
An Introduction to Modal Logic III

Soundness of Normal Modal Logics

Marco Cerami
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Introduction

Soundness proof

As usual, a proof of completeness is consists of two parts:
Soundness and Completeness,

the aim of the Soundness proof is proving that certain
syntactical properties are preserved in the semantics,

in particular, we will prove that if a modal formula ϕ has the
properties of being a theorem or being deducible from a set
of formulas Γ, then these properties are preserved in the Kripke
frame based semantics as the properties of being ϕ valid or a
semantic consequence of Γ.

the Soundness proof follows the usual pattern, proving that the
closure properties of the deducibility operator ` are preserved by
the logical consequence operator �.
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Introduction

Completeness proof

The aim of the Completeness proof is proving that certain
semantical properties are preserved in the syntax,

in particular, we will prove that if a modal formula ϕ has the
properties of being valid or being a semantic consequence of
a set of formulas Γ, then these properties are preserved in the
Hilbert-style syntax (or in the closure operator-like syntax) as
the properties of being ϕ a theorem or deducible from Γ,

the Completeness proof follows the usual pattern, proving that
if a formula ϕ is not a theorem or deducible from a set of
formulas Γ, then ϕ is not valid or a semantic consequence of Γ,

like in the propositional case, the Completeness proof is done
using a particular kind of semantical structures built up
directly from the syntax,

in this case they are called Canonical frames and models.
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Preliminaries

Syntax
Language

A countable set of propositional variables Prop = {p, q, . . .},
the classical propositional constants > and ⊥,

the classical propositional connectives ∧, ∨, → and ¬,

two unary modal connectives 2 and 3.

Formulas
The set Φ of modal formulas is inductively built from Prop in the
following way:

Propositional variables and constants are formulas,

if ϕ and ψ are formulas, then ϕ ∧ ψ, ϕ ∨ ψ, ϕ→ ψ and ¬ϕ are
formulas,

if ϕ is a formula, then 2ϕ and 3ϕ are
formulas.
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Preliminaries

Normal Modal Logics

Definition
A normal modal logic Λ is a set of formulas containing:

all classical tautologies (in the modal language),

2(p → q)→ (2p → 2q) (axiom (K)),

2 p ↔ ¬3¬p,

3p ↔ ¬2¬p,

and is closed under:

(MP) Modus Ponens: if ϕ ∈ Λ and ϕ→ ψ ∈ Λ, then ψ ∈ Λ,

(US) Uniform Substitution: if ϕ ∈ Λ, then ψ ∈ Λ, where ψ is
obtained from ϕ by replacing propositional variables by
arbitrary formulas,

(G) Generalization: if ϕ ∈ Λ, then 2ϕ ∈ Λ.
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Preliminaries

Theorems and Deducibility

Let Λ be a modal logic Γ ∪ ϕ be a set of modal formulas, then:

We say that a formula ϕ is deducible from Γ, if there is a
sequence of formulas ϕ1, . . . , ϕn such that ϕ = ϕn and each ϕi

either belongs to Γ or is an axiom of Λ or is obtained from
previous formulas by applying (MP), (US) and (G).

Γ `Λ ϕ.

We say that a formula ϕ is a theorem of Λ it is deducible from
the empty set of formulas.

`Λ ϕ.
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Preliminaries

Kripke frames and models

A Kripke frame is a structure F = 〈W ,R〉, where:

W is a non-empty set of elements, often called possible worlds,

R ⊆ W ×W is a binary relation on W , called the accessibility
relation of W .

A Kripke model is a structure M = 〈W ,R ,V 〉, where:

〈W ,R〉 is a Kripke frame,

V : Prop×W −→ {0, 1} is a function that assigns a boolean
value to every ordered pair of propositional variables and possible
worlds.
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Preliminaries

Evaluation of formulas
Given a Kripke model M = 〈W ,R ,V 〉 and a world w ∈ W , the
evaluation V of propositional variables can be inductively extended to
arbitrary formulas in the following way:

V (>,w) = 1,

V (⊥,w) = 0,

V (ϕ ∧ ψ,w) = min{V (ϕ,w),V (ψ,w)},
V (ϕ ∨ ψ,w) = max{V (ϕ,w),V (ψ,w)},
V (ϕ→ ψ,w) = max{1− V (ϕ,w),V (ψ,w)},
V (¬ϕ,w) = 1− V (ϕ,w),

V (2ϕ,w) = (∀v)(R(w , v)⇒ V (ϕ, v)),

V (3ϕ,w) = (∃v)(R(w , v) ∧ V (ϕ, v)).
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Preliminaries

Local and Global Satisfiability

We say that a formula ϕ is locally satisfiable, if there exists a
model M = 〈W ,R ,V 〉 and w ∈ W , such that

M,w � ϕ

We say that a formula ϕ is globally satisfiable, in a model
M = 〈W ,R ,V 〉, if ϕ is (locally) satisfiable in every point
w ∈ W . In symbols:

M � ϕ
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Preliminaries

Validity
We say that a formula ϕ is valid in a frame F = 〈W ,R〉, if for
every model M = 〈W ,R ,V 〉 and every w ∈ W , it holds that
M,w � ϕ. In symbols

F � ϕ

We say that a formula ϕ is valid in a class of frames F if it is
valid in every frame F ∈ F. In symbols:

F � ϕ

We say that a formula ϕ is valid, if it is valid in every class of
frames F. In symbols:

� ϕ
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Preliminaries

Semantic Consequence relations

Let Γ ∪ ϕ be a set of modal formulas and M a class of models, then:

We say that a formula ϕ is a local consequence of Γ over M,
if for all models M = 〈W ,R ,V 〉 ∈M and all points w ∈ W , it
holds that

I if M,w � Γ, then M,w � ϕ.

In symbols: Γ �l
M ϕ.

We say that a formula ϕ is a global consequence of Γ over M,
if for all models M = 〈W ,R ,V 〉 ∈M it holds that

I if M � Γ, then M � ϕ.

In symbols: Γ �g
M ϕ.
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Soundness

Propositional formulas and rules

from the definition of Kripke model, every propositional theorem
(in the modal language) is true in every node w of every Kripke
model;

for the same reason, (MP) and (US) are sound rules in every
node w of every Kripke model;
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Soundness

Rule (G)

For (G) rule, consider that:

1 if ϕ is a theorem, then it is true in every node w of every Kripke
model;

2 hence, given a node v of a Kripke model, ϕ is true in every
successor of v ;

3 therefore, 2ϕ is true in v .

So, (G) is a sound rule in every node w of every Kripke model.
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Soundness

Axiom 3ϕ↔ ¬2¬ϕ

Let M = 〈W ,R ,V 〉 be a model and w ∈ W , then:

formula 3ϕ is true in w iff

there exists v ∈ W such that both R(w , v) and ϕ is true in v , iff

it is not true that, in every v ∈ W such that R(w , v), formula ϕ
is false, iff

it is not true that, in every v ∈ W such that R(w , v), formula
¬ϕ is true, iff

it is not true that formula 2¬ϕ is true in w , iff

formula 2¬ϕ is false in w , iff

formula ¬2¬ϕ is true in w .
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Soundness

Axiom (K)

Let M = 〈W ,R ,V 〉 be a model and w ∈ W , then:

suppose that formula 2(ϕ→ ψ) is true in w ,

then, for every v ∈ W such that R(w , v) it holds that ϕ→ ψ is
true in v .

Let formula 2ϕ be true in w ,

then, for every v ∈ W such that R(w , v) it holds that ϕ is true
in v ,

since ϕ→ ψ is true in v , by (MP), we obtain that ψ is true in
every v such that R(w , v).

Hence 2ψ is true in w too.

therefore formula 2ϕ→ 2ψ is true in w .
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