An Introduction to Modal Logic IV

Canonical Completeness

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, October 24th 2013

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UPOL)

Modal Logic II

General intuition

- like in the propositional case, the trick consists in obtaining a model from the set of formulas and their mutual relations;
- in this case it has clearly to be a Kripke model;
- each node w of a Kripke model can be seen as a propositional evaluation or as a set of formulas, indeed the set of all modal formulas that are true in w;
- as a propositional evaluation, w is a **consistent** set of formulas;
- as a consistent set of formulas w is **maximal**;
- so, the general idea consists in building a Kripke model up from maximally consistent sets of formulas (MCSs).

A B F A B F

Maximally consistent sets of formulas

• = • •

Maximally consistent sets of formulas

Given a modal logic Λ :

- a set Σ of formulas is Λ -consistent if $\Sigma \nvDash_{\Lambda} \perp$;
- a set Σ of formulas is maximally Λ-consistent if it is Λ-consistent and it is not properly included in any Λ-consistent set.

Properties of MCSs

Given a modal logic $\Lambda,$ a maximally $\Lambda\text{-consistent}$ set Σ and formulas $\varphi,\psi,$ then:

- if $\Sigma \vdash_{\Lambda} \varphi$ then $\varphi \in \Sigma$;
- if $\varphi, \varphi \to \psi \in \Sigma$ then $\psi \in \Sigma$;
- $\bot \notin \Sigma$;
- $\Lambda \in \Sigma$;
- $\neg \varphi \in \Sigma$ iff $\varphi \notin \Sigma$;
- $\varphi \lor \psi \in \Sigma$ iff either $\varphi \in \Sigma$ or $\psi \in \Sigma$;
- for every formula φ , it holds that either $\varphi \in \Sigma$ or $\neg \varphi \in \Sigma$.

- 4 同 6 4 日 6 4 日 6

Lindenbaum's Lemma

Lemma

Any Λ -consistent set of formulas can be extended to a maximally Λ -consistent set of formulas.

Proof (sketch)

- Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ be an enumeration of the formulas.
- Define:

$$\begin{aligned} & \Sigma_0 := \Sigma; \\ & & \Sigma_{n+1} := \begin{cases} \Sigma_n \cup \{\varphi_n\} & \text{if it is consistent} \\ \Sigma_n \cup \{\varphi_n\} & \text{otherwise;} \end{cases} \\ & & \Sigma^+ := \bigcup_{n \ge 0} \Sigma_n; \end{aligned}$$

Since we have that, for every formula φ , either $\varphi \in \Sigma^+$ or $\neg \varphi \in \Sigma^+$, then Σ^+ is a maximally Λ -consistent set of formulas extending Σ .

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

< <>></>

Canonical Models

イロト イ団ト イヨト イヨト

Canonical Models

Given a modal logic Λ , its Canonical Model is a triple

$$\mathfrak{M}_{\Lambda} = \langle W_{\Lambda}, R_{\Lambda}, V_{\Lambda} \rangle,$$

where:

- W_{Λ} is the set of all maximally Λ -consistent set of formulas Δ ,
- *R*^Λ is the binary relation defined between maximally Λ-consistent sets of formulas by:

$$\Delta R_{\Lambda} \Delta'$$
 iff $\{ \varphi \colon \Box \varphi \in \Delta \} \subseteq \Delta'$,

•
$$V_{\Lambda}(p,\Delta) = 1$$
 iff $p \in \Delta$

A B < A B </p>

Definition

Remarks

- the set of possible worlds W_{Λ} is a syntactic notion;
- there is a huge (infinite) number of possible worlds Δ ;
- recall that, from the syntactical notion of deduction, for the propositional variables it is obvious that

$$\Delta \vdash_{\Lambda} p \quad \text{iff} \quad p \in \Delta;$$

this means that

$$V_{\Lambda}(p,\Delta) = 1$$
 iff $\Delta \vdash_{\Lambda} p$;

 this is a first bridge between the syntactical notion of deduction and the semantical notion of logical consequence, that will be subsequently expanded to the set of all formulas by proving a Truth Lemma ★ 3 → < 3</p>

Marco Cerami (UPOL)

The canonical relation I

$$\Diamond \psi \in \Delta$$

iff

there exists Δ' such that $\{\varphi \colon \Box \varphi \in \Delta\} \subseteq \Delta'$ and $\psi \in \Delta'$.

(\Leftarrow) Suppose that $\diamondsuit \psi \notin \Delta$,

- then $\neg \diamondsuit \psi \in \Delta$;
- then $\Box \neg \psi \in \Delta$;
- then for all Δ' such that {φ: □φ ∈ Δ} ⊆ Δ', it holds that ¬ψ ∈ Δ';
- then does not exist any Δ' such that $\{\varphi \colon \Box \varphi \in \Delta\} \subseteq \Delta'$ and $\psi \in \Delta'$.

A B F A B F

 (\Rightarrow) Suppose that $\diamond \psi \in \Delta$,

- let Δ^- be the set $\{\psi\} \cup \{\varphi \colon \Box \varphi \in \Delta\}$;
- Δ^- is consistent:
 - ► suppose that Δ[−] is not consistent,
 - ▶ then there are $\{\varphi_1, \ldots, \varphi_n\} \subseteq \{\varphi \colon \Box \varphi \in \Delta\}$ such that

$$\{\varphi_1,\ldots,\varphi_n\}\vdash_{\mathsf{A}}\neg\psi,$$

- hence $\{\Box \varphi_1, \ldots, \Box \varphi_n\} \vdash_{\Lambda} \Box \neg \psi;$
- since {□φ₁,...,□φ_n} ⊆ Δ, by (MP) we have that □¬ψ ∈ Δ;
- therefore $\neg \diamondsuit \psi \in \Delta$, against our assumption.
- by Lindenbaum Lemma, there exists a maximally Λ-consistent set of formulas Δ' such that Δ⁻ ⊆ Δ';
- hence both $\{\varphi \colon \Box \varphi \in \Delta\} \subseteq \Delta'$ and $\psi \in \Delta'$, that is what we wanted to prove.

イロト 不得下 イヨト イヨト 二日

The canonical relation II

$$\label{eq:phi} \begin{split} & \Box\psi\in\Delta\\ & \text{iff} \end{split}$$ for every Δ' such that $\{\varphi\colon \Box\varphi\in\Delta\}\subseteq\Delta' \text{ it holds that }\psi\in\Delta'. \end{split}$

- $\Box \psi \in \Delta$ iff
- $\neg \diamondsuit \neg \psi \in \Delta$ iff
- $\diamond \neg \psi \notin \Delta$ iff
- does not exist any Δ' such that $\{\varphi \colon \Box \varphi \in \Delta\} \subseteq \Delta'$ and $\neg \psi \in \Delta'$ iff
- for every Δ' such that $\{\varphi \colon \Box \varphi \in \Delta\} \subseteq \Delta'$ it holds that $\psi \in \Delta'$.

Truth Lemma

イロト イヨト イヨト イヨト

Truth Lemma

Lemma

For any normal modal logic Λ , any maximally Λ -consistent set Δ and any formula φ ,

 $\mathfrak{M}_{\Lambda}, \Delta \vDash \varphi \quad iff \quad \varphi \in \Delta.$

The Truth Lemma is a key step in the completeness proof.Its proof is (as usual) by induction on formulas.

Induction on formulas: propositional part

(*Prop*) If φ is a propositional variable, then the claim holds by definition of V_{Λ} .

(¬) If $\varphi = \neg \psi$, then • $\mathfrak{M}_{\Lambda}, \Delta \vDash \neg \psi$ iff • $\mathfrak{M}_{\Lambda}, \Delta \nvDash \psi$ iff • $\psi \notin \Delta$ iff • $\neg \psi \in \Delta$.

(\lor) If $\varphi = \psi \lor \chi$, then • $\mathfrak{M}_{\Lambda}, \Delta \vDash \psi \lor \chi$ iff • either $\mathfrak{M}_{\Lambda}, \Delta \vDash \psi$ or $\mathfrak{M}_{\Lambda}, \Delta \vDash \chi$ iff • either $\psi \in \Delta$ or $\chi \in \Delta$ iff • $\psi \lor \chi \in \Delta$.

イロト 不得下 イヨト イヨト 二日

Induction on formulas: propositional part

(\Box) If $\varphi = \Box \psi$, then

- $\mathfrak{M}_{\Lambda}, \Delta \vDash \Box \psi$ iff
- for all Δ' such that $\Delta R_{\Lambda} \Delta'$, it holds that $V(\psi, \Delta')$, iff
- for all Δ' such that $\{\varphi \colon \Box \varphi \in \Delta\} \subseteq \Delta'$, it holds that $\psi \in \Delta'$, iff

•
$$\Box \psi \in \Delta$$
.

(\diamond) If $\varphi = \diamond \psi$, then

- $\mathfrak{M}_{\Lambda}, \Delta \vDash \Diamond \psi$ iff
- there exists Δ' such that $\Delta R_{\Lambda} \Delta'$ and $V(\psi, \Delta')$, iff
- there exists Δ' such that $\{\varphi \colon \Box \varphi \in \Delta\} \subseteq \Delta'$ and $\psi \in \Delta'$, iff

•
$$\diamond \psi \in \Delta$$
.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Completeness

<ロ> (日) (日) (日) (日) (日)

Completeness Theorem

Theorem

```
For any set of formulas \Sigma \cup \{\varphi\},
```

if
$$\Sigma \vDash^{I}_{\Lambda} \varphi$$
, then $\Sigma \vdash_{\Lambda} \varphi$.

- as usual, suppose that $\Sigma \nvDash_{\Lambda} \varphi$,
- then the set $\Sigma \cup \{\neg \varphi\}$ is consistent,
- by Lindenbaum Lemma, there is a maximally Λ -consistent set Δ such that $\Sigma \cup \{\neg \varphi\} \subseteq \Delta$,
- hence $\mathfrak{M}_{\Lambda}, \Delta \vDash_{\Lambda} \Sigma$, but $\mathfrak{M}_{\Lambda}, \Delta \nvDash_{\Lambda} \varphi$,
- therefore, $\Sigma \nvDash_{\Lambda}^{I} \varphi$.

A B A A B A