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Canonical Models General intuition

General intuition

like in the propositional case, the trick consists in obtaining a
model from the set of formulas and their mutual relations;

in this case it has clearly to be a Kripke model;

each node w of a Kripke model can be seen as a propositional
evaluation or as a set of formulas, indeed the set of all modal
formulas that are true in w ;

as a propositional evaluation, w is a consistent set of formulas;

as a consistent set of formulas w is maximal;

so, the general idea consists in building a Kripke model up from
maximally consistent sets of formulas (MCSs).
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Maximally consistent sets of formulas
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Canonical Models Maximally consistent sets of formulas

Maximally consistent sets of formulas

Given a modal logic Λ:

a set Σ of formulas is Λ-consistent if Σ 0Λ ⊥;

a set Σ of formulas is maximally Λ-consistent if it is
Λ-consistent and it is not properly included in any Λ-consistent
set.
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Canonical Models Maximally consistent sets of formulas

Properties of MCSs

Given a modal logic Λ, a maximally Λ-consistent set Σ and formulas
ϕ, ψ, then:

if Σ `Λ ϕ then ϕ ∈ Σ;

if ϕ, ϕ→ ψ ∈ Σ then ψ ∈ Σ;

⊥ /∈ Σ;

Λ ∈ Σ;

¬ϕ ∈ Σ iff ϕ /∈ Σ;

ϕ ∨ ψ ∈ Σ iff either ϕ ∈ Σ or ψ ∈ Σ;

for every formula ϕ, it holds that either ϕ ∈ Σ or ¬ϕ ∈ Σ.
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Canonical Models Maximally consistent sets of formulas

Lindenbaum’s Lemma

Lemma
Any Λ-consistent set of formulas can be extended to a maximally
Λ-consistent set of formulas.

Proof (sketch)

Let ϕ0, ϕ1, ϕ2, . . . be an enumeration of the formulas.

Define:

1 Σ0 := Σ;

2 Σn+1 :=

{
Σn ∪ {ϕn} if it is consistent

Σn ∪ {ϕn} otherwise;
3 Σ+ :=

⋃
n≥0 Σn;

Since we have that, for every formula ϕ, either ϕ ∈ Σ+ or ¬ϕ ∈ Σ+,
then Σ+ is a maximally Λ-consistent set of formulas extending Σ.
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Canonical Models
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Canonical Models Definition

Canonical Models

Given a modal logic Λ, its Canonical Model is a triple

MΛ = 〈WΛ,RΛ,VΛ〉,

where:

WΛ is the set of all maximally Λ-consistent set of formulas ∆,

RΛ is the binary relation defined between maximally Λ-consistent
sets of formulas by:

∆RΛ∆′ iff {ϕ : 2ϕ ∈ ∆} ⊆ ∆′,

VΛ(p,∆) = 1 iff p ∈ ∆
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Canonical Models Definition

Remarks

the set of possible worlds WΛ is a syntactic notion;

there is a huge (infinite) number of possible worlds ∆;

recall that, from the syntactical notion of deduction, for the
propositional variables it is obvious that

∆ `Λ p iff p ∈ ∆;

this means that

VΛ(p,∆) = 1 iff ∆ `Λ p;

this is a first bridge between the syntactical notion of deduction
and the semantical notion of logical consequence, that will be
subsequently expanded to the set of all formulas by proving a
Truth Lemma.

Marco Cerami (UPOL) Modal Logic III 24.10.2013 9 / 18



Canonical Models Definition

The canonical relation I

3ψ ∈ ∆
iff

there exists ∆′ such that {ϕ : 2ϕ ∈ ∆} ⊆ ∆′ and ψ ∈ ∆′.

(⇐) Suppose that 3ψ /∈ ∆,

then ¬3ψ ∈ ∆;
then 2¬ψ ∈ ∆;
then for all ∆′ such that {ϕ : 2ϕ ∈ ∆} ⊆ ∆′, it
holds that ¬ψ ∈ ∆′;
then does not exist any ∆′ such that
{ϕ : 2ϕ ∈ ∆} ⊆ ∆′ and ψ ∈ ∆′.
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Canonical Models Definition

(⇒) Suppose that 3ψ ∈ ∆,

let ∆− be the set {ψ} ∪ {ϕ : 2ϕ ∈ ∆};
∆− is consistent:

I suppose that ∆− is not consistent,
I then there are {ϕ1, . . . , ϕn} ⊆ {ϕ : 2ϕ ∈ ∆} such

that

{ϕ1, . . . , ϕn} `Λ ¬ψ,

I hence {2ϕ1, . . . ,2ϕn} `Λ 2¬ψ;
I since {2ϕ1, . . . ,2ϕn} ⊆ ∆, by (MP) we have

that 2¬ψ ∈ ∆;
I therefore ¬3ψ ∈ ∆, against our assumption.

by Lindenbaum Lemma, there exists a maximally
Λ-consistent set of formulas ∆′ such that ∆− ⊆ ∆′;
hence both {ϕ : 2ϕ ∈ ∆} ⊆ ∆′ and ψ ∈ ∆′, that is
what we wanted to prove.
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Canonical Models Definition

The canonical relation II

2ψ ∈ ∆
iff

for every ∆′ such that {ϕ : 2ϕ ∈ ∆} ⊆ ∆′ it holds that ψ ∈ ∆′.

2ψ ∈ ∆ iff

¬3¬ψ ∈ ∆ iff

3¬ψ /∈ ∆ iff

does not exist any ∆′ such that {ϕ : 2ϕ ∈ ∆} ⊆ ∆′ and
¬ψ ∈ ∆′ iff

for every ∆′ such that {ϕ : 2ϕ ∈ ∆} ⊆ ∆′ it holds that ψ ∈ ∆′.
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Truth Lemma

Truth Lemma

Lemma
For any normal modal logic Λ, any maximally Λ-consistent set ∆ and
any formula ϕ,

MΛ,∆ � ϕ iff ϕ ∈ ∆.

The Truth Lemma is a key step in the completeness proof.

Its proof is (as usual) by induction on formulas.
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Truth Lemma

Induction on formulas: propositional part

(Prop) If ϕ is a propositional variable, then the claim holds by
definition of VΛ.

(¬) If ϕ = ¬ψ, then

MΛ,∆ � ¬ψ iff
MΛ,∆ 2 ψ iff
ψ /∈ ∆ iff
¬ψ ∈ ∆.

(∨) If ϕ = ψ ∨ χ, then

MΛ,∆ � ψ ∨ χ iff
either MΛ,∆ � ψ or MΛ,∆ � χ iff
either ψ ∈ ∆ or χ ∈ ∆ iff
ψ ∨ χ ∈ ∆.
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Truth Lemma

Induction on formulas: propositional part

(2) If ϕ = 2ψ, then

MΛ,∆ � 2ψ iff
for all ∆′ such that ∆RΛ∆′, it holds that V (ψ,∆′),
iff
for all ∆′ such that {ϕ : 2ϕ ∈ ∆} ⊆ ∆′, it holds
that ψ ∈ ∆′, iff
2ψ ∈ ∆.

(3) If ϕ = 3ψ, then

MΛ,∆ � 3ψ iff
there exists ∆′ such that ∆RΛ∆′ and V (ψ,∆′), iff
there exists ∆′ such that {ϕ : 2ϕ ∈ ∆} ⊆ ∆′ and
ψ ∈ ∆′, iff
3ψ ∈ ∆.
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Completeness

Completeness Theorem

Theorem
For any set of formulas Σ ∪ {ϕ},

if Σ �l
Λ ϕ, then Σ `Λ ϕ.

as usual, suppose that Σ 0Λ ϕ,

then the set Σ ∪ {¬ϕ} is consistent,

by Lindenbaum Lemma, there is a maximally Λ-consistent set ∆
such that Σ ∪ {¬ϕ} ⊆ ∆,

hence MΛ,∆ �Λ Σ, but MΛ,∆ 2Λ ϕ,

therefore, Σ 2l
Λ ϕ.
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