An Introduction to Modal Logic III

Soundness of Normal Modal Logics

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, October 24th 2013

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UPOL)

Modal Logic II

Introduction

・ロト ・聞ト ・ヨト ・ヨト

Soundness proof

- As usual, a proof of completeness is consists of two parts: **Soundness** and **Completeness**,
- the aim of the **Soundness proof** is proving that certain syntactical properties are preserved in the semantics,
- in particular, we will prove that if a modal formula φ has the properties of being a **theorem** or being **deducible from a set** of formulas Γ, then these properties are preserved in the Kripke frame based semantics as the properties of being φ valid or a semantic consequence of Γ.
- the Soundness proof follows the usual pattern, proving that the closure properties of the deducibility operator ⊢ are preserved by the logical consequence operator ⊨.

イロト イヨト イヨト

Completeness proof

- The aim of the **Completeness proof** is proving that certain semantical properties are preserved in the syntax,
- in particular, we will prove that if a modal formula φ has the properties of being valid or being a semantic consequence of a set of formulas Γ, then these properties are preserved in the Hilbert-style syntax (or in the closure operator-like syntax) as the properties of being φ a theorem or deducible from Γ,
- the Completeness proof follows the usual pattern, proving that if a formula φ is not a theorem or deducible from a set of formulas Γ, then φ is not valid or a semantic consequence of Γ,
- like in the propositional case, the Completeness proof is done using a particular kind of semantical structures built up directly from the syntax,
- in this case they are called Canonical frames and models.

Preliminaries

(a reminder)

イロト イヨト イヨト イヨト

Syntax

Language

- A countable set of propositional variables $Prop = \{p, q, \ldots\}$,
- \bullet the classical propositional constants \top and $\bot,$
- \bullet the classical propositional connectives $\wedge,\,\vee,\,\rightarrow$ and $\neg,$
- two unary modal connectives \Box and \diamondsuit .

Formulas

The set Φ of modal formulas is inductively built from *Prop* in the following way:

- Propositional variables and constants are formulas,
- if φ and ψ are formulas, then $\varphi \wedge \psi$, $\varphi \vee \psi$, $\varphi \to \psi$ and $\neg \varphi$ are formulas,
- if φ is a formula, then $\Box \varphi$ and $\Diamond \varphi$ are formulas.

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Normal Modal Logics

Definition

A normal modal logic Λ is a set of formulas containing:

- all classical tautologies (in the modal language),
- $\Box(p
 ightarrow q)
 ightarrow (\Box p
 ightarrow \Box q)$ (axiom (K)),
- $\Box \ p \leftrightarrow \neg \Diamond \neg p$,
- $\Diamond p \leftrightarrow \neg \Box \neg p$,

and is closed under:

(MP) Modus Ponens: if $\varphi \in \Lambda$ and $\varphi \to \psi \in \Lambda$, then $\psi \in \Lambda$,

- (US) Uniform Substitution: if $\varphi \in \Lambda$, then $\psi \in \Lambda$, where ψ is obtained from φ by replacing propositional variables by arbitrary formulas,
 - (G) Generalization: if $\varphi \in \Lambda$, then $\Box \varphi \in \Lambda$.

Theorems and Deducibility

Let Λ be a modal logic $\Gamma \cup \varphi$ be a set of modal formulas, then:

We say that a formula φ is **deducible** from Γ, if there is a sequence of formulas φ₁,..., φ_n such that φ = φ_n and each φ_i either belongs to Γ or is an axiom of Λ or is obtained from previous formulas by applying (MP), (US) and (G).

$$\Gamma \vdash_{\Lambda} \varphi.$$

 We say that a formula φ is a **theorem** of Λ it is deducible from the empty set of formulas.

 $\vdash_{\Lambda} \varphi$.

A B F A B F

Kripke frames and models

A Kripke frame is a structure $\mathfrak{F} = \langle W, R \rangle$, where:

- W is a non-empty set of elements, often called **possible worlds**,
- *R* ⊆ *W* × *W* is a binary relation on *W*, called the accessibility relation of *W*.

A **Kripke model** is a structure $\mathfrak{M} = \langle W, R, V \rangle$, where:

- $\langle W, R \rangle$ is a Kripke frame,
- V: $Prop \times W \longrightarrow \{0, 1\}$ is a function that assigns a boolean value to every ordered pair of propositional variables and possible worlds.

- 4回 ト 4 ヨ ト - 4 ヨ ト - ヨ

Evaluation of formulas

Given a Kripke model $\mathfrak{M} = \langle W, R, V \rangle$ and a world $w \in W$, the evaluation V of propositional variables can be inductively extended to arbitrary formulas in the following way:

• $V(\top, w) = 1$,

•
$$V(\perp, w) = 0$$
,

•
$$V(\varphi \wedge \psi, w) = \min\{V(\varphi, w), V(\psi, w)\},\$$

• $V(\varphi \lor \psi, w) = \max\{V(\varphi, w), V(\psi, w)\},\$

•
$$V(\varphi \rightarrow \psi, w) = \max\{1 - V(\varphi, w), V(\psi, w)\},\$$

•
$$V(\neg \varphi, w) = 1 - V(\varphi, w)$$
,

•
$$V(\Box \varphi, w) = (\forall v)(R(w, v) \Rightarrow V(\varphi, v)),$$

•
$$V(\Diamond \varphi, w) = (\exists v)(R(w, v) \land V(\varphi, v)).$$

- 本間 と 本語 と 本語 と

Local and Global Satisfiability

We say that a formula φ is locally satisfiable, if there exists a model M = ⟨W, R, V⟩ and w ∈ W, such that

 $\mathfrak{M}, \mathbf{w} \vDash \varphi$

 We say that a formula φ is globally satisfiable, in a model *M* = ⟨W, R, V⟩, if φ is (locally) satisfiable in every point *w* ∈ W. In symbols:

$$\mathfrak{M}\vDash\varphi$$

A B F A B F

Validity

We say that a formula φ is valid in a frame 𝔅 = ⟨W, R⟩, if for every model 𝔐 = ⟨W, R, V⟩ and every w ∈ W, it holds that 𝔐, w ⊨ φ. In symbols

$$\mathfrak{F} \vDash \varphi$$

We say that a formula φ is valid in a class of frames F if it is valid in every frame 𝔅 ∈ F. In symbols:

$$\mathbf{F}\vDash\varphi$$

 We say that a formula φ is valid, if it is valid in every class of frames F. In symbols:

Semantic Consequence relations

Let $\Gamma\cup\varphi$ be a set of modal formulas and ${\bf M}$ a class of models, then:

We say that a formula φ is a local consequence of Γ over M, if for all models M = ⟨W, R, V⟩ ∈ M and all points w ∈ W, it holds that

• if
$$\mathfrak{M}, w \vDash \Gamma$$
, then $\mathfrak{M}, w \vDash \varphi$.

In symbols:
$$\Gamma \vDash^{l}_{\mathbf{M}} \varphi$$
.

We say that a formula φ is a global consequence of Γ over M, if for all models M = ⟨W, R, V⟩ ∈ M it holds that

• if
$$\mathfrak{M} \vDash \Gamma$$
, then $\mathfrak{M} \vDash \varphi$.

In symbols: $\Gamma \models^{g}_{\mathbf{M}} \varphi$.

- 本間 と えき と えき とうき

Soundness

▲口> ▲圖> ▲屋> ▲屋>

Propositional formulas and rules

- from the definition of Kripke model, every propositional theorem (in the modal language) is true in every node *w* of every Kripke model;
- for the same reason, (MP) and (US) are sound rules in every node *w* of every Kripke model;

Rule (G)

For (G) rule, consider that:

- if φ is a theorem, then it is true in every node w of every Kripke model;
- hence, given a node ν of a Kripke model, φ is true in every successor of ν;
- **3** therefore, $\Box \varphi$ is true in v.
- So, (G) is a sound rule in every node w of every Kripke model.

A B < A B </p>

Axiom $\Diamond \varphi \leftrightarrow \neg \Box \neg \varphi$

Let $\mathfrak{M} = \langle W, R, V \rangle$ be a model and $w \in W$, then:

- formula $\Diamond \varphi$ is true in w iff
- there exists $v \in W$ such that both R(w, v) and φ is true in v, iff
- it is not true that, in every v ∈ W such that R(w, v), formula φ is false, iff
- it is not true that, in every v ∈ W such that R(w, v), formula
 ¬φ is true, iff
- it is not true that formula $\Box \neg \varphi$ is true in w, iff
- formula $\Box \neg \varphi$ is false in *w*, iff
- formula $\neg \Box \neg \varphi$ is true in w.

• • = • • = •

Axiom (K)

Let $\mathfrak{M} = \langle W, R, V \rangle$ be a model and $w \in W$, then:

- suppose that formula $\Box(\varphi \rightarrow \psi)$ is true in w,
- then, for every v ∈ W such that R(w, v) it holds that φ → ψ is true in v.
- Let formula $\Box \varphi$ be true in w,
- then, for every v ∈ W such that R(w, v) it holds that φ is true in v,
- since $\varphi \to \psi$ is true in v, by (MP), we obtain that ψ is true in every v such that R(w, v).
- Hence $\Box \psi$ is true in *w* too.
- therefore formula $\Box \varphi \rightarrow \Box \psi$ is true in w.

- 本間 と えき と えき とうき