An Introduction to Description Logics

Marco Cerami

Palacký University in Olomouc Department of Computer Science Olomouc, Czech Republic

Olomouc, 21.11.2013

INVESTMENTS IN EDUCATION DEVELOPMENT

3 1 4

Introduction

・ロト ・聞ト ・ヨト ・ヨト

What are Description Logics?

- Description Logics (DLs) are logic-based **knowledge** representation languages.
- The general framework they belong to, is **Knowledge Representation and Reasoning** (KR) in **Artificial Intelligence** (AI).
- They are characterized by the search of a **fair trade-off** between **expressivity** and computational **complexity** in KR.
- Some examples of their application are:
 - as the underlying formalism for the Semantic Web;
 - ► as search engine for **knowledge bases** (e.g. GALENO).

イロト 不得下 イヨト イヨト 二日

Aims of Description Logics

The aims of DLs is twofold:

• they are used to **represent concepts** and their relations **beyond the super-sub-concept relation**:

Person⊓Female "female person"

Person □ ∀hasChild.Male "person who has only sons (if he has children)"

• they are used to reason with them, e.g.

to prove (in)consistency of concepts, like:

 $Person \sqcap \forall hasChild.Male \sqcap \forall hasChild.(Person \sqcap Female)$

• to infer hidden information from existing knowledge.

Historical Remarks

The origins of DL systems

- Description Logics are the **result** of at least 30 years of research on the field of knowledge representation.
- This research did not begin within the DL framework, rather it started from researches about human **cognitive behavior**.
- It arrived to this logic-based framework through an **evolution process** of older formalisms such as:
 - Frame-based systems,
 - KL-ONE based systems.

Frame-based systems

- Frame-based systems were formalisms based on researches about human cognitive behavior.
- They were systems based on the old idea that **human mind can be represented** in its totality by a more or less comprehensive program.
- In this sense, their goal was to obtain a program that **imitates human mental skills**, e.g. natural language understanding.
- For this reason these systems were thought in such a way that they could **support language ambiguity**.
- For those fact these old systems were far from being based on formal logic, when their authors were not explicitly **against the use of logic**.
- The main examples of frame-based systems are
 - Quillian's Semantic networks
 - Minsky's Frame systems.

イロト イポト イヨト イヨト

Semantic networks

- Semantic networks (60's-70's) have been defined with the aim of giving an account of the way human memory works.
- This research did not begin within the DL framework, rather arrived to this framework through an **evolution process** of older formalisms such as:
- A program is defined, that can be roughly divided into three parts:
 - The first part is a memory model that works like a linked vocabulary.
 - The second part of the program is a search program and allows to look for hidden relations between words.
 - The third part of the program is a sentence generator, which utilizes the work done by the search program to express sentences in natural language.

(日) (同) (三) (三)

The memory model

.

- PLANT. 1. Living structure which is not an animal, frequently with leaves, getting its food from air, water, earth.
 - 2. Apparatus used for any process in industry.
 - 3. Put iseed, plant, etc.) in earth for grawth.

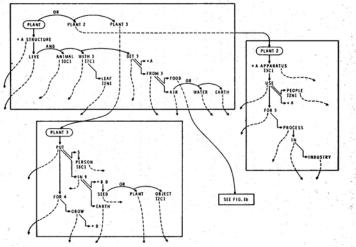


Fig. 1a. Three Planes Representing Three Meanings of "Plant."

Frame Systems

- Frame systems (70's-80's) have been defined with the aim of explaining the way people face known challenges by using mental frames,
- Frames are data structures that represent **stereotyped situations**.
- At the higher levels of a frame there are nodes that do not change with the **instantiation of a situation**.
- at the lower levels there are **empty nodes that can be filled up** either with contingent information or with other frames.
- People use mental frames to **act fast**.
- When either a **new situation** is faced, preexisting frames are either modified or substituted by new ones.
- Minsky's frame systems are often considered an example of default reasoning.

Marco Cerami (UPOL)

21.11.2013 10 / 39

Features of Frame Systems

- Formally a frame system is a **set of frames** that consider the same situation seen from **different points of view**.
- Among the **reasoning services** of frame systems there are:
 - subsumption between frames, in order to give specific situations a more general meaning,
 - Search of slot fillers, in order to add information to a given situation.
- there is no standard semantics,
- a number of **expert systems** based on this formalism have been done.

A B M A B M

Example of KEE Knowledge Base

Frame: Course in KB University MemberSlot: enrolls ValueClass: Student Cardinality.Min: 2 Cardinality.Max: 30 MemberSlot: taughtby ValueClass: (UNION GradStudent Professor) Cardinality.Min: 1

Cardinality.Max: 1

Frame: AdvCourse in KB University SuperClasses: Course MemberSlot: enrolls ValueClass: (INTERSECTION GradStudent (NOT Undergrad)) Cardinality.Max: 20 Frame: BasCourse in KB University SuperClasses: Course MemberSlot: taughtby ValueClass: Professor

Frame: Professor in KB University

Frame: Student in KB University

Frame: GradStudent in KB University SuperClasses: Student MemberSlot: degree ValueClass: String Cardinality.Min: 1 Cardinality.Max: 1

Frame: Undergrad in KB University SuperClasses: Student

(日) (同) (三) (三)

Limits of Frame-based systems

During the second half of 70's began to be clear the **limitations of frame-based systems**. Among those limitations we can find the following ones:

- it was not so clear what the systems had to compute,
- the semantics of procedural aspects was not very clear,
- there was no simple way to give these systems a clear formal semantics,
- despite these formalism were presented as an alternative to logic-based formalisms, most aspects of these systems **could be** formalized by means of first order logic.

(日) (周) (三) (三)

KL-ONE

KL-ONE is a knowledge representation system developed since 1979 with the following features:

- it considers the tasks of **extracting implicit conclusions** from existing knowledge,
- it gives the user the **possibility of defining new** complex concepts and roles,
- it introduces the difference between **individual concepts** and **generic concepts**,
- the difference between the **concept definitions with sufficient and necessary condition** and those with **just necessary** ones is studied,
- are added to the reasoning tasks:
 - classification (computation of the hierarchy of subsumptions),
 - realization (computation of the more specific atomic concept).

Limits of KL-ONE

Besides these novelties, KL-ONE had some **weaknesses** that became evident quite early.

- The lack of a clear formal semantics.
- The fact that the **algorithms** for deciding classification and realization were **incomplete**.
- The fact of thinking the system under the point of view of the **mere concept representation**, more than functionality.
- The lack of a clear distinction between the knowledge representing relations among concepts and that representing assertions about individuals.

Some of these shortcoming are taken into account to build further KL-ONE-based systems.

Image: Image:

A new framework

The KL-ONE experience brought a **new way to see knowledge representation systems**.

- it has been adopted the so-called **functional approach**.
- This is at the origin of the **growing interest on decision algorithms** and their complexity.
- The **need of a clear semantics** can be seen at the origin of the fact that systems began to be more and more logic-based.
- This allowed to think about those systems in a more abstract way as clearly defined **description languages**.
- The languages are now **quantitatively comparable**, mainly under two points of view:
 - the computational complexity of reasoning,
 - the **expressivity** of the language.

A B F A B F

Image: Image:

Syntax

Marco Cerami (UPOL)

3 21.11.2013 17 / 39

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Description Signature

A description signature is a tuple $\mathbf{D} = \langle N_I, N_A, N_R \rangle$, where

- N_I, a set of **individual names**;
 - ▶ Notation: *a*, *b*, *c*, . . .
 - Examples: John, Mary, Prague, MainSquare,
- *N_A* a set of concept names (the **atomic concepts**);
 - ▶ Notation: *A*, *B*, *C*,...
 - Examples: Person, Female, Tall, Fat, Hight,
- N_R a set of role names (the **atomic roles**)
 - Notation: R_1, R_2, \ldots
 - Examples: hasChild, hasSister, hasNear, hasTemperature,

Complex Concepts C. D \mathcal{FL}_0 empty concept \mathcal{FL}_0 universal concept \mathcal{FL}_0 Α atomic concept $C \sqcap D$ \mathcal{FL}_0 conjunction $\forall R.C$ \mathcal{FL}_0 value restriction $\exists R.\top$ $\mathcal{FL}^$ restricted existential quantif. $\neg A$ atomic complementation $\neg C$ complementation $C \mid D$ disjunction $\exists R.C$ existential quantification $\geq n R$ $\leq n R$ unqualified number = nRrestriction $\geq n R.C$ $\leq n R.C$ qualified number = n R.Crestriction $\{a\}$ nominals concrete domains

 \mathcal{AL}

С U E

 \mathcal{N}

Q

Languages

- The name \mathcal{FL} stands for **frame language** because it has more or less the same expressive power of frame-based systems; it was studied in the 80's:
- the name \mathcal{AL} stands for **attributive language**, began to be studied in the last 80's:
- \mathcal{AL} marks the difference between frame-based systems and the new systems based on a description of attributes and predicates;
- a central role has been played in the 90's by the language ALCbecause it is **the most related** to modal and predicate **logic**.

Role-based languages

There are other languages that are defined by the behavior of role constructors from ALC:

<i>R</i> , <i>S</i>	\longrightarrow	R	atomic role	\mathcal{FL}_0
		R^+	transitive role	${\mathcal S}$
		U	universal role	${\mathcal S}$
		R^{-}	inverse role	\mathcal{I}
		$R \sqcap S$	role intersection	${\cal H}$
		$\neg R$	role complementation	${\cal H}$
		$R \sqcup S$	role union	${\cal H}$
		$R \circ S$	role composition	$\mathcal R$
		f	functional role (feature)	${\cal F}$

A B A A B A

Semantics

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

Interpratations

An **interpretation** is a pair

$$\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$$

where:

- $\Delta^{\mathcal{I}}$ is a nonempty set, called **domain**;
- \mathcal{I} is an **interpretation function** that assigns:
 - to each individual name $a \in N_I$ an element

 $a^{\mathcal{I}} \in \Delta^{\mathcal{I}}$

to each atomic concept A a subset of the domain set

$$A^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}}$$
 ,

to each role name R a binary relation on the domain set

$$R^{\mathcal{I}} \subseteq \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$

Semantics of complex concepts

$$\begin{split} \bot^{\mathcal{I}} &= \emptyset \\ \top^{\mathcal{I}} &= \Delta^{\mathcal{I}} \\ (\neg C)^{\mathcal{I}} &= \Delta^{\mathcal{I}} \setminus C^{\mathcal{I}} \\ (C \sqcap D)^{\mathcal{I}} &= C^{\mathcal{I}} \cap D^{\mathcal{I}} \\ (C \sqcup D)^{\mathcal{I}} &= C^{\mathcal{I}} \cup D^{\mathcal{I}} \\ (\exists R.\top)^{\mathcal{I}} &= \{v \in \Delta^{\mathcal{I}} : \text{ exists } w \in \Delta^{\mathcal{I}} \text{ such that } R^{\mathcal{I}}(v,w)\} \\ (\forall R.C)^{\mathcal{I}} &= \{v \in \Delta^{\mathcal{I}} : \text{ for every } w \in \Delta^{\mathcal{I}}, R^{\mathcal{I}}(v,w) \to C^{\mathcal{I}}(w)\} \\ (\exists R.C)^{\mathcal{I}} &= \{v \in \Delta^{\mathcal{I}} : \text{ for every } w \in \Delta^{\mathcal{I}} \text{ s. t. } R^{\mathcal{I}}(v,w) \wedge C^{\mathcal{I}}(w)\} \\ (\geq n R)^{\mathcal{I}} &= \{a \in \Delta^{\mathcal{I}} : |\{b \in \Delta^{\mathcal{I}} : R^{\mathcal{I}}(a,b)\}| \geq n\} \\ (\leq n R)^{\mathcal{I}} &= \{a \in \Delta^{\mathcal{I}} : |\{b \in \Delta^{\mathcal{I}} : R^{\mathcal{I}}(a,b)\}| \leq n\} \\ (= n R)^{\mathcal{I}} &= \{a \in \Delta^{\mathcal{I}} : |\{b \in \Delta^{\mathcal{I}} : R^{\mathcal{I}}(a,b) \wedge C^{\mathcal{I}}(b)\}| \geq n\} \\ \leq n R.C)^{\mathcal{I}} &= \{a \in \Delta^{\mathcal{I}} : |\{b \in \Delta^{\mathcal{I}} : R^{\mathcal{I}}(a,b) \wedge C^{\mathcal{I}}(b)\}| \geq n\} \\ \leq n R.C)^{\mathcal{I}} &= \{a \in \Delta^{\mathcal{I}} : |\{b \in \Delta^{\mathcal{I}} : R^{\mathcal{I}}(a,b) \wedge C^{\mathcal{I}}(b)\}| \leq n\} \\ = n R.C)^{\mathcal{I}} &= \{a \in \Delta^{\mathcal{I}} : |\{b \in \Delta^{\mathcal{I}} : R^{\mathcal{I}}(a,b) \wedge C^{\mathcal{I}}(b)\}| = n\} \\ \{a\}^{\mathcal{I}} &= \{a^{\mathcal{I}}\} \subseteq \Delta^{\mathcal{I}} \end{split}$$

Semantics of complex roles

$$U^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}}$$

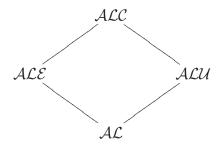
$$(R^-)^{\mathcal{I}} = \{(b,a) \in \Delta^{\mathcal{I}} imes \Delta^{\mathcal{I}} \colon (a,b) \in R^{\mathcal{I}}\}$$

$$(\neg R)^{\mathcal{I}} = \Delta^{\mathcal{I}} \times \Delta^{\mathcal{I}} \setminus R^{\mathcal{I}}$$

$$(R \sqcap S)^{\mathcal{I}} = R^{\mathcal{I}} \cap S^{\mathcal{I}}$$

$$(R \sqcup S)^{\mathcal{I}} = R^{\mathcal{I}} \cup S^{\mathcal{I}}$$

$$(R \circ S)^{\mathcal{I}} = R^{\mathcal{I}} \circ S^{\mathcal{I}}$$


The semantics of transitive, reflexive and functional roles is the usual for transitive and reflexive relations or functions.

A B A A B A

Semantics

Inclusions between languages: the \mathcal{ALC} hierarchy

A straightforward consequence of the semantics of constructors is that every ALE and every ALU concepts are ALC concepts, but there are ALE concepts that are not ALU concepts and vice-versa. So, the hierarchy of languages between \mathcal{AL} and \mathcal{ALC} appears as follows

Knowledge Bases

イロト イヨト イヨト イヨト

Axioms

• An inclusion axiom is an expression of the form:

$C \sqsubseteq D$

where C, D are concepts.

• An **assertion axiom** is an expression of the form: C(a)

where C is concept and a is an individual.

• A role axiom is an expression of the form:

$R \sqsubseteq S$

where R, S are roles.

4 3 > 4 3 >

Semantics of axioms

• The inclusion axiom $C \square D$ is true iff for every interpretation \mathcal{T}

$$C^{\mathcal{I}} \subseteq D^{\mathcal{I}}.$$

• The assertion axiom C(a) is true iff for every interpretation \mathcal{T}

$$a^{\mathcal{I}} \in C^{\mathcal{I}}$$
.

• The role axiom $R \sqsubset S$ is true iff for every interpretation \mathcal{I} :

$$R^{\mathcal{I}} \subseteq S^{\mathcal{I}}$$
.

(日) (周) (三) (三)

Knowledge Bases

- A terminological box (TBox) is a finite set of inclusion axioms.
- An assertional box (ABox) is a finite set of assertion axioms.
- A relational box (RBox) is a finite set of role axioms.
- An **Knowledge Base** (KB) is a triple

$$\mathcal{K} = (\mathcal{T}, \mathcal{A}, \mathcal{R})$$

where \mathcal{T} is a TBox, \mathcal{A} is an ABox and \mathcal{R} is an RBox (each one possibly empty).

イロト 不得下 イヨト イヨト 二日

Reasoning Tasks

イロト イヨト イヨト イヨト

Reasoning tasks

Consider a knowledge base $\mathcal{K} = (\mathcal{T}, \mathcal{A}, \mathcal{R})$, a pair of concepts C, D and an individual a, then we can define the main reasoning tasks considered in the literature.

- \mathcal{K} is **consistent** when there is an interpretation \mathcal{I} that satisfies every axiom in \mathcal{K} . In symbols $\mathcal{I} \models \mathcal{K}$.
- C is satisfiable with respect to the (possibly empty) knowledge base K when there exists an interpretation I satisfying K, such that C^I ≠ Ø.
- D subsumes concept C with respect to the (possibly empty) knowledge base K when, in every interpretation I that satisfies K, it holds that C^I ⊆ D^I. In symbols K ⊨ C ⊑ D.
- An axiom φ (either inclusion or assertion) is entailed by a knowledge base K (in symbols K ⊨ φ) when, in every model I of K, it holds that φ^I = 1.

Reduction to knowledge base consistency

Each one of the above reasoning problems can be **reduced to knowledge base (in)consistency** in the following way:

- Concept C is satisfiable with respect to the knowledge base K if and only if the new knowledge base K ∪ {C(a)} is consistent, where a is an individual name not occurring in K.
- Concept D subsumes concept C with respect to the knowledge base K if and only if the new knowledge base K ∪ {(C □ ¬D)(a)} is inconsistent, where a is a new individual name.
- An axiom φ (either inclusion or assertion) is entailed by a knowledge base K if and only if the new knowledge base K ∪ {¬φ} is inconsistent. Here ¬φ = ¬C(a), if φ = C(a) and ¬φ = C □ ¬D(a), for a new individual name a, if φ = C ⊑ D.

・ロン ・四 ・ ・ ヨン ・ ヨン

Complexity

Marco Cerami (UPOL)

Description Logics

▶ < ≣ ▶ ≣ ∽ < < 21.11.2013 34 / 39

<ロ> (日) (日) (日) (日) (日)

Complexity

Complexity: classical results

The study of the computational complexity of the reasoning tasks is fundamental in Description Logics. Some classical results are:

- subsumption with respect to empty KBs in language $\mathcal{FL}^$ is in P [Brachman and Levesque, 1983],
- concept satisfiability with respect to empty KBs, in language \mathcal{ALU} is co-NP [Schmidt-Schauss and Smolka 1991],
- concept satisfiability with respect to empty KBs, in language \mathcal{ALE} is NP [Donini et al. 1992],
- concept satisfiability with respect to empty KBs in language ALC is PSPACE-complete [Schmidt-Schauss and Smolka 1991].
- Knowledge base consistency for language ALC is in EXPTIME [Donini and Masacci 2000].

Complexity: further results

	Sat.	Unsat.	Sat. acyclic KB	Sat. w.r.t. KB	Subs.
\mathcal{FL}^-					PTIME
\mathcal{AL}			co-NP	EXPTIME	PTIME
ALI					PTIME
\mathcal{ALN}			PSPACE		PTIME
ALNI	PTIME				co-NP
\mathcal{ALE}		NP	co-NP	PSPACE	NP
$\mathcal{FL}^-\mathcal{E}$		NP			NP
\mathcal{ALR}		NP			NP
\mathcal{ALER}		NP			NP
\mathcal{ALU}		co-NP			co-NP
ALC		PSPACE			PSPACE
\mathcal{ALEN}	PSPACE				
\mathcal{ALUR}	PSPACE				
\mathcal{ALNR}	PSPACE				
\mathcal{ALCNR}	PSPACE				
	NEXPTIME				
	NEXPTIME				
\mathcal{ALCNR}				NEXPTIME	

イロト イヨト イヨト イヨト

Complexity

Sources of indeterminism

For many languages, often a systematic study of **what causes the increase of complexity** has been undertaken. Some examples of those systematic studies are:

- **subsumption** in language \mathcal{FL}^- jumps from P to co-NP when a TBox is considered [Nebel, 1990],
- concept satisfiability with respect to empty KBs, in language \mathcal{FL}^- jumps from P to co-NP when disjunction and atomic complementation are added [Schmidt-Schauss and Smolka 1991],
- concept satisfiability with respect to empty KBs in language *FL⁻* jumps from P to PSPACE when unrestricted complementation is added [Schmidt-Schauss and Smolka 1991],
- concept satisfiability with respect to empty KBs in language *FL⁻* jumps from P to NP when unrestricted existential quantification is added [Donini et al. 1992].

Algorithms

- The DL systems of the 80's used so-called **structural subsumption algorithms**:
 - perform a comparison in the syntactic structure of two given concepts in a suitable normal form;
 - relatively efficient when applied to very inexpressive languages;
 - in more expressive languages are **incomplete**.
- The 90's saw the introduction of the **tableau based algorithms**:
 - complete also for quite expressive DLs;
 - allowed a systematic study of complexity of reasoning in different DLs;
 - suitable to be highly optimized.

End

Thank you for the attention !

・ロト ・回ト ・ヨト ・ヨ