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Introduction

Introduction
We address today the possibility of generalizing the structural
subsumption algorithm for the classical description language
FL� to the finite-valued case.

This language is interesting for us because, as it has been proved
in [Brachman and Levesque, 1984], it has a polynomial time
subsumption problem.

As we will see, the classical algorithm is not complete for some
FDLs, due to the lack of idempotence. Nevertheless, the
subsumption problem is still polynomial.

This presentation is based on part of the paper Complexity
Sources in Fuzzy Description Logic, published in the
proceedings of the International Workshop DL 2014. The paper
is a joint work with U. Straccia.
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Preliminaries The language FL�

The language FL�

The name FL stands for frame language because it has more
or less the same expressive power of frame-based systems.

Frame languages were studied in the 80’s.

Below we define the language FL�:

C ,D ÝÑ A atomic concept

C [ D conjunction

@R .C value restriction

DR .J restricted existential quantif.
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Preliminaries The language FL�

Examples

Some examples of FL� concepts:

Person[@hasChild.Male

“person who has only sons (if (s)he has children)”

Person[DhasChild.J

“person who has a child”

Person[@hasChild.(Male[DhasChild.J)

“person who has only sons of have a child”
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Preliminaries The language FL�

Classical interpretations
An interpretation is a pair I � p∆I , �Iq where:

∆I is a nonempty set, called domain;

�I is an interpretation function that assigns:

� to each individual name a an element aI P ∆I ,

� to each atomic concept A a subset of the domain set
AI
� ∆I ,

� to each role name R a binary relation on the domain set
RI
� ∆I

�∆I .

The interpretation function can be inductively extended to
complex concepts in the following way:

pC [ DqI = C I X DI

p@R .C qI = tv P ∆I : for every w P ∆I , if RIpv ,wq then C Ipwqu

pDR .JqI = tv P ∆I : exists w P ∆I such that RIpv ,wqu
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Preliminaries The language FL�

Reasoning in FL�

In FL� concepts and axioms are trivially satisfiable.

The reason for this is that in FL� there is no negation.

A concept D is said to subsume a concept C when, in every
interpretation I it holds that

C I � DI .

We will consider this notion with respect to the empty KB.

Differently from satisfiability, in FL� it has no trivial solution,
since the trivial model above is just one among all possible
interpretations.
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Preliminaries The language FL�

Example
For example, concept

Person

is not subsumed by concept

Person[ Male.

Consider the interpretation I � p∆I , �Iq, where:

∆I � tv ,wu,

PersonI � tvu,

MaleI � twu,

Then, we have that PersonI � tvu � H �PersonI X MaleI .
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Preliminaries Finte-valued semantics

Finite t-norms
We are considering finite  Lukasiewicz and Gödel t-norms  Ln and
Gn, that is, algebras with domain:

t0, 1
n
, . . . , n�1

n
, 1u

and operations:

Gödel  Lukasiewicz
x � y minpx , yq maxp0, x � y � 1q

x ñ y

"
1, if x ¤ y
y , otherwise

minp1, 1� x � yq

 x

"
1, if x � 0
0, otherwise

1� x
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Preliminaries Finte-valued semantics

Interpretations
Being T P t Ln,Gnu, a T-interpretation is a pair I � p∆I , �Iq where:

∆I is a nonempty (crisp) set called domain,

�I is a fuzzy interpretation function such that:

� AI : ∆I
ÝÑ T ,

� RI : ∆I
�∆I

ÝÑ T ,

� aI P ∆I

The interpretation function can be inductively extended to
complex concepts in the following way:

pC [ DqIpxq := C Ipxq � DIpxq

p@R .C qIpxq := infyP∆ItRIpx , yq ñ C Ipyqu

pDR .JqIpxq := supyP∆ItRIpx , yqu
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Preliminaries Finte-valued semantics

Subsumption in T-FL�

As for FL�, also with finite-valued semantics, concepts and
axioms are trivially satisfiable.

A concept D is said to 1-subsume a concept C when, in every
interpretation I it holds that C I � DI .

Though in the fuzzy case, a graded notion of subsumption
can be defined, in this talk we will restrict to 1-subsumption.
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The structural subsumption algorithm for FL�

The structural subsumption algorithm

for classical FL�
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The structural subsumption algorithm for FL� Algorithm

Structural subsumption algorithm SUBS?rD,C s

from [Brachman and Levesque, 1984]

1: Flatten both C and D by removing all nested [ operators.

2: Collect all arguments to an @R . for a given role R .

3: Assuming that C :� C1 [ . . .[ Cn and D :� D1 [ . . .[Dm, then
return true iff for each Ci :

(a) if Di is an atom or a DR .J, then one of Cj is Di .

(b) if Di is @R .E then one of the Cj is @R .F , where
SUBS?rF ,E s.
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The structural subsumption algorithm for FL� Behavior

Behavior

From step 1 we have:

ppC1 [ C2q [ C3q [ pC4 [ C5q ; C1 [ C2 [ C3 [ C4 [ C5

which means that the conjunctions are treated as sets of
concepts.

From step 2 we have:

@R .C1 [ @R .pC2 [ @R .C3q ; @R .pC1 [ C2 [ @R .C3q

which is possible since with classical semantics the following
equivalence always holds:

@R .C1 [ @R .C2 � @R .pC1 [ C2q
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The structural subsumption algorithm for FL� Behavior

After steps 1 and 2 we obtain normalized concepts with:

� sets of atomic and quantified concepts. . .

� which are eventually inside the scope of universal quantifiers. . .

� that appear only once every role and nesting degree.

From step 3 the algorithm inductively checks whether every
concept in the consequent appears in the antecedent:

C1 [ C2 [ @R .pC3 [ C4q
X
� C1 [ @R .C4

C1 [ C2 [ @R .pC3 [ C4q
!

� C1 [ C4 [ @R .C2
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The structural subsumption algorithm for FL� Behavior

Complexity

In order to define the complexity of algorithm SUBS?rD,C s, let n be
the length of the longer argument. Then:

Step 1 can be done in time linear in n (just erase parenthesis).

Step 2 may require that the entire concepts C and D are
checked out a number of times equal to their length. Hence it
can be done in Opn2q time.

Step 3 may require that each of the concepts C and D is
checked out a number of times equal to the length of the
other. Hence it can be done in Opn2q time.

Hence, algorithm SUBS?rD,C s operates in Opn2q time.
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Finite-valued FDLs

Generalizing SUBS?rD,C s

to finite-valued FDLs
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Finite-valued FDLs The case of Gn

The case of Gn

The structural subsumption algorithm SUBS?rD,C s can be
consistently used in order to decide 1-subsumption for
Gn-FL�.

This is due to the fact that the Gödel t-norm ^ works well
with its residuum ñGn . That is, for every x , y , z P Gn:

x ñGn py ^ zq � px ñGn yq ^ px ñGn zq .

Note that subsumption between two concepts in Gn-FL� always
takes either value 0 or value 1. Therefore, speaking about p¥ rq-
or p� rq-subsumption in Gn-FL� does not make sense.
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Finite-valued FDLs Lack of idempotence in  Ln

Lack of idempotence in  Ln (I)

Classical concept conjunctions can be seen as sets of concepts.

Since  Lukasiewicz conjunction is not idempotent, complex
concepts where just [ appears as concept constructor can not
be seen as sets of atomic concepts.

In this sense, an inclusion like

A � A[ A

which is valid in classical FL� or in Gn-FL�, is not a
1-subsumption in  Ln-FL�.

Nevertheless, complex concepts in  Ln-FL� can be seen as
multisets of simpler concepts, that is, different occurrences of
atomic concepts are now seen as different elements of a given
complex concept.
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Finite-valued FDLs Lack of idempotence in  Ln

Lack of idempotence in  Ln (II)
Unfortunately, the same result does not hold for  Lukasiewicz
t-norm � Ln and its residuum ñ Ln .

That is, there are x , y , z P  Ln such that

x ñ Ln py � Ln zq � px ñ Ln yq � Ln px ñ Ln zq .

As an example, if we take x � y � z � 0.8, then we have that

x ñ Ln py � Ln zq � 0.8 � 1 � px ñ Ln yq � Ln px ñ Ln zq.

Since the residuum plays a fundamental role in the semantics
of quantified concepts in FDL, then in  Ln-FL�, concepts

@R .pC [ Dq and @R .C [ @R .D

are not equivalent.

This is a great source of nondeterminism, since now a
matching between the quantified concepts appearing in C and in
D should be found.
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Finite-valued FDLs Algorithm  Ln-SUBSp1,D, Cq

Algorithm  Ln-SUBSp1,D,C q
1: if there is an occurrence of an atomic or existential conjunct A of

D that is not in C where concept A appears in C strictly less
n � 1 times return false

2: else
3: EC ,D :� H
4: for all value restriction @R .F which is a conjunct of D
5: for all value restriction @R .E which is a conjunct of C
6: EC ,Dp@R .F , @R .E q :�  Ln-SUBSp1,F ,E q
7: end for
8: end for
9: if there is a maximal bipartite matching for EC ,D including C

10: return true
11: else
12: return false
13: end if
14: end if
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Finite-valued FDLs Behavior

Behavior

Step 1 handles subsumption between conjunctions of atomic
concepts considering the lack of idempotence:

A[ B [ A[ C
X
� A[ A

A[ B [ B [ C
!

� A[ B [ A

Moreover takes into consideration that, if a subconcept A of C
occurs in a conjunction more than n � 1 times, being n the
cardinality of  Ln, then its value is in t0, 1u.

In steps 2 to 8 a set of bipartite graphs or matrices are
inductively built, taking into consideration the quantified
concepts that appear in the scope of a quantification @R . with
the same R .
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Finite-valued FDLs Behavior

Construction of the matrices
Consider the subsumption:

@R .p@P .pA[Bq[@P .C q[@R .pC[Dq � @R .p@P .B[@P .C q[@R .C

Then the following matrices are built up:

For concepts

@R .p@P .pA[ B [ C q [ @P .C q [ @R .pC [ Dq �
@R .p@P .B [ @P .C q [ @R .C

@P .B @P .C

@P .pA[ B [ C q � �

@P .C �
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Finite-valued FDLs Behavior

For concepts

@R .p@P .pA[ B [ C q [ @P .C q [ @R .pC [ Dq �
@R .p@P .B [ @P .C q [ @R .C

@R .p@P .B [ @P .C q @R .C

@R .p@P .pA[ B [ C q [ @P .C q �

@R .pC [ Dq �

the matching between concepts that do not contain further
quantifiers e.g. @R .pC [ Dq and @R .C is due to the fact that
 Ln-SUBSp1,C ,C [ Dq returns true.

the matching between concepts that contain further
quantifiers e.g. @R .p@P .pA[ B [ C q and @R .p@P .B [ @P .C q
is due to the fact that there is a maximal matching between
the quantified concept in their scope.
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Finite-valued FDLs Behavior

Finally, in step 9 a subroutine for solving the maximal
matching problem for bipartite graphs is called.

In particular, this problem is known to be solved in polynomial
time from the 1973 paper:

Hopkroft, J.E., Karp, R.M.: An n
5
2 algorithm for maximum

matchings in bipartite graphs

Note that the call to a subroutine for the bipartite matching
problem manages the nondeterminism arising from the fact
that concepts

@R .pC [ Dq and @R .C [ @R .D

are not equivalent.
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Finite-valued FDLs Behavior

Complexity

Steps 1 and 6 can be performed in linear time;

each matrix EE ,F is at most quadratic on the size of the
largest concept between C and D;

there are at most |C | � |D| different matrices EE ,F ;

the only non-deterministic problem can be managed in
polynomial time by a suitable procedure for the bipartite
matching problem.

Hence algorithm  Ln-SUBSp1,D,C q runs in Opn4q, where n is the
largest between C and D.
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Finite-valued FDLs Behavior

Thank you for the attention !
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