
Fuzzy Description Logics

Marco Cerami
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Introduction

Introduction
Description Logics (DLs) are logic-based knowledge
representation languages.

They are an attempt to find a fair trade-off between
expressivity and computational complexity in KR

In the early 90’s it began an effort to generalize the classical
DLs to the fuzzy case.

The first works on Fuzzy Description Logic (FDL) considered a
semantics based on Fuzzy Set Theory.

In [Hájek, 2005] it is proposed a t-norm-based semantics for
FDL.

Since then some works on t-norm-based FDL have been
produced.
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Historical Remarks

The first works on FDL
The first works on FDL begin in the early 90’s.

In these first works the generalization to the fuzzy case consisted
in

I generalizing the semantics of atomic concepts to fuzzy sets

AI : ∆I −→ [0, 1]

I generalizing the semantics of atomic roles to fuzzy relations

RI : ∆I ×∆I −→ [0, 1]

The truth functions adopted as a semantics of complex
concepts are:

min{x , y} for the conjunction u
max{x , y} for the disjunction t
1− x for the negation ¬
max{1− x , y} for the implication →
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Historical Remarks

Non intuitive behavior: an example
Due to the absence of a residuated implication, this
semantics can lead to counter-intuitive consequences.

This fact has been pointed out in [Hájek, 2005],

here is presented the example of the assertion “all hotels near to
the main square are expensive”

∀hasNear.Expensive(MainSquare)

Consider, indeed, the situation where:

I hasNear(MainSquare,Hotel_1) = 0.9,
I hasNear(MainSquare,Hotel_2) = 0.5,
I hasNear(MainSquare,Hotel_3) = 0.1,
I Expensive(Hotel_1) = 0.9,
I Expensive(Hotel_2) = 0.5,
I Expensive(Hotel_3) = 0.1,
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Historical Remarks

In this ideal situation we should have that:

∀hasNear.Expensive(MainSquare) = 1

because hotels are at least as expensive as they lie near the main
square. Nevertheless, using the truth function of Kleene-Dienes
implication, the result is different.

(∀hasNear.Expensive(MainSquare))I=

= infv∈∆I{NearI(MainSquareI , v)⇒ ExpensiveI(v)} ≤

≤ inf{max{1− 0.9, 0.9},max{1− 0.5, 0.5},max{1− 0.1, 0.1}} =

= inf{0.9, 0.5, 0.9}

= 0.5
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Historical Remarks

A more general framework for FDL
[Hájek, 1998] considers formal calculi of many-valued logic to be
the kernel of fuzzy logic.

This framework is nowadays called Mathematical Fuzzy Logic
(MFL).

[Hájek, 2005] proposes to take MFL as the underlying logic
of FDLs (mimicking the relation between DL and classical
logic).

In this framework FDL has been strictly related to first order
Fuzzy Logic.

We will consider FDLs from the point of view of Mathematical
Fuzzy Logic.

In this sense, we are not considering semantics that are not
based on residuated structures.
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Syntax and Semantics Syntax

Description Signature

A description signature is a tuple D = 〈NI ,NA,NR〉, where

NI , a set of individual names;

I Notation: a, b, c , . . .
I Examples: John, Mary, Prague, MainSquare,

NA a set of concept names (the atomic concepts);

I Notation: A,B,C , . . .
I Examples: Person, Female, Tall, Fat, Hight,

NR a set of role names (the atomic roles)

I Notation: R1,R2, . . .
I Examples: hasChild, hasSister, hasNear, hasTemperature,
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Syntax and Semantics Syntax

Complex Concepts
⊥ | (empty concept)
> | (universal concept)
A | (atomic concept)
∼C | (strong complementary concept) (C)
∼A | (restricted strong compl. concept)
¬C | (weak complementary concept) (I)
∆C | (delta operator) (D)
ṠiC | (stressed concept) (M)
ḊjC | (depressed concept) (M)
C � D | (concept strong union) (U)
C � D | (concept strong intersection) (AL)
C t D | (concept weak union) (I)
C u D | (concept weak intersection) (I)
C = D | (concept implication) (I)
∀R .C | (value restriction) (AL)
∃R .C | (existential quantification) (E)
∃R .> | (restricted existential quantif.)
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Syntax and Semantics Semantics

Interpretations

A T-interpretation is a pair

I = (∆I , ·I)

where

∆I is a nonempty (crisp) set called domain,

·I is a fuzzy interpretation function such that:

1 AI : ∆I −→ T ,

2 RI : ∆I ×∆I −→ T ,

3 aI ∈ ∆I
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Syntax and Semantics Semantics

Semantics of complex concepts
⊥I(x) := 0
>I(x) := 1
rI(x) := r

(∼ C )I(x) := 1− C I(x)
(¬C )I(x) := C I(x)→ ⊥I(x)
(4C )I(x) := 4C I(x)

(ṠiC )I(x) := ṡiC
I(x)

(ḊjC )I(x) := ḋjC
I(x)

(C � D)I(x) := C I(x) ∗ DI(x)
(C � D)I(x) := 1− ((1− C I(x)) ∗ (1− DI(x)))
(C u D)I(x) := min{C I(x),DI(x)}
(C t D)I(x) := max{C I(x),DI(x)}
(C = D)I(x) := C I(x)⇒ DI(x)

(∀R .C )I(x) := infy∈∆I{RI(x , y)⇒ C I(y)}
(∃R .C )I(x) := supy∈∆I{RI(x , y) ∗ C I(y)}
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Syntax and Semantics Algebras of truth values

MFL based semantics

MTL-chains are used as algebras of truth values.

An MTL-chain is a structure:

T = 〈T , ∗,⇒,∧,∨, 0, 1〉

where:

T is a linearly ordered set,

〈T , ∗, 1〉 is a commutative monoid,

⇒ is the residuum of ∗,
∧ and ∨ are the minimum and maximum operations w.r.t.
the order of T ,

0 and 1 are the minimum and maximum elements of T .
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Syntax and Semantics Algebras of truth values

We are considering MTL-chains with domain either

[0,1] or {0, 1
n
, . . . , n−1

n
, 1}

and operations:

Gödel Product  Lukasiewicz
x ∗ y min(x , y) x · y max(0, x + y − 1)

x ⇒ y
{

1, if x ≤ y
y , otherwise

{
1, if x ≤ y
y/x , otherwise min(1, 1− x + y)

¬x
{

1, if x = 0
0, otherwise

{
1, if x = 0
0, otherwise 1− x
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Syntax and Semantics Algebras of truth values

Expanding the algebraic language

Moreover, we will consider expansions of these algebras by means of
the operations that are the semantics of the following
connectives:

a suitable set of truth constants r̄ ,

the Monteiro-Baaz delta operator 4,

an involutive negation ∼,

a set of truth hedges.
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Syntax and Semantics New operators

Challenges of the new framework

With a Zadeh’ style semantics, there was no substantial
difference with the classical framework.

However, in the new framework based on MFL there are several
differences with the classical framework.

Such differences include the following items:

I two kinds of conjunctions can be considered in the
many-valued framework, with different mathematical properties,
and the same holds for disjunction,

I implication is, in general, not definable from other
connectives,

I the quantifiers are not definable from each other by means
of the equivalence ∃R.C ≡ ¬∀R.¬C ,

I the strong disjunction is not definable from the residuated
negation ¬C := C → ⊥ and the conjunction u.
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Syntax and Semantics New operators

Two kinds of conjunctions: an example
Consider predicates Weighty and Tall that can be computed in the
following way:

the semantics of Weighty is

max{0,min{1, |W |−30
100
}}.

the semantics of Tall is

max{0,min{1, |H|−120
100
}}.

1

0

____________________

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

�
�
�
�
�
�
�
�

30 130

The range of both predicates takes 100 values. Thus, if the chain of
values is of type  Ln , then we consider  L100.
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Syntax and Semantics New operators

Why t-norm based conjunction?
In order to give a degree to the concept Fat, we should rely on the
rule:

Fat ≡ Weighty�∼ Tall ≥ 1

Suppose we have:

Tall(John)=0.5,

Tall(Jack)=0.5,

Weighty(John)=0.6,

Weighty(Jack)=0.9,

With minimum, we have that

Fat(John)=0.5=Fat(Jack)

With the  Lukasiewicz t-norm, we have that

Fat(John) = 0.1 and Fat(Jack) = 0.4.
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Syntax and Semantics New operators

Why minimum based conjunction?

In order to give a degree to the intersection of the respective
fuzzy sets, it is indeed more convenient to use a conjunction whose
semantics is the minimum t-norm. Suppose we have

Tall(John) = 0.5,

Awesome(John) = 0.4,

With minimum, we have that

Tall u Awesome(John) = 0.4,

With the  Lukasiewicz t-norm, we have that

Tall� Awesome(John) = 0,
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Syntax and Semantics Hierarchies

Language Hierarchy:

General Case
IALCE
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Syntax and Semantics Hierarchies

Language Hierarchy: [0, 1] L Case

ALCD = IALD
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Syntax and Semantics Hierarchies

Language Hierarchy: Ln Case

ALC
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Syntax and Semantics Languages with Higher Expressivity

Languages with Higher Expressivity
≥ n R unqualified number restriction N
≤ n R
= n R
≥ n R .C qualified number restriction Q
≤ n R .C
= n R .C
{a} nominals O
R− inverse roles I
U universal role R
¬R role negation R
R u S role intrsection R
R t S role union R
R ◦ S role composition R
R+ transitive roles S

Moreover, in the language R are allowed axioms involving roles:
Marco Cerami (UPOL) Fuzzy Description Logics 28.11.2013 24 / 42



Syntax and Semantics Languages with Higher Expressivity

Semantics of complex concepts

(≥ n R)I(x) = {x ∈ ∆I : |{y ∈ ∆I : RI(x , y) > 0}| ≥ n}
(≤ n R)I(x) = {x ∈ ∆I : |{y ∈ ∆I : RI(x , y) > 0}| ≤ n}
(= n R)I(x) = {x ∈ ∆I : |{y ∈ ∆I : RI(x , y) > 0}| = n}

(≥ n R .C )I(x) = {x ∈ ∆I : |{y ∈ ∆I : RI(x , y) ∧ C I(y) > 0}| ≥ n}
(≤ n R .C )I(x) = {x ∈ ∆I : |{y ∈ ∆I : RI(x , y) ∧ C I(y) > 0}| ≤ n}
(= n R .C )I(x) = {x ∈ ∆I : |{y ∈ ∆I : RI(x , y) ∧ C I(y) > 0}| = n}

{a}I(x) = {aI} ⊆ ∆I

(R−)I(x , y) = R(y , x)
UI(x , y) = 1 for all x , y ∈ ∆I ×∆I

(¬R)I(x , y) = 1− RI(x , y)
(R u S)I(x , y) = inf〈x ,y〉∈∆I×∆I{RI(x , y), SI(x , y)}

(R t S)I = sup〈x ,y〉∈∆I×∆I{RI(x , y), SI(x , y)}
(R ◦ S)I(x , y) = supx ,y ,z∈∆I{min{RI(x , z), SI(z , y)}}
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Fuzzy KBs

and
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Fuzzy KB and Reasoning Tasks Fuzzy Knowledge Bases

Fuzzy Knowledge Bases

A TBox consists of fuzzy concept inclusion axioms:

〈C v D ≥ r〉 −→ infx∈∆I{C I(x)⇒ DI(x)} ≥ r

An ABox consists of

I fuzzy concept assertion axioms:

〈C (a) ≥ r〉 −→ CI(aI) ≥ r

〈C (a) ≤ r〉 −→ CI(aI) ≤ r

〈C (a) = r〉 −→ CI(aI) = r

I fuzzy role assertion axioms:

〈R(a, b) ≥ r〉 −→ RI(aI , bI) ≥ r
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Fuzzy KB and Reasoning Tasks Fuzzy Knowledge Bases

Set inclusion and implication

The semantics for subsumption between concepts should be the
inclusion between fuzzy sets, that is,

C I(x) ≤ DI().

With residuated implication this is equivalent to the validity
of concept

C = D

With Kleene-Dienes implication

max{1− C I(x),DI(x)}

the above relation between fuzzy set inclusion and implication
does not hold anymore.
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Fuzzy KB and Reasoning Tasks Fuzzy Knowledge Bases

Set inclusion and implication: an example
The conjunction A u B is always subsumed by both concepts,

A u B v A.

In fact, for every interpretation I and every x ∈ ∆I , it holds that

(A u B)I(x) = min{AI(x),BI(x)} ≤ AI(x).

Let now

AI(x) = BI(x) = 0.5,

then,

((A u B) = A)I(x) =

= max{1−min{AI(x),BI(v)},AI} =

= max{1−min{0.5, 0.5}, 0.5} =

= 0.5
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Fuzzy KB and Reasoning Tasks Reasoning Tasks

Reasoning Tasks

Fuzzy knowledge base consistency.

Concept r -satisfiability w.r.t. (possibly empty) KB.

Concept (≥ r)-satisfiability w.r.t. (possibly empty) KB.

Positive satisfiability w.r.t. (possibly empty) KB.

oncept (≥ r)-subsumption w.r.t. (possibly empty) KB,

Entailment.

Best satisfiability degree of a concept w.r.t. a KB.

Best entailment degree.
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Fuzzy KB and Reasoning Tasks Reasoning Tasks

Reduction among reasoning tasks

As in the classical case, polynomial reductions among
reasoning tasks to each other have been considered;

in order to translate decidability results to other reasoning tasks,
the reductions that are usually considered are those to KB
consistency;

due to the fact that in our framework some undecidability results
have been proved, we have also to consider reductions of KB
consistency;

in the FDL framework, what kind of reduction are possible,
often depends on the algebra of truth values, not only on
the language considered.
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Fuzzy KB and Reasoning Tasks Reasoning Tasks

Reduction to KB consistency

With a semantics defined on a finite MTL chain, the following
statements hold for language IFL0:

Concept r-satisfiability with respect to a (possibly empty) KB
can be polynomially reduced to KB consistency.

Concept (≥ r)-satisfiability with respect to a (possibly empty)
KB can be polynomially reduced to KB consistency.

Concept positive satisfiability with respect to a (possibly
empty) KB can be polynomially reduced to KB consistency.

Concept (≥ r)-subsumption can be polynomially reduced to
KB consistency.

Entailment of an axiom by a KB can be polynomially reduced
to KB consistency.
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Fuzzy KB and Reasoning Tasks Reasoning Tasks

Reduction of KB consistency

With a semantics defined on the family
{[0, 1] L, [0, 1]Π, [0, 1]G ,  Ln,Gn} the following statements hold for
language T-FL0 with rational truth constants:

KB consistency can be polynomially reduced to concept
r-satisfiability with respect to a non-empty KB.

KB consistency can be polynomially reduced to concept
1-satisfiability with respect to a non-empty KB.

KB consistency can be polynomially reduced to concept
positive satisfiability with respect to a non-empty KB.

KB consistency can be polynomially reduced to the entailment
of an axiom by a KB.
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Decidability and Complexity

Finite Algebras

For semantics based on finite algebras all reasoning problems
are decidable.

Moreover, usually the same complexity bounds as in classical DL
are preserved.

For all FDLs between AL and SHI all the decision problems
with respect to a non-empty KB are ExpTime-complete.

Up to SHOIQ are in NExpTime.

For all sublogic of IALCE all the decision problems with respect
to an empty KB are PSpace-complete.
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Decidability and Complexity

Infinite Algebras

In [0, 1]G all reasoning tasks are decidable up to SHOIQ

In [0, 1] L:

I all tasks are undecidable for (sublogics of) ALE if a
non-empty KB is involved,

I all tasks are decidable for (sublogics of) IALCE if a no KB is
involved, but complexity is unknown.

In [0, 1]Π:

I KB consistency is decidable in SHOIQ if there are only lower
bound axioms,

I undecidable in (sublogics of) ALC, IAL, otherwise,

I for reasoning tasks with no KB involved is actually unknown.
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Reasoning

Reasoning Algorithms
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Reasoning

Reasoning Algorithms

There exist essentially three methods for reasoning with TBoxes:

crispification-based

tableau-based

automata-based

Without TBoxes, Hájek proposed a reduction to propositional logic
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Reasoning

Crispification Approach

This family of methods consists in reducing fuzzy reasoning to
finitely many crisp DL reasoning tasks.

for logics with strict negation and without upper bounds axioms
it consists in ignoring fuzziness by means of the double
negation of concepts.

for logics based on finite or Gödel chains it consists in
simulating the values through crisply cutted concepts
(α-cuts).

In the second case the transformation is not polynomial.
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Reasoning

Tableau-based Approach

Tableau rules decompose concepts into simpler restrictions.

Adequate termination conditions are necessary (blocking).

After termination, check for contradictions:

I syntactical contradiction: assertion with two different degrees;

I non-solvable system of constrains (typically MILP).

Also in these cases, the transformation is not polynomial, but
can be solved in PSpace.
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Reasoning

Automata-based Approach

Tree automata can verify the existence of tree-shaped
models.

Non-determinism and infinite structures can be handled easily.

Good for obtaining tight complexity bounds

Good method for theoretical use, but not easy to implement.
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End

Thank you for the attention !
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