

Complexity sources in Fuzzy Description Logics

Marco Cerami¹, Umberto Straccia²

¹Univerzita Palackého v Olomouci (UPOL), Olomouc, Czech Republic ²Istituto di Scienza e Tecnologie dell'Informazione, Consiglio Nazionale Ricerche (ISTI-CNR), Pisa, Italy

The three main continuous <i>t</i> -norms				Semantics
	Minimum (Gödel)	Product	Łukasiewicz	$(\sim C)^{\mathcal{I}}(v) := 1 - C^{\mathcal{I}}(v)$
<i>x</i> * <i>y</i>	$\min(x, y)$	$x \cdot y$	$\max(0, x + y - 1)$	$(C \sqcap D)^{\mathcal{I}}(v) := C^{\mathcal{I}}(v) * D^{\mathcal{I}}(v)$
$x \Rightarrow y$	$\begin{cases} 1, \text{ if } x \leq y \\ y, \text{ otherwise} \end{cases}$	$\begin{cases} 1, & \text{if } x \leq y \\ y/x, & \text{otherwise} \end{cases}$	$\min(1, 1 - x + y)$	$(C \sqcup D)^{\mathcal{I}}(v) := 1 - ((1 - C^{\mathcal{I}}(v)) * (1 - D^{\mathcal{I}}(v)))$
$x \Rightarrow 0$	$\begin{cases} 1, \text{ if } x = 0 \\ 0, \text{ otherwise} \end{cases}$	$\begin{cases} 1, \text{ if } x = 0 \\ 0, \text{ otherwise} \end{cases}$	1-x	$(\mathcal{C} \to D)^{\mathcal{I}}(v) := \mathcal{C}^{\mathcal{I}}(v) \Rightarrow D^{\mathcal{I}}(v)$ $(\forall R. C)^{\mathcal{I}}(v) := \inf_{w \in \Delta^{\mathcal{I}}} \{ R^{\mathcal{I}}(v, w) \Rightarrow C^{\mathcal{I}}(w) \}$ $(\exists R. C)^{\mathcal{I}}(v) := \sup_{w \in \Delta^{\mathcal{I}}} \{ R^{\mathcal{I}}(v, w) * C^{\mathcal{I}}(w) \}$

Behavior of tableau-like algorithms for lower bound reasoning tasks

The sets of truth values for a given classical axiom or reasoning task can be taken from a range included between a positive value r > 0 and 1. That is, the graded axioms have the following form:

> $\langle C \sqsubseteq D \ge r \rangle$, $\langle C(a) \geq r \rangle$.

The classical tableau algorithm adds a new element just when it finds out an existentially quantified subconcept $\exists R.C$, but not for value restrictions $\forall R.C$:

Behavior of tableau-like algorithms for exact-value reasoning tasks

Assertion axioms and concept satisfiability can be asked to take single values only, different than 1, then having the following form:

 $\langle C(a) = r \rangle.$

The main difference is that tableau-like algorithms for exact-value reasoning tasks add a new element not only when an existentially quantified subconcept $\exists R.C$ is found, but also when a value restriction $\forall R.C$ has to be computed.

Classical structural subsumption algorithm *SUBS*?[*C*, *D*] **from** [Brachman and Levesque, 1984]

Non-idempotent conjunction

- 1: Flatten both C and D by removing all nested \square operators.
- 2: Collect all arguments to an $\forall R$. for a given role R.
- 3: Assuming that $C := C_1 \sqcap \ldots \sqcap C_n$ and $D := D_1 \sqcap \ldots \sqcap D_m$, then return **true** iff for each C_i :
- (a) if C_i is an atom or a $\exists R. \top$, then one of D_i is C_i .
- (b) if C_i is $\forall R.E$ then one of the D_i is $\forall R.F$, where SUBS?[E, F].

Under non-idempotent conjunction, concepts $\forall R.(C \sqcap D)$ and $\forall R.C \sqcap \forall R.D$ are not equivalent:

Hence, step 2 of algorithm SUBS?[C, D] can not be applied.

Structural algorithm L_n -SUBS(1, D, C) for 1-subsumption in L_n - \mathcal{FL}^-

1: if there is an occurrence of an atomic or existential conjunct A of D that is not in C where concept A appears in C strictly less n-1 times then

return 0 2:

3: **else**

7:

- $\mathbf{E}_{C,D} := \emptyset$ 4:
- **for all** value restriction $\forall R.F$ which is a conjunct of D do 5:
- **for all** value restriction $\forall R.E$ which is a conjunct of C do 6:
 - $\mathbf{E}_{C,D}(\forall R.F,\forall R.E) := \mathbf{L}_{\mathbf{n}} SUBS(1, F, E)$
- end for 8:
- end for 9:
- if there is a maximal bipartite matching for $E_{C,D}$ then 10:
- return 1 11:
- else 12:
- return 0 13:
- end if 14:
- 15: **end if**

INVESTMENTS IN EDUCATION DEVELOPMENT

Acknowledgments

M. Cerami is supported by the ESF project POST-UP II No. CZ.1.07/2.3.00/30.0041. The project is co-financed by the European Social Fund and the state budget of the Czech Republic.

Mail: marco.cerami@upol.cz, umberto.straccia@isti.cnr.it