An Introduction to Modal Logic VIII

Filtrations

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, November 21st 2013

INVESTMENTS IN EDUCATION DEVELOPMENT

Marco Cerami (UPOL)

Modal Logic VIII

21.11.2013 1 / 22

Introduction

- Canonical models are a very powerful tool;
- they give a really **clear insight** of the relations between syntax and semantics in Modal Logic;
- nevertheless they are not useful in practice;
- indeed, with a countably infinite set of propositional variables, there are too many maximally consistent sets of formulas;
- this makes canonical models too huge to be used in practice;
- so, what we need is a tool that reduces the size of models while, at the same time, preserves the truth of (certain) formulas;
- this kind of task is offered us by the filtration method.

Filtrations

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The relation \sim_{Σ}

- A set of formulas Σ is closed under subformulas if, for any formula φ, ψ it holds that if φ ∈ Σ and ψ is a subformula of φ, then ψ ∈ Σ.
- For example the set $\Sigma = \{p \land q, p, q\}$ is closed under subformulas.
- Let $\mathfrak{M} = \langle W, R, V \rangle$ be a model and Σ be a set of formulas closed under subformulas. For every $w \in W$ let

$$Th_{\mathfrak{M}}^{\Sigma}(w) = \{\varphi \in \Sigma \colon \mathfrak{M}, w \vDash \varphi\}.$$

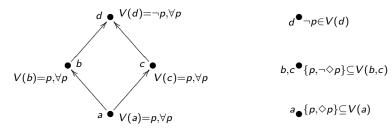
• We define the relation \sim_{Σ} on ${\it W}$ by:

$$w \sim_{\Sigma} v$$
 iff $Th_{\mathfrak{M}}^{\Sigma}(w) = Th_{\mathfrak{M}}^{\Sigma}(v)$.

Clearly \sim_{Σ} is an **equivalence relation**.

The quotient of a model through a set Σ

- We denote by $[w]_{\Sigma}$ the **equivalence class** through \sim_{Σ} ;
- the quotient set of all these equivalence classes will be denoted by W_Σ;
- for example, the sets {a}, {b, c} and {d} are the equivalence classes of the models below through the set of formulas {p, ◇p}:



() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Σ -appropriate relations

Let $\mathcal{M} = \langle W, R, V \rangle$ be a model and Σ be a set of formulas closed under subformulas. We say that a binary relation S on W_{Σ} is Σ -appropriate if for every $w, v \in W$ it holds that:

- if R(w, v), then $S([w]_{\Sigma}, [v]_{\Sigma})$,
- 2 if $\blacktriangleright \Diamond \varphi \in \Sigma$,
 - $S([w]_{\Sigma}, [v]_{\Sigma})$,
 - $\mathcal{M}, \mathbf{v} \vDash \varphi$,

then $\mathcal{M}, w \vDash \Diamond \varphi$.

Σ -appropriate relations: example

Let $\mathcal{M} = \langle W, R, V \rangle$ be a model and Σ be a set of formulas closed under subformulas. Define the relation R_{Σ}^{s} on W_{Σ} by:

 $R^s_{\Sigma}([w]_{\Sigma}, [v]_{\Sigma})$ iff $\exists w' \in [w]_{\Sigma}, \exists v' \in [v]_{\Sigma}$ s.t. R(w', v')

Then it is easy to prove that

- R_{Σ}^{s} is an appropriate relation,
- R_{Σ}^{s} is the smallest appropriate relation.

R_{Σ}^{s} is an appropriate relation

Let $\mathcal{M} = \langle W, R, V \rangle$ be a model and Σ be a set of formulas closed under subformulas. Consider the relation R_{Σ}^{s} on W_{Σ} . Then

On the one end

- ▶ if *R*(*w*, *v*),
- ▶ then $\exists w' \in [w]_{\Sigma}, \exists v' \in [v]_{\Sigma}$ s.t. R(w', v'),
- hence $R^s_{\Sigma}([w]_{\Sigma}, [v]_{\Sigma})$.

On the other hand,

- since $\Diamond \varphi \in \Sigma$, then $\varphi \in \Sigma$,
- ► since $R_{\Sigma}^{s}([w]_{\Sigma}, [v]_{\Sigma})$, then $\exists w' \in [w]_{\Sigma}, \exists v' \in [v]_{\Sigma}$ s.t. R(w', v'),
- since $\mathcal{M}, \mathbf{v} \vDash \varphi$, then $\mathcal{M}, \mathbf{v}' \vDash \varphi$,
- hence $\mathcal{M}, w' \vDash \Diamond \varphi$,
- therefore $\mathcal{M}, w \vDash \Diamond \varphi$.

R_{Σ}^{s} is the smallest appropriate relation

Let $\mathcal{M} = \langle W, R, V \rangle$ be a model and Σ be a set of formulas closed under subformulas. Consider the relation R_{Σ}^{s} on W_{Σ} and let S be a Σ -appropriate relation on W_{Σ} . Then

- Let $[w]_{\Sigma}, [v]_{\Sigma} \in W_{\Sigma}$ be such that $R^{s}_{\Sigma}([w]_{\Sigma}, [v]_{\Sigma})$,
- then $\exists w' \in [w]_{\Sigma}, \exists v' \in [v]_{\Sigma}$ s.t. R(w', v'),
- since S is Σ -appropriate, then $S([w']_{\Sigma}, [v']_{\Sigma})$,

• since
$$[w']_{\Sigma} = [w]_{\Sigma}$$
 and $[v']_{\Sigma} = [v]_{\Sigma}$, then $S([w]_{\Sigma}, [v]_{\Sigma})$.

イロト イポト イヨト イヨト 二日

Filtrations

Let $\mathfrak{M} = \langle W, R, V \rangle$ be a model and Σ a set of formulas closed under subformulas, then a **filtration** of \mathfrak{M} through Σ is a model

$$\mathfrak{M}_{\Sigma} = \langle \mathit{W}_{\Sigma}, \mathit{R}_{\Sigma}, \mathit{V}_{\Sigma} \rangle$$

where:

- W_{Σ} is the **quotient set** of W through Σ ,
- R_{Σ} is a Σ -appropriate binary relation on W,
- V_{Σ} is a **valuation** of the propositional variables defined by: $V_{\Sigma}(p, [w]_{\Sigma}) = 1$ iff $V_{\Sigma}(p, w) = 1$;

イロト 不得 トイヨト イヨト 二日

Modal equivalence between \mathfrak{M}_{Σ} and \mathfrak{M}

- Let M = (W, R, V) be a model and Σ a set of formulas closed under subformulas.
- Let $\mathfrak{M}_{\Sigma} = \langle W_{\Sigma}, S, V_{\Sigma} \rangle$ be the filtration of \mathfrak{M} through Σ and S a Σ -appropriate relation on W_{Σ} .
- It is easy to prove that \mathfrak{M}_{Σ} and \mathfrak{M} are **modally equivalent**;
- what we need to prove is that, for every formula φ ∈ Σ and every point w ∈ W, it holds that:

 $\mathfrak{M}, w \vDash \varphi$ iff $\mathfrak{M}_{\Sigma}, [w]_{\Sigma} \vDash \varphi$

• the proof is made by an easy **induction**.

イロト 不得 トイヨト イヨト 二日

Proof

Var If φ is a **propositional variable** $p \in \Sigma$, then, by definition of V_{Σ} , we have that

$$V\Sigma(p,[w]) = 1$$
 iff $V(p,w) = 1$;

Bool If $\varphi \in \Sigma$ is a **boolean combination** of the formulas ψ and χ , then, $\psi, \chi \in \Sigma$, then suppose, by induction hypothesis, that for every point $w \in W$:

$$V\Sigma(\psi, [w]\Sigma) = 1$$
 iff $V(\psi, w) = 1$;

and the same for $\chi.$ Hence, if e.g. $\varphi=\psi\wedge\chi$

•
$$V_{\Sigma}(\varphi, [w]_{\Sigma}) = 1$$
 iff,

•
$$V_{\Sigma}(\psi \wedge \chi, [w]_{\Sigma}) = 1$$
 iff,

- $V_{\Sigma}(\psi, [w]_{\Sigma}) = 1$ and $V_{\Sigma}(\chi, [w]_{\Sigma}) = 1$ iff,
- since Σ is closed under subformulas, by the induct. hyp. iff,

•
$$V(\psi, w) = 1$$
 and $V(\chi, w) = 1$ iff,

•
$$V(\psi \wedge \chi, w) = 1$$
 iff,

•
$$V(\varphi, w) = 1.$$

イロト 不得 トイヨト イヨト 二日

Mod If φ is modal formula $\Diamond \psi \in \Sigma$ then $\psi \in \Sigma$.

• Suppose, by induction hypothesis, that for every point $v \in W$:

$$V_{\Sigma}(\psi, [v]_{\Sigma}) = 1$$
 iff $V(\psi, v) = 1$;

• On the one hand, assume $\mathcal{M}, w \vDash \Diamond \psi$,

- then there exists $v \in W$ s.t. R(w, v) and $\mathcal{M}, v \vDash \psi$,
- then, since S is Σ -appropriate, $S([w]_{\Sigma}, [v]_{\Sigma})$,
- by i.h., $\mathcal{M}_{\Sigma}, [v]_{\Sigma} \vDash \psi$,
- hence $\mathcal{M}_{\Sigma}, [w]_{\Sigma} \vDash \diamondsuit \psi$.
- On the other hand, assume $\mathcal{M}_{\Sigma}, [w]_{\Sigma} \vDash \Diamond \psi$,
 - ▶ then there exists $v \in W$ s.t. $S([w]_{\Sigma}, [v]_{\Sigma})$ and $\mathcal{M}_{\Sigma}, [v]_{\Sigma} \vDash \psi$,
 - ▶ by i.h., $\mathcal{M}, \mathbf{v} \models \psi$,
 - hence, since *S* is Σ -appropriate, $\mathcal{M}, w \vDash \Diamond \psi$.

イロト イポト イヨト イヨト 二日

Finiteness of \mathfrak{M}_{Σ} (with Σ finite)

- Let $\mathfrak{M} = \langle W, R, V \rangle$ be a model and Σ a **finite** set of formulas closed under subformulas.
- Every filtration $\mathfrak{M}_{\Sigma} = \langle W_{\Sigma}, S, V_{\Sigma} \rangle$ of \mathfrak{M} through Σ is a finite model.
- It is **enough** to prove that W_{Σ} is **finite**;
- to see this, consider that, for every w ∈ W, the set Th^Σ_M(w) is a subset of Σ,
- moreover, if $Th^{\Sigma}_{\mathcal{M}}(w) = Th^{\Sigma}_{\mathcal{M}}(v)$, then $w \sim_{\Sigma} v$,
- therefore $[w]_{\Sigma} = [v]_{\Sigma}$;
- hence there is an injective map from W_{Σ} to $\mathcal{P}(\Sigma)$,
- since $\mathcal{P}(\Sigma)$ is finite, so is W_{Σ} .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Proving the finite model property

(日) (同) (三) (三)

Filtrations and the finite model property

- As we have seen, filtrations are **finite**, **differentiated** models which are **modally equivalent** to the original models,
- moreover, since the set of subformulas of a given formula is **finite**, so is the filtration.
- This makes filtration a good candidate to **prove finite model property** for some normal modal logics.
- Indeed filtrations are used in the literature with this aim.
- Often it is not provable that any filtration of a model that has property *P*, has also property *P*,
- nevertheless, it is enough to prove that, for every model M with property P and every formula φ, always exists one filtration of M through the set of subformulas of φ, which has property P,
- indeed it is possible to prove the above result for arbitrary finite sets of formulas closed under subformulas

Marco Cerami (UPOL)

Modal Logic VIII

The Logic K has the finite model property

- The Logic K has the finite model property.
- to see this, let φ be a formula which **is not a theorem** of K,
- let $\Sigma = Sub(\varphi)$ be the set of subformulas of φ ,
- let \mathfrak{M}_K be the canonical model of K and \mathfrak{M}_{Σ} a filtration of \mathfrak{M}_K through Σ .
- Since $\varphi \notin K$, then there is $\Delta \in W_K$ s.t. $\mathfrak{M}_K, \Delta \nvDash \varphi$,
- hence $\mathfrak{M}_{\Sigma}, [\Delta]_{\Sigma} \nvDash \varphi$.
- Since \mathfrak{M}_{Σ} is a Kripke model, then it is a model of K,
- Since Σ is finite, then \mathfrak{M}_{Σ} is finite,
- hence φ is not valid in a finite model of K.

The Logic T has the finite model property

- The Logic T has the finite model property.
- Let $\mathfrak{M} = \langle W, R, V \rangle$ with *R* reflexive,
- let $\boldsymbol{\Sigma}$ a set of formulas closed under subformulas.
- In the case of logic *T*, we can prove that **every filtration** of a reflexive model is reflexive,
- it is enough to prove that the smallest Σ-appropriate relation *R*^s_Σ is reflexive;
- indeed, if R(w, w), then $\exists w' \in [w]_{\Sigma}$ s.t. R(w', w'),
- hence $R^s_{\Sigma}([w]_{\Sigma}, [w]_{\Sigma})$ for every $w \in W$.
- Since R_{Σ}^{s} is contained in every Σ -appropriate relation, then every filtration of a reflexive model is reflexive.

Marco Cerami (UPOL)

Modal Logic VIII

The Logic K4 has the finite model property

- The Logic K4 has the finite model property.
- Let $\mathfrak{M} = \langle W, R, V \rangle$ with *R* transitive,
- let $\boldsymbol{\Sigma}$ a set of formulas closed under subformulas.
- Define the relation T on W_{Σ} by:

$$\begin{array}{l} \mathcal{T}([w]_{\Sigma},[v]_{\Sigma}) \quad \text{iff} \\ (\forall \diamondsuit \varphi \in \Sigma)(\mathfrak{M}, v \vDash \varphi \lor \diamondsuit \varphi \ \Rightarrow \ \mathfrak{M}, w \vDash \diamondsuit \varphi). \end{array}$$

21.11.2013 19 / 22

Let us see that T is Σ -appropriate;

- About the second condition, take $\Diamond \varphi \in \Sigma$,
- by the second premise $T([w]_{\Sigma}, [v]_{\Sigma})$,
- then $(\forall \Diamond \varphi \in \Sigma)(\mathfrak{M}, v \vDash \varphi \lor \Diamond \varphi \Rightarrow \mathfrak{M}, w \vDash \Diamond \varphi)$,
- by the third premise $\mathcal{M}, \mathbf{v} \vDash \varphi$
- then $\mathcal{M}, w \vDash \Diamond \varphi$.

 About the first condition, suppose that R(w, v), take ◊φ ∈ Σ be such that either

$$\mathfrak{M}, \mathbf{v} \vDash \varphi$$
 or $\mathfrak{M}, \mathbf{v} \vDash \diamond \varphi$,

- in the first case, $\mathfrak{M}, w \vDash \Diamond \varphi$ and we are done,
- in the second case, $\mathfrak{M}, w \vDash \Diamond \Diamond \varphi$,
- since R is transitive, $\mathfrak{M}, w \vDash \Diamond \Diamond \varphi \rightarrow \Diamond \varphi$,
- hence, by (MP), $\mathfrak{M}, w \vDash \Diamond \varphi$,
- so, $T([w]_{\Sigma}, [v]_{\Sigma})$.

< 回 ト < 三 ト < 三 ト

Proving f.m.p.

Let us see that T is **transitive**;

- suppose that $T([w]_{\Sigma}, [v]_{\Sigma})$ and $T([v]_{\Sigma}, [u]_{\Sigma})$,
- we want to prove that $T([w]_{\Sigma}, [u]_{\Sigma})$,
- take $\Diamond \varphi \in \Sigma$ be such that either $\mathfrak{M}, u \vDash \varphi$ or $\mathfrak{M}, u \vDash \Diamond \varphi$,
- in the first case, $\mathfrak{M}, \mathbf{v} \vDash \Diamond \varphi$ and we are done,
- in the second case, $\mathfrak{M}, \mathbf{v} \vDash \Diamond \Diamond \varphi$,
- since R is transitive, $\mathfrak{M}, \mathbf{v} \vDash \Diamond \Diamond \varphi \rightarrow \Diamond \varphi$,
- hence, by (MP), $\mathfrak{M}, \mathbf{v} \vDash \Diamond \varphi$.
- then $\mathfrak{M}, w \vDash \Diamond \Diamond \varphi$,
- since, again, R is transitive, $\mathfrak{M}, w \vDash \Diamond \Diamond \varphi \rightarrow \Diamond \varphi$,
- hence, by (MP), $\mathfrak{M}, w \vDash \Diamond \varphi$,
- so, $T([w]_{\Sigma}, [u]_{\Sigma})$.