times W \longrightarrow \{0, 1\}$ is a function that assigns a boolean value to every ordered pair of propositional variables and possible worlds.

The evaluation relation can be also viewed in the two following equivalent ways:

- as a function V: W → P(Prop) such that, given a world w ∈ W returns the set V(w) of propositional variables true in w;
- as a function V: Prop → P(W) such that, given a propositional variable p ∈ Prop returns the set V(p) of worlds where p is true.

Evaluation of formulas

Given a Kripke model $\mathfrak{M} = \langle W, R, V \rangle$ and a world $w \in W$, the evaluation V of propositional variables can be inductively extended to arbitrary formulas in the following way:

•
$$V(\top, w) = 1$$
,

•
$$V(\perp,w)=0$$
,

•
$$V(\varphi \wedge \psi, w) = \min\{V(\varphi, w), V(\psi, w)\},\$$

•
$$V(\varphi \lor \psi, w) = \max\{V(\varphi, w), V(\psi, w)\},\$$

•
$$V(\varphi \rightarrow \psi, w) = \max\{1 - V(\varphi, w), V(\psi, w)\},\$$

•
$$V(\neg \varphi, w) = 1 - V(\varphi, w)$$

•
$$V(\Box \varphi, w) = (\forall v)(R(w, v) \Rightarrow V(\varphi, v)),$$

•
$$V(\diamond \varphi, w) = (\exists v)(R(w, v) \land V(\varphi, v)).$$

INVESTMENTS IN EDUCATION DEVELOPMENT

10.10.2013

11 / 22

• • • • • • • • • • • •

Semantics of the necessity operator $\ \square$

The expression

$$V(\Box\varphi,w) = (\forall v)(R(w,v) \Rightarrow V(\varphi,v))$$

is equivalent to the condition:

formula $\Box \varphi$ is true in world w iff φ is true in every world v accessible from w iff for every world $w \in W$, if R(w, v), then $V(\varphi, v) = 1$;

Semantics of the possibility operator \diamond

The expression

$$V(\Diamond \varphi, w) = (\exists v)(R(w, v) \land V(\varphi, v))$$

is equivalent to the condition:

formula $\Diamond \varphi$ is true in world w iff there exists a world v accessible from w and φ is true in v iff there exists a world v such that R(w, v) and $V(\varphi, v) = 1$;

Example: the theorem $\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$ (I)

Let $\mathfrak{M} = \langle W, R, V \rangle$ be a model and $w \in W$, then:

- formula $\Diamond \varphi$ is true in w iff
- there exists $v \in W$ such that both R(w, v) and φ is true in v, iff
- it is not true that, in every v ∈ W such that R(w, v), formula φ is false, iff
- it is not true that, in every $v \in W$ such that R(w, v), formula $\neg \varphi$ is true, iff
- it is not true that formula $\Box\neg\varphi$ is true in w, iff
- formula $\Box \neg \varphi$ is false in w, iff
- formula $\neg \Box \neg \varphi$ is true in *w*.

INVESTMENTS IN EDUCATION DEVELOPMENT

10.10.2013

14 / 22

< ロ > < 同 > < 三 > < 三

Example: the theorem $\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$ (II)

Let $\mathfrak{M} = \langle W, R, V \rangle$ be a model and $w \in W$, then:

$$V(\Diamond \varphi, w) =$$

$$= (\exists v)(R(w, v) \land V(\varphi, v)) =$$

$$= \neg \neg (\exists v)(R(w, v) \land V(\varphi, v)) =$$

$$= \neg (\forall v)(\neg (R(w, v) \land V(\varphi, v))) =$$

$$= \neg (\forall v)(R(w, v) \Rightarrow \neg V(\varphi, w)) =$$

$$= \neg V(\Box \neg \varphi, w) =$$

$$= V(\neg \Box \neg \varphi, w)$$

<ロ> (日) (日) (日) (日) (日)

Logic

Marco Cerami (UPOL)

Modal Logic

10.10.2013 16 / 22

Logic

Satisfaction of a formula

Let $\mathfrak{M} = \langle W, R, V angle$	be a n	nodel and $w\in W$, then:
$\mathfrak{M}, w \vDash p$	iff	V(ho,w)=1
$\mathfrak{M}, w \vDash o$		always
$\mathfrak{M},$ w $Dash \perp$		never
$\mathfrak{M}, w \vDash \neg \varphi$	iff	$\mathfrak{M}, w \nvDash \varphi$
$\mathfrak{M}, \mathbf{w} \vDash \varphi \wedge \psi$	iff	both $\mathfrak{M}, w \vDash \varphi$ and $\mathfrak{M}, w \vDash \psi$
$\mathfrak{M}, \mathbf{w} \vDash \varphi \lor \psi$	iff	either $\mathfrak{M}, w \vDash \varphi$ or $\mathfrak{M}, w \vDash \psi$
$\mathfrak{M}, w \vDash \Box \varphi$	iff	for every $v \in W$ s.t. $R(w, v)$,
		it holds that $\mathfrak{M}, \mathbf{v} \vDash arphi$
$\mathfrak{M}, \mathbf{w} \vDash \Diamond \varphi$	iff	there exists $v \in W$ s.t. $R(w, v)$
		and $\mathfrak{M}, v \models \varphi$

・ロト ・聞ト ・ヨト ・ヨト

Local and Global Satisfiability

We say that a formula φ is locally satisfiable, if there exists a model M = ⟨W, R, V⟩ and w ∈ W, such that

 $\mathfrak{M}, \mathbf{w} \vDash \varphi$

 We say that a formula φ is globally satisfiable, in a model *M* = ⟨W, R, V⟩, if φ is (locally) satisfiable in every point *w* ∈ W. In symbols:

 $\mathfrak{M}\vDash\varphi$

INVESTMENTS IN EDUCATION DEVELOPMENT

• • • • • • • • • • • •

Remark

Both notions of local and global satisfiability **do not coincide**. Consider \mathfrak{M} :

Logic

Then

- $\mathfrak{M}, b \vDash \Box p$ and
- $\mathfrak{M}, c \vDash \Box p$, but
- $\mathfrak{M}, a \nvDash \Box p$, hence
- $\mathfrak{M} \nvDash \Box p$

Modal Logic I

Validity

We say that a formula φ is valid in a frame 𝔅 = ⟨W, R⟩, if for every model 𝔐 = ⟨W, R, V⟩ and every w ∈ W, it holds that 𝔐, w ⊨ φ. In symbols

Logic

$$\mathfrak{F}\vDash \varphi$$

We say that a formula φ is valid in a class of frames F if it is valid in every frame 𝔅 ∈ F. In symbols:

$$\mathbf{F}\vDash\varphi$$

We say that a formula φ is valid, if it is valid in every class of frames F. In symbols:

 $\models \varphi$

INVESTMENTS IN EDUCATION DEVELOPMENT

10.10.2013

20 / 22

< 口 > < 同 >

Logic

Semantic Consequence relations

Let $\Gamma\cup\varphi$ be a set of modal formulas and ${\bf M}$ a class of models, then:

We say that a formula φ is a local consequence of Γ over M, if for all models M = ⟨W, R, V⟩ ∈ M and all points w ∈ W, it holds that

• if
$$\mathfrak{M}, w \vDash \Gamma$$
, then $\mathfrak{M}, w \vDash \varphi$.

In symbols:
$$\Gamma \vDash^{l}_{\mathbf{M}} \varphi$$
.

We say that a formula φ is a global consequence of Γ over M, if for all models M = ⟨W, R, V⟩ ∈ M it holds that

• if
$$\mathfrak{M} \vDash \Gamma$$
, then $\mathfrak{M} \vDash \varphi$.

In symbols: $\Gamma \vDash^{g}_{M} \varphi$.

Remark

Both notions of local and global consequence **do not coincide**. Consider \mathfrak{M} :

Logic

Then

- since $\mathfrak{M}, a \vDash p$, but $\mathfrak{M}, a \nvDash \Box p$, then $\{p\} \nvDash'_{\{\mathfrak{M}\}} \Box p$;
- since $\mathfrak{M} \nvDash p$, then $\{p\} \vDash_{\{\mathfrak{M}\}}^{g} \Box p$;
- So, □p is a global consequence, but not a local consequence of p.

