An Introduction to Modal Logic VI

Beyond Canonicity

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, November 7th 2013

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UPOL)

Modal Logic VI

Introduction

- we have proved that
 - the normal modal logic T is complete with respect to the class of reflexive Kripke frames;
 - the normal modal logic K4 is complete with respect to the class of transitive Kripke frames;
 - the normal modal logic S4 is complete with respect to the class of reflexive-transitive Kripke frames;
- using the canonical frame method it is possible to prove further results.

A B M A B M

Frame Completeness results

- $T \longrightarrow reflexive frames$
- $K4 \longrightarrow transitive frames$
- S4 \rightsquigarrow reflexive and transitive frames
- $B \longrightarrow$ reflexive and symmetric frames
- $S5 \longrightarrow$ reflexive, symmetric and transitive frames
- $D \longrightarrow$ serial frames
- $D4 \longrightarrow$ serial and transitive frames
- $GL \longrightarrow$ transitive and Noetherian frames

Frame Completeness and Canonicity

- If a logic A is weakly complete with respect to a class of frame, we say that it is frame complete;
- if the theorems of logic Λ are valid in its canonical frame, we say that it is Canonical;
- Canonicity implies Frame Completeness.. but the inverse implication does not hold!;
- the logic **G***L* is an example of frame complete logic that **is not Canonical**.

A B M A B M

GL is not Canonical

イロト イ団ト イヨト イヨト

Preliminaries

Preliminaries

• The logic **G***L* is the extension of *K* by means of the axiom:

$$\Box(\Box p
ightarrow p)
ightarrow \Box p$$

- GL is complete with respect to transitive and Noetherian frames:
- we recall that, a frame is Noetherian if there are no infinite ascending *R*-chains;
- Nevertheless, GL is not Canonical.

An indirect proof

- The reason is that the canonical frame \mathfrak{F}_{GL} of GL is not Noetherian,
- for the moment we have not the tools to prove directly this fact,
- so, we will prove the non-canonicity of GL indirectly,
- we will use the fact that the consequence relation defined by frames is not finitary.

()

Canonicity and Finitarity

- A consequence relation ⊨ is finitary if, every time that Σ ⊨ φ, there is a finite subset Γ ⊆ Σ such that Γ ⊨ φ.
- Given a logic Λ, by definition of deducibility, the operator ⊢_Λ is finitary.
- Strong Frame Completeness proves that $\Sigma \vDash_{Fr(\Lambda)}^{\prime} \varphi \iff \Sigma \vdash_{\Lambda} \varphi.$
- Hence, if Λ is strongly frame complete, then $\vDash_{Fr(\Lambda)}^{l}$ is finitary.
- As we have seen, if Λ is canonical, then it is strongly frame complete.

• Hence, if $\vDash_{Fr(\Lambda)}^{l}$ is not finitary, then Λ is not canonical.

\models_{GL}^{l} is not finitary

Consider the set of formulas:

$$\Sigma = \{ \diamondsuit p_0 \} \cup \{ \Box (p_n \to \diamondsuit p_{n+1}) \colon n \in \mathbb{N} \}$$

We will prove that

•
$$\Sigma \vDash^{l}_{Fr(GL)} \perp$$
 and

• for every finite $\Gamma \subseteq \Sigma$, we have that $\Gamma \nvDash_{Fr(GL)}^{l} \perp$

• • = • • = •

$\Sigma \models_{GL}^{\prime} \bot$

In order to prove that $\Sigma \vDash_{GL}^{\prime} \perp$, we have to prove that Σ is false at every point *w* of every model \mathfrak{M} built on a frame in Fr(GL).

- Suppose the contrary: so there exist 𝔅 ∈ Fr(GL), 𝔐 = ⟨𝔅, V⟩ and w₀ ∈ W such that 𝔐, w₀ ⊨^l_{GL} Σ;
- since $\Diamond p_0$ is true at w_0 , then there exists $w_1 \in W$ such that $R(w_0, w_1)$ and p_0 is true at w_1 ;
- since $\Box(p_0 \to \Diamond p_1)$ is true at w_0 and $R(w_0, w_1)$, then $p_0 \to \Diamond p_1$ is true at w_1 ;
- hence, by (MP), $\Diamond p_1$ is true at w_1 ;

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ - 画 - のへ⊙

- since $\Diamond p_1$ is true at w_1 , then there exists $w_2 \in W$ such that $R(w_1, w_2)$ and p_1 is true at w_2 ;
- since $R(w_0, w_1)$, and $R(w_1, w_2)$, by transitivity we have that $R(w_0, w_2)$;
- since $\Box(p_1 \to \Diamond p_2)$ is true at w_0 and $R(w_0, w_2)$, then $p_1 \to \Diamond p_2$ is true at w_2 ;
- hence, by (MP), $\Diamond p_2$ is true at w_2 ;
- repeating the process, we obtain an infinite ascending *R*-chain, which is impossible, since $\mathfrak{F} \in Fr(GL)$.

For every finite $\Gamma \subseteq \Sigma$, we have that $\Gamma \nvDash_{Fr(GL)}^{l} \perp$

In order to prove that for every finite $\Gamma \subseteq \Sigma$, we have that $\Gamma \nvDash_{Fr(GL)}^{l} \perp$, we have to prove that any finite $\Gamma \subseteq \Sigma$ is satisfiable in a model \mathfrak{M} built on a frame in Fr(GL).

- Let Γ a finite subset of Σ ;
- let *n* be the maximum number such that p_n occurs in Γ ;
- consider the model $\mathfrak{M} = \langle W, R, V \rangle$, where:

•
$$W = \{0, 1, \dots, n+1\},\$$

- ► *R* =<,
- for $m \leq n$, we have that $V(p_m, m+1) = 1$ and 0 otherwise;

◆□▶ ◆圖▶ ◆圖▶ ◆圖▶ ─ 圖

- \mathfrak{M} is built on a transitive and Noetherian frame;
- hence \mathfrak{M} is a model of GL;
- moreover, the finite subset {◊p₀} ∪ {□(p_m → ◊p_{m+1}): m < n} of Σ is satisfiable in 𝔐;
- since $\Gamma \subseteq \{ \diamondsuit p_0 \} \cup \{ \Box(p_m \to \diamondsuit p_{m+1}) \colon m < n \}$, then Γ is satisfiable in \mathfrak{M} ;
- hence $\Gamma \nvDash^{l}_{Fr(GL)} \perp$.

• • = • • = • =

Note: being Noetherian is not first order condition

Through a similar compactness argument it can be proved that the condition of being Noetherian **is not first order definable**.

- Suppose it is, then there is a set of formulas Γ in the first order language with one binary relation R whose models are precisely Noetherian structures;
- consider the set of formulas:

$$\Sigma = \Gamma \cup \{R(c_n, c_{n+1}) \colon n \in \mathbb{N}\}$$

in the first order language with R and a countable set of new constants $\{c_n : n \in \mathbb{N}\}$;

- since Γ defines Noetherian, then every finite subset of Σ is satisfiable;
- by Compactness Theorem in first order logic, Σ is satisfiable;
- hence, in the model that satisfies Σ there is an infinite ascending *R*-chain, which is impossible.

Marco Cerami (UPOL)