

The aim of this doctoral thesis is a systematic development of expressive fuzzy Description Logics taking as a starting point current researches on first order fuzzy logics and modal fuzzy logics.

This point of view was firstly proposed by [1] and then developed in [2] where some research lines to this end are proposed.

1. Logical Background

From a logical point of view, we are interested in studying the first order fuzzy logic associated to the consequence relation of the standard semantics (the one with truth values in [0,1]) of the three basic *t*-norms, ξ , Π and G and finite-valued logics like ξ_n and G_n , because these are more suited of being used in real applications. For the same reason we are also interested in their expansions by an appropriate set of **truth constants** (S) or by an involutive negation \sim .

For each of the logics above mentioned we want to know whether they enjoy the so-called witnessed model property and quasiwitnessed model property, because, through these properties, it is possible to prove **decidability** for their ALC-like fragments.

 $W/qW-L-P \iff L-P \iff [0,1]_L-P$

Where $P \in \{Sat, 1\text{-}Sat, pos\text{-}Sat\}$ and L is one among the standard first order logics above mentioned.

	$Taut^w$	1 - Sat^w	pos - Sat^w	$Taut^{qw}$	1 - Sat^{qw}	pos - Sat^{qw}
$[0,1]_{+}$	Y [3,2]	Y [3,2]	Y [3,2]	Y [3,2]	Y [3,2]	Y [3,2]
$[0,1]_{\Pi}$	N [2]	N [2]	N [2]	Y [1,4]	?	Y [1,4]
$[0,1]_G$	N [2]	N [2]	N [2]	N [2]	N [2]	N [2]
${\sf k}_n$	Υ	Y	Y	Y	Υ	Y
G_n	Y	Y	Υ	Y	Υ	Y
$[0,1]_{\textbf{L}}(S)$?	?	?	?	?	?
$[0,1]_{\Pi}(S)$	N [2]	N [2]	N [2]	?	?	?
$[0,1]_{\Pi,\sim}$?	?	?	?	?	?

References

- [1] Cerami, M.; Esteva F. and Bou F. 2010. Decidability of a Description Logic over infinite-valued Product Logic. KR 2010 Conference.
- [2] Cintula, P. and Hájek, P. 2006. On theories and models in fuzzy predicate logic. *Journal of Symbolic Logic* 71(3):863-880.
- [3] Hájek, P. 1998. *Metamathematics of Fuzzy Logic*. Dordrecht: Kluwer Academic Publishers.
- [4] Laskowski, M. and Malekpour, S. 2007. Provability in predicate product logic. Archive for Mathematical Logic 46:365-378.

KR10-DC, Doctoral Consortium at 12th International Conference on the Principles of Knowledge Representation and Reasonong, 9-13 May 2010, Toronto, Canada

Theoretical foundations of fuzzy description logics and their application as languages for ontology representation

Marco Cerami

Artificial Intelligence Research Institute Spanish National Research Council (IIIA - CSIC)

cerami@iiia.csic.es

2. A new framework for FDLs

FDLs defined in the 90s are mainly based on Zadeh semantics (for example [2]) and sometimes in Lukasiewicz first order logic. The introduction of other *t*-norms deserves **new symblols**. In [1] we propose for an ALC-like language the following set of concepts constructors:

- \boxplus strong union \mathcal{U}
- \boxtimes strong intersection \mathcal{AL}
- \Box residuated implication prefixed \mathcal{I}
- \sim involutive complement C

We will keep the symbols \Box , \Box , and \neg to denote the constructors associated to weak intersection, weak union and residuated complement, as well as \top and \perp for the domain and empty concept respectively.

In the same paper [1], for each fuzzy logic, we propose a new hierarchy of ALC-like Description Languages that fits better inside the framework of a *t*-norm-based treatment of many-valued Description Logic.

Figure 2: *Hierarchy of languages*

References

- [1] Cerami, M.; García–Cerdaña, A. and Esteva, F. 2010. From Classical Description Logic to n-graded Fuzzy Description Logic. Accepted at FUZZ-IEEE 2010 Conference.
- [2] Straccia, U. 1998. A Fuzzy Description Logic. In Proceedings of the 15th National Conference on Artificial Intelligence (AAAI-98), Madison USA, 594-599.

First order standard tautologies are **very complex**: for instance, they are not recursively enumerable in the case of infinite-valued Lukasiewicz Logic and not arithmetical in the case of infinitevalued Product Logic. Nevertheless, the ALC-like fragments have been shown to be decidable.

* Only for its axiomatic extension complete with respect to quasi-witnessed models. ** In [3] there is not an explicit proof of decidability of finite-valued ALC-like FDLs, but the proof provided there can be used for finite-valued logics. *** Only for its axiomatic extension complete with respect to witnessed models.

References

References

- 154(1):1-15.
- 10.1016/j.ijar.2010.01.001.

3. Decidability

	Taut	1- Sat	pos-Sat
Ł-ALC	[3,4]	[3,4]	[3,4]
Π - \mathcal{IALE}	[2]	[2]*	[2]
G-I ALE	?	?	?
${\tt k}_n\text{-}\mathcal{ALC}$	[3]**	[3]**	[3]**
G_n - \mathcal{IALE}	[3]**	[3]**	[3]**
$L(S)$ - \mathcal{ALC}	?	?	?
$\Pi(S)\text{-}\mathcal{IALE}$?	?	?
Π - \mathcal{IALCE}	[1]***	[1]***	[1]***

- [1] Bobillo, F. and Straccia, U. 2009. Fuzzy description logics with general t-norms and datatypes Fuzzy Sets and Systems 160:3382-3402.
- [2] Cerami, M.; Esteva F. and Bou F. 2010. Decidability of a Description Logic over infinite-valued Product Logic. KR 2010 Conference.
- [3] Hájek, P. 2005. Making fuzzy description logic more general. *Fuzzy Sets and Systems* 154(1):1-15.
- [4] Straccia, U. 2004. Transforming fuzzy description logic into classical description logics. In Proceedings of the 9th European Conference on Logics in Artificial Intelligence (JELIA-04), 385-399. Springer Verlag.

- 1. Logical Background
- truth value constants.
- 2. Decidability and Algorithms
- truth value constants.
- ALC.
- rithms.
- in [1] or [3].
- 3. Applications

A final goal will be providing working tools able to represent fuzzy ontologies and reason with vague concepts.

References

- 160:3382-3402.
- com/exp062.

This work has been supported by the Spanish Ministry of Education and Science (ARINF TIN2009-14704-C03-03), Catalan Government (2009SGR-1434), CSIC (JAEPredoc, n.074) and KR Inc. Thesis Advisors: Francesc Esteva and Lluis Godo

[1] Hájek, P. 2005. Making fuzzy description logic more general. *Fuzzy Sets and Systems*

[2] García–Cerdaña, A.; Armengol, E. and Esteva, F. 2010. Fuzzy Description Logics and *t*-norm based Fuzzy Logics. International Journal of Approximate Reasoning. doi:

4. Future work

In the future we will focus our work on the following subjects:

 Providing results about witnessed and quasi-witnessed model properties for expansions of first order fuzzy logics with

• Studying the relationship between Fuzzy Description Logic and Fuzzy Modal Logic (see [2]).

• Providing missing algorithms for expansions of logics with

• Providing algorithms for languages more expressive than

• Studying the computational complexity of the provided algo-

• A comparative study of the different proposed algorithms, like

[1] Bobillo, F. and Straccia, U. 2009. Fuzzy description logics with general t-norms and datatypes Fuzzy Sets and Systems

[2] Bou, F.; Esteva, F.; Godo, L. and Rodriguez, R. On the Minimum Many-Valued Modal Logic over a Finite Residuated Lattice. Journal of Logic and Computation. doi: 10.1093/log-

[3] Stoilos, G.; Stamou, G.; Tzouvaras, J. Z. P. V. and Horrocks, I. 2007. Reasoning with very expressive Fuzzy Description Logics. Journal of Artificial Intelligence Research 30:273-320.

Funding