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20. prosince 2025

Poznámky k textu. Tento text vznikl v pr̊uběhu kurzu v zimńım semestru 2025/26 jako
podp̊urný studijńı materiál, dávaj́ıćı přehled o celkovém pr̊uběhu a dotýkaj́ıćı se všeho pod-
statného z náplně kurzu. Jedná se o mı́rnou modifikaci dř́ıvěǰśıho materiálu. Text je zhruba
členěn po jednotlivých týdnech v semestru; pro přehlednost zápis k jednotlivému týdnu zač́ıná
vždy na nové straně.

Náš pracovńı text neńı zamýšlen jako student̊um plně postačuj́ıćı. Předpokládá se samostu-
dium z v́ıce zdroj̊u, speciálně z učebńıho textu [1]:

Bělohlávek R.: Matematická logika (PřF UP, Olomouc, 2006),

který je př́ıstupný na http://belohlavek.inf.upol.cz/belohlavekteaching.html.

V [1] najdete i daľśı doporučenou literaturu.

Např. knihu Švejdar V.: Logika: neúplnost, složitost a nutnost (Academia 2002)
zpř́ıstupnil jej́ı autor (za určitých podmı́nek) na adrese

www1.cuni.cz/~svejdar/book/LogikaSve2002.pdf

Na webu lze samozřejmě nalézt i daľśı materiály, např. skripta
Duž́ı M.: Logika pro informatiky (VŠB-TU Ostrava, 2012)
www.cs.vsb.cz/duzi/Matlogika_ESF_Definite.pdf

či slidy k přednáškám
Kučera A.: Matematická logika (FI MUNI, Brno, 2018)
https://www.fi.muni.cz/usr/kucera/teaching/logic/logika.pdf.

Studium přinejmenš́ım textu R. Bělohlávka [1] student̊um našeho kurzu velmi doporučuji,
popisuje totiž detailněji i některé části, které zde v textu zmı́ńıme jen stručně. Čtenáře by
nemělo zmást, že budeme použ́ıvat značeńı, které se někdy mı́rně lǐśı od značeńı v [1].

R. Bělohlávek také explicitně upozorňuje:

“Učebńı texty nejsṕı̌s obsahuj́ı chyby. Pokud je objev́ıte, sdělte mi je prośım.”

To se zpravidla týká všech text̊u (včetně použ́ıvaných učebnic). Přes mou snahu jako

autora se nepřesnosti/nejasnosti/chyby mohou samozřejmě objevovat i v tomto našem

pracovńım textu. Také prośım studenty o upozorněńı na taková mı́sta.
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Ještě poznamenám, že tento pracovńı text je mı́sty formulován jako zápis z přednášky, ni-
koli jako učebńı text pro kompletńı samostudium. Uvedené př́ıklady k řešeńı jsou řešeny na
cvičeńıch, ale určitě ne všechny. Každý student by si přinejmenš́ım tyto uvedené př́ıklady měl
sám kompletně vyřešit. Daľśı př́ıklady najde v odkazované literatuře, mj. ve sb́ırce řešených
př́ıklad̊u doc. Kolař́ıka, která je odkazována na web-stránce našeho předmětu.
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Týden 1

Začali jsme př́ıkladem Aristotelova sylogismu

z předpoklad̊u “všechna P jsou M” a “žádná S nejsou M”

vyvod́ıme “žádná S nejsou P”,

přičemž jsme si přibĺıžili, o čem je logika, jež zkoumá zásady správného usuzováńı. Připomněli
jsme si Vennovy diagramy i Boole̊uv př́ıstup k ověřeńı správnosti zmı́něného sylogismu a
podobných úsudk̊u.

Pro zaj́ımavost jsme uvedli strukturu Aristotelových sylogismů a letmo diskutovali i jiné

než je výše uvedený “Camestres” (tedy AEE 2. formy), ale zkoušet se sylogismy sa-

mozřejmě nebudou. Postač́ı, když student rozpozná správnost/nesprávnost předloženého

úsudku a sv̊uj názor umı́ podložit řádnými argumenty.

Na př́ıkladu z pěkné kńıžky

R. Smullyan: Jak se jmenuje tato kńıžka?

jsme si ukázali použit́ı logiky při analýze jednoduchého problému “ze života”.

O R. Smullyanovi si přečtěte např. na wikipedii. Narodil se v r. 1919 a zemřel teprve

nedávno, v únoru 2017.

Náš př́ıklad se týkal ostrova, kde žij́ı jen poctivci (každý jejich výrok je pravdivý) a padouši

(každý jejich výrok je nepravdivý). Návštěvńık ostrova potkal 3 obyvatele A,B,C, přičemž

A mu řekl “všichni tři jsme padouši” a B řekl “právě jeden z nás je poctivec”. Zjistili

jsme, že tato informace jednoznačně určuje charaktery osob A,B,C.

Při uvedené analýze jsme použili výrokové symboly (nebo též výrokové proměnné, či atomy)
pA, pB, pC (např. symbol pA označuje výrok “A je poctivec”), sestavili jsme jisté formule
výrokové logiky a hledali pravdivostńı ohodnoceńı, která je splňuj́ı ....

Také jsme se zamysleli nad situaćı, kdy nám návštěvńık ostrova sděĺı, že potkal obyvatele

D a ten mu řekl “já jsem padouch”.

Cvičeńı 1 Vyřešte výše uvedené problémy z ostrova poctivc̊u a padouch̊u.

Výroková logika

Připomněli jsme si, že (formálńı) jazyk nad abecedou Σ je podmnožina množiny Σ∗, tedy
nějaká množina konečných posloupnost́ı prvk̊u Σ, neboli slov či řetězc̊u v abecedě Σ.

Např. pro Σ = {a, b} je Σ∗ = {ε, a, b, aa, ab, ba, bb, aaa, aab, . . . }, kde ε označuje prázdné
slovo (délky nula). Př́ıkladem jazyka L ⊆ {a, b}∗ je

L = {u ∈ {a, b}∗ | počet výskyt̊u a ve slově u je stejný jako počet výskyt̊u b v u}.

Předpokládejme, že máme pevně dánu množinu VS výrokových symbol̊u. Postač́ı nám např.
spočetná množina
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VS = {p, q, r, p0, q0, r0,p1, q1, r1,p2, q2, r2, . . . }.

Symboly psané p, q, r, · · · budeme použ́ıvat jako (meta)proměnné, jejichž hodnoty jsou prvky
VS (jak uvid́ıme hned v následuj́ıćı definici).

Množinu FML výrokových formuĺı (zkráceně formuĺı) lze chápat jako jazyk nad abecedou

Σ = VS ∪ {¬,∧,∨,→, (, ) },

definovaný strukturálńı indukćı následovně:

1. Každý prvek VS je formuĺı, tedy prvkem FML; neboli, pro každé p ∈ VS je p formule.

Zde vid́ıme použit́ı p jako výše zmı́něné (meta)proměnné. Symbol “p” je pro nás jeden

konkrétńı prvek množiny VS, takže např. zápis “pro každé p ∈ VS je p formule”

by byl nesprávný. Někdy ovšem k podobné kolizi ve značeńı v textech dojde; měli

bychom si být ale vždy schopni ujasnit zamýšlený význam.

2. Je-li φ ∈ FML, pak ¬φ ∈ FML. (Je-li φ formule, je i řetězec ¬φ formule.)

Je nám jasné, že symbol φ zde použ́ıváme jako proměnnou, jej́ıž hodnotou je prvek

množiny FML, což je řetězec ve výše uvedené abecedě Σ; symbol “φ” jako takový

formuĺı neńı. Zápisem “¬φ” pochopitelně označujeme řetězec, který zač́ıná symbolem

“¬” a pak pokračuje řetězcem, který je označený symbolem “φ” [neboli řetězcem,

který je v daném kontextu hodnotou proměnné φ].

3. Je-li φ1 ∈ FML a φ2 ∈ FML,
pak řetězce (φ1 ∧ φ2), (φ1 ∨ φ2) a (φ1 → φ2) jsou formule (tedy prvky FML).

Jako vždy u definice tohoto typu se implicitně rozumı́, že jiné řetězce než ty, které lze

odvodit z uvedených pravidel, prvky FML nejsou.

Např. řetězec ((p∧¬q) → ¬(q → ¬r)) je formuĺı, zat́ımco řetězce p∧q → ¬(q → ¬r) či ∨p¬q
podle uvedené definice formulemi nejsou.

Mluvili jsme také o syntaktickém stromu formule, či př́ıslušném logickém obvodu. Je

užitečné se nad t́ım zamyslet, byt’ formálně zde tyto pojmy nedefinujeme.

Někdy se také zavád́ı pojem vytvořuj́ıćı posloupnosti φ0, φ1, . . . , φk formule φk; např. po-

sloupnost φ0 = p, φ1 = q, φ2 = ¬φ1, φ3 = (φ0 ∧ φ2) je jedna z vytvořuj́ıćıch posloupnost́ı

formule (p ∧ ¬q).

Cvičeńı 2 Navrhněte definici pojmu syntaktický strom formule a nakreslete jej pro formuli
((p ∧ ¬q) → ¬(q → ¬r)).

Připomněli jsme pojem pravdivostńıho ohodnoceńı (zkráceně ohodnoceńı, anglicky můžeme
ř́ıci evaluation), což je zobrazeńı typu

e : VS −→ {0, 1}.

Zde 0 znamená nepravda (hodnota false) a 1 znamená pravda (hodnota true). K ohodnoceńı
e je přǐrazeno jeho rozš́ı̌reńı

ē : FML −→ {0, 1}
definované následuj́ıćı strukturálńı indukćı; v ńı použ́ıváme booleovské funkce f¬, f∧, f∨, f→,
o nichž bude řeč ńıže.
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1. pro p ∈ VS je ē(p) = e(p);

2. ē(¬φ) = f¬(ē(φ));

3. ē((φ1 ∧ φ2)) = f∧(ē(φ1), ē(φ2));
ē((φ1 ∨ φ2)) = f∨(ē(φ1), ē(φ2));
ē((φ1 → φ2)) = f→(ē(φ1), ē(φ2)).

Booleovskou funkćı n proměnných rozumı́me funkci typu f : {0, 1}n −→ {0, 1}.

• Funkce f¬ má 1 proměnnou a splňuje f¬(0) = 1 a f¬(1) = 0.

• Funkce f∧, f∨, f→ maj́ı dvě proměnné a jsou definovány následovně:
f∧(x, y) = 1 právě tehdy, když x = y = 1;
f∨(x, y) = 0 právě tehdy, když x = y = 0;
f→(x, y) = 0 právě tehdy, když x = 1 a y = 0.

Úmluva.

• V daľśım budeme rozš́ı̌reńı ē označovat rovněž e. Když tedy řekneme “ohodnoceńı” e,
můžeme myslet zobrazeńı jak typu e : VS −→ {0, 1}, tak typu e : FML −→ {0, 1}.
Zvlášt’ zd̊urazńıme, pokud to bude třeba rozlǐsovat.

• Hodnotu e(φ) budeme také označovat ∥φ∥e a ř́ıkáme j́ı hodnota formule φ při pravdi-
vostńım ohodnoceńı e.

• Použijeme-li pro formuli φ zápis φ(p1, p2, . . . , pn), označujeme t́ım fakt, že ve φ se nevy-
skytuj́ı jiné výrokové symboly než symboly z množiny {p1, p2, . . . , pn} (ovšem nemuśı se
v ńı vyskytovat všechny). Např. pro formuli φ = ((p ∧ ¬q) → ¬(q → ¬r)) je v pořádku
jak zápis φ(p, q, r), tak třeba zápis φ(p, p1, q, r, r3).

Použili jsme zde obecněji proměnné p1, p2, . . . pro prvky VS, nikoli př́ımo symboly

p1,p2, . . . (což jsme také mohli udělat); význam by měl být opět jasný.

Strukturálńı indukćı jsme snadno ukázali:

Tvrzeńı 1 Shoduj́ı-li se ohodnoceńı e1, e2 na množině {p1, p2, . . . , pn} (tedy e1(pi) = e2(pi)
pro vš. i ∈ {1, 2, . . . , n}), pak pro φ = φ(p1, p2, . . . , pn) máme ∥φ∥e1 = ∥φ∥e2.

Cvičeńı 3 Připomeňte si, co je to strukturálńı indukce, a tvrzeńı pořádně dokažte.

Řešeńı:

1. Když φ = p (tedy φ je atomická, tj. výrokový symbol), tak ∥φ∥e = e(p) a tvrzeńı je
zřejmé (hodnota ∥p∥e je určena hodnotou e(p); na hodnotách e(q) pro q ̸= p nezálež́ı).

2. Necht’ φ = ¬ψ a všechny výrokové symboly vyskytuj́ıćı se v ψ patř́ı mezi výrokové
symboly označené p1, p2, . . . , pn; lze tedy psát ψ jako ψ(p1, p2, . . . , pn) a také φ jako
φ(p1, p2, . . . , pn).
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Podle indukčńıho předpokladu (prováděné strukturálńı indukce) předpokládáme, že
∥ψ∥e je určena hodnotami e(p1), e(p2), . . . , e(pn) (přičemž na hodnotách e(q) pro q ̸∈
{p1, p2, . . . , pn} nezálež́ı). Jelikož podle definice máme ∥φ∥e = f¬(∥ψ∥e), hodnota ∥φ∥e
je určena hodnotou ∥ψ∥e a ta je určena hodnotami e(p1), e(p2), . . . , e(pn). Tedy i hod-
nota ∥φ∥e je určena hodnotami e(p1), e(p2), . . . , e(pn) (přičemž na hodnotách e(q) pro
q ̸∈ {p1, p2, . . . , pn} nezálež́ı).

3. Necht’ φ = (ψ1 ∧ ψ2) a všechny výrokové symboly vyskytuj́ıćı se v ψ1 a ψ2 patř́ı mezi
výrokové symboly označené p1, p2, . . . , pn. ....

Dokončete celý d̊ukaz podrobně sami. □

Cvičeńı 4 Navrhněte postup, jak lze k formuli φ(p1, p2, . . . , pn) přiřadit booleovskou funkci
Bφ : {0, 1}n −→ {0, 1} tak, že pro každé ohodnoceńı e plat́ı Bφ(e(p1), e(p2), . . . , e(pn)) = ∥φ∥e.

Cvičeńı 5 Navrhněte postup, jak lze k booleovské funkci B : {0, 1}n −→ {0, 1} sestrojit
formuli φB v ńı̌z se vyskytuj́ı jen výrokové symboly p1, p2, . . . ,pn a pro každé (b1, b2, . . . , bn) ∈
{0, 1}n plat́ı B(b1, b2, . . . , bn) = ∥φB∥e, kde e(pi) = bi pro i = 1, 2, . . . , n. (Nápověda: začněte
s funkcemi B : {0, 1}n −→ {0, 1}, které dávaj́ı 1 jen pro jednu n-tici vstup̊u.)

Připomněli jsme definici následuj́ıćıch pojmů. Formule φ je

• pravdivá při ohodnoceńı e, jestliže ∥φ∥e = 1;

• splnitelná, jestliže existuje e tž. ∥φ∥e = 1;

• tautologie, neboli logicky platná (či logicky pravdivá), jestliže ∥φ∥e = 1 pro každé e;

• nesplnitelná, neboli kontradikce, jestliže ∥φ∥e = 0 pro každé e.

Pozorováńı 2 Formule φ je tautologie právě tehdy, když ¬φ je nesplnitelná.

Zavedli jsme pojem ekvivalence formuĺı:

φ1 a φ2 jsou (sémanticky) ekvivalentńı, označujeme φ1 ≡ φ2, jestliže ∀e : ∥φ1∥e = ∥φ2∥e.

Relace ≡ je relaćı na množině FML, tedy ≡⊆ FML×FML, která očividně je reflexivńı,

symetrická a tranzitivńı; je to tedy relace ekvivalence a odpov́ıdá j́ı př́ıslušný rozklad

množiny FML. (Uvědomme si ale, že φ1 ≡ φ2 neńı formule výrokové logiky ...)

Udělali jsme běžné dohody o vynecháváńı závorek ve formuĺıch, mj. využit́ım priorit pro
logické spojky (v pořad́ı ¬,∧,∨,→, kde ¬ váže nejsilněji).

Strukturálńı indukćı jsme definovali, co jsou podformule dané formule. Všimněme si, že
např. φ1 = q → r neńı podformuĺı formule φ2 = p ∧ q → r, protože plně uzávorkovaná φ2

je ((p ∧ q) → r) a jej́ı podformule jsou p, q, r, (p ∧ q), ((p ∧ q) → r) (prvńı čtyři jsou vlastńı
podformule formule φ2).

Např. u φ = r∨¬p∨q neńı jasné, zda vznikla vynecháńım závorek z φ1 = ((r∨¬p)∨q) nebo z
φ2 = (r∨(¬p∨q)), ale to nám nevad́ı, protože očividně plat́ı φ1 ≡ φ2. (Vynecháváńım závorek
se můžeme dopustit nejednoznačnosti ohledně reprezentované formule, ale reprezentovaná
tř́ıda rozkladu podle ekvivalence ≡ je jednoznačná.)
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Cvičeńı 6 Najděte všechny podformule formule (p → q) ∧ ¬q → p. Pak zjistěte, zda je daná
formule splnitelná a př́ıpadně dokonce tautologie.

Zmı́nili jsme i prefixovou notaci, kde se bez závorek zcela obejdeme, aniž se dopoušt́ıme

jakékoli nejednoznačnosti: zde je formule bud’ výrokový symbol, nebo je v jednom z tvar̊u

¬φ1, ∧φ1φ2, ∨φ1φ2, → φ1φ2, kde φ1, φ2 jsou formule.

Na závěr jsme rozebrali tento (složený) výrok:
Neńı pravda, že nepřǐsli-li dnes na přednášku ti nejhorš́ı studenti, pak nepřǐsli ani ti nejlepš́ı.

Cvičeńı 7 Zformulujte uvedenou větu jako výrokovou formuli a použijte ji k analýze situace.
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Týden 2

Tabulková metoda.

Připomněli jsme si tabulkovou metodu, která k dané formuli φ mj. sestroj́ı tabulku repre-
zentované booleovské funkce Bφ : {0, 1}n −→ {0, 1}, kde n je počet výrokových symbol̊u
vyskytuj́ıćıch se ve φ (jako atomické podformule). Uvědomili jsme si, že aby funkce Bφ byla
jednoznačně daná formuĺı φ, muśıme mı́t výrokové symboly nějak uspořádány. Naše volba
VS = {p, q, r, p0, q0, r0, p1, q1, r1, p2, q2, r2, . . . } př́ımo nab́ıźı jedno takové uspořádáńı.

Cvičeńı 8 Sestrojte tabulku funkce Bφ, kde formule φ je ((q2 → ¬(p1 ∧ r)) → p1).

Lze uvažovat také tuto ekvivalenci na množině FML: φ1 a φ2 jsou ekvivalentńı, jestliže

Bφ1
= Bφ2

. Rozmyslete si, proč je to jiná ekvivalence než ≡.

Normálńı formy formuĺı.

Připomeňme, že literál je výrokový symbol, např. označený p, či jeho negace, např. ¬p;
klauzule je formule tvaru (ℓ1 ∨ ℓ2 · · · ∨ ℓk), kde k ≥ 1 a ℓi jsou literály.

Pro k = 0 dostaneme prázdnou klauzuli, označovanou např. □, což je nesplnitelná formule

(kontradikce). Tu využijeme později při diskusi rezolučńı metody.

Formule je v konjunktivńı normálńı formě (KNF), když je tvaru C1∧C2 · · ·∧Cm, kde m ≥ 1 a
Ci jsou klauzule. Disjunktivńı normálńı forma (DNF) je definována analogicky, s prohozenou
roĺı ∧ a ∨.
Všimli jsme si, že pro fixńı n máme 22

n
booleovských funkćı n proměnných a ukázali jsme

si, že k tabulce jakékoli funkce f : {0, 1}n −→ {0, 1} umı́me sestrojit formuli φ v (úplné)
disjunktivńı normálńı formě tak, že Bφ = f . Totéž jsme ukázali pro konjunktivńı normálńı
formu. Ukázali jsme tedy i platnost následuj́ıćıho tvrzeńı.

Tvrzeńı 3 Ke každé formuli φ lze sestrojit φ1 v KNF (Konjunktivńı Normálńı Formě) a φ2

v DNF (Disjunktivńı Normálńı Formě) tak, že φ ≡ φ1 ≡ φ2.

Cvičeńı 9 K formuli ((q2 → ¬(p1 ∧ r)) → p1) z Cvičeńı 8 sestrojte ekvivalentńı formule
v KNF i DNF.

Cvičeńı 10 Uvědomte si speciálńı př́ıpad tautologíı a kontradikćı. Jak navrhnete ekvivalentńı
formule v KNF a DNF u nich?

Funkcionálńı úplnost systému logických spojek.

Systém logických spojek je funkcionálně úplný, jestliže ke každé booleovské funkci f existuje
výroková formule φ, v ńıž se nevyskytuj́ı logické spojky, které nejsou v systému, a pro kterou
máme Bφ = f .

Dokázali jsme už, že systém logických spojek {¬,∧,∨} je funkcionálně úplný. (Proč?)

Připomněli jsme si de Morganovy zákony a daľśı zřejmé ekvivalence formuĺı:

φ1 ∧ φ2 ≡ ¬(¬φ1 ∨ ¬φ2), φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2),

φ1 → φ2 ≡ ¬φ1 ∨ φ2, φ1 ∨ φ2 ≡ ¬φ1 → φ2.
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Z toho jsme snadno odvodili:

Tvrzeńı 4 Každý ze systém̊u {¬,∧}, {¬,∨} a {¬,→} je funkcionálně úplný.

Všimli jsme si také, že spojka “NAND” (“ne oba”), neboli tzv. Sheffer̊uv operátor | defi-
novaný vztahem p|q = ¬(p∧q), je sama funkcionálně úplným systémem. Je totiž ¬p ≡ p|p
a p ∧ q ≡ ¬(¬(p ∧ q)) ≡ ¬(p|q) ≡ (p|q)|(p|q). Podobně to plat́ı pro “NOR” (“ani ani”).

Logické obvody lze tedy v principu sestavovat z jednoho typu hradel.

Cvičeńı 11 Argumenujte, proč systém {∧,∨,→} neńı funkcionálně úplný. (Nápověda.
Ukažte, že k formuli φ = ¬p neexistuje formule ψ, v ńı̌z všechny logické spojky patř́ı pouze do
množiny {∧,∨,→} a zároveň plat́ı Bφ = Bψ.)

Logická spojka ↔ jako zkratka.

Zavedli jsme logickou spojku ↔ jako zkratku:

(φ↔ ψ) neńı (formálně vzato) formule, ale je to zkratka za formuli ((φ→ ψ) ∧ (ψ → φ)).

Jinou variantou je vźıt ↔ jako plnohodnotou spojku, s př́ıslušnou funkćı f↔, kde f↔(x, y) = 1
právě tehdy, když x = y, a př́ıslušně doplnit náš jazyk výrokové logiky.

I při naš́ı volbě zavedeńı ↔ jako zkratky ji můžeme při zápisu formuĺı použ́ıvat (s nejmenš́ı
prioritou, pokud jde o závorky); jsme si přitom prostě vědomi, že náš zápis neńı striktně vzato
formuĺı, ale jednoznačně reprezentuje řádnou formuli (či alespoň jej́ı tř́ıdu ekvivalence ≡).

Nechali jsme dosud implicitńı, že spojky ¬,∧,∨,→ nazýváme postupně negace, konjunkce,
disjunkce, implikace. Spojku ↔ přirozeně nazveme (logická) ekvivalence, ale je to něco jiného
než relace na množině. Promysleli jsme si proto d̊ukladně následuj́ıćı tvrzeńı a jeho d̊ukaz.

Tvrzeńı 5 Pro libovolné formule φ1, φ2 plat́ı φ1 ≡ φ2 (tedy φ1, φ2 jsou ekvivalentńı, tedy
∀e : ∥φ1∥e = ∥φ2∥e) právě tehdy, když φ1 ↔ φ2 je tautologie.

Pro stručnost bychom mohli napsat: φ1 ≡ φ2 ⇐⇒ φ1 ↔ φ2 ∈ Taut, kde Taut je

množina tautologíı. Tady symbol ⇐⇒ nahrazuje ono “právě tehdy, když” a je to tedy

symbol pro logickou ekvivalenci na metaúrovni.

Cvičeńı 12 Udělejte si d̊ukaz Tvrzeńı 5 pořádně. Jedná se o dvě implikace (na metaúrovni).
Nejprve tedy ukažte, že když φ1 ≡ φ2, tak φ1 ↔ φ2 je tautologie. Pak ukažte, že když φ1 ↔ φ2

je tautologie, tak φ1 ≡ φ2.

Řešeńı:

Implikace “⇒”.

Předpokládejme, že plat́ı φ1 ≡ φ2, tedy že pro každé pravdivostńı ohodnoceńı e máme
∥φ1∥e = ∥φ2∥e. Uvažme nyńı formuli ψ odpov́ıdaj́ıćı zápisu φ1 ↔ φ2, tedy vlastně formuli
(φ1 → φ2) ∧ (φ2 → φ1). Ukážeme, že ψ je tautologie:

Uvažme libovolné ohodnoceńı e a připomeňme si, že

∥ψ∥e = f∧ (f→(∥φ1∥e, ∥φ2∥e), f→(∥φ2∥e, ∥φ1∥e)).
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Jelikož ∥φ1∥e = ∥φ2∥e, máme

bud’ ∥ψ∥e = f∧ (f→(0, 0), f→(0, 0)) nebo ∥ψ∥e = f∧ (f→(1, 1), f→(1, 1)).

Protože f→(0, 0) = f→(1, 1) = 1 a f∧(1, 1) = 1, vyjde v obou př́ıpadech ∥ψ∥e = 1.

Implikace “⇐”.

Udělejte sami. □

Cvičeńı 13 Připomeňte si (najděte) axiomy Booleovy algebry a vyjádřete je jako sadu tau-
tologíı výrokové logiky.

Řešeńı:

Použijme 1 jako zkratku za formuli (p ∨ ¬p) a 0 jako zkratku za formuli (p ∧ ¬p).
Komutativita ∨: (φ ∨ ψ) ↔ (ψ ∨ φ),
komutativita ∧: (φ ∧ ψ) ↔ (ψ ∧ φ),
asociativita ∨: ((φ ∨ ψ) ∨ ξ) ↔ (φ ∨ (ψ ∨ ξ)),
asociativita ∧: ((φ ∧ ψ) ∧ ξ) ↔ (φ ∧ (ψ ∧ ξ)),
absorpčńı zákony: (φ ∧ (φ ∨ ψ)) ↔ φ a (φ ∨ (φ ∧ ψ)) ↔ φ,

distributivńı zákony: φ ∧ (ψ ∨ ξ) ↔ (φ ∧ ψ) ∨ (φ ∧ ξ) a φ ∨ (ψ ∧ ξ) ↔ (φ ∨ ψ) ∧ (φ ∨ ξ),
komplementarita: (φ ∨ ¬φ) ↔ 1 a (φ ∧ ¬φ) ↔ 0.

(Později se zmı́ńıme o vzájemné (ne)závislosti těchto axiomů ...)

Dodatek k normálńım formám. Formule je v konjunktivńı normálńı formě (KNF),
jestliže je to konjunkce konečného počtu elementárńıch disjunkćı (tedy tzv. klauzuĺı, tj. dis-
junkćı konečného počtu literál̊u). Formule je v disjunktivńı normálńı formě (DNF), jestliže je
to disjunkce konečného počtu elementárńıch konjunkćı (konjunkćı konečného počtu literál̊u).

Vedle “tabulkového” postupu konstrukce úplných normálńıch forem, jsme si ukázali i převod
formuĺı do KNF či DNF využit́ım strukturálńı indukce. Kĺıčovým byl přitom fakt, že formule

(C1 ∧ C2 · · · ∧ Cm) ∨ (C ′
1 ∧ C ′

2 · · · ∧ C ′
n)

je ekvivalentńı formuli

(C1∨C ′
1)∧(C1∨C ′

2) · · ·∧(C1∨C ′
n)∧(C2∨C ′

1)∧· · ·∧(C2∨C ′
n)∧· · ·∧(Cm∨C ′

1)∧· · ·∧(Cm∨C ′
n),

neboli ( ∧
1≤i≤m

Ci
)
∨
( ∧
1≤j≤n

C ′
j

)
≡

∧
1≤i≤m,1≤j≤n

(Ci ∨ C ′
j) .

Tento fakt, a duálńı fakt s prohozenými konjunkcemi a disjunkcemi, lze odvodit např. využit́ım
“distributivńıch zákon̊u”.

Vzpomeňte si na naše vyjádřeńı axiomů Booleovy algebry jako tautologíı výrokové logiky.

Máme mj. φ1∨(φ2∧φ3) ≡ (φ1∨φ2)∧(φ1∨φ3) a také φ1∧(φ2∨φ3) ≡ (φ1∧φ2)∨(φ1∧φ3).

Uvědomili jsme si tak mj., že máme i jiné možnosti převodu formule do KNF (či DNF) než
přes tabulku. (Mj. se také uplatńı de Morganovy zákony ...)
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Týden 3

Věta o substituci a věta o ekvivalenci.

Jednoduchá fakta o substitućıch ve formuĺıch se daj́ı prezentovat následuj́ıćımi dvěma body
(kterým můžeme ř́ıkat věta o substituci a věta o ekvivalenci):

Tvrzeńı 6

1. Když φ je tautologie a φ′ vznikne z φ nahrazeńım všech výskyt̊u výrokového symbolu p
(jakoukoli) formuĺı ψ, tak φ′ je také tautologie.

2. Jestlǐze φ′ vznikne z φ nahrazeńım (jednoho) výskytu podformule ψ ekvivalentńı formuĺı
ψ′ (máme tedy ψ ≡ ψ′), tak φ ≡ φ′ (neboli φ↔ φ′ je tautologie).

Před uvedeńım d̊ukazu si všimněme, že tǐse předpokládáme, že př́ıslušným nahrazováńım
vznikaj́ı zase formule. To lze samozřejmě snadno ukázat strukturálńı indukćı, jak žádaj́ı
následuj́ıćı dvě cvičeńı.

Cvičeńı 14 Mějme výrokový symbol p ∈ VS a formule φ,ψ ∈ FML. Ukažte, že když ve φ
nahrad́ıme každý výskyt symbolu p (pokud tam takový je) formuĺı ψ, tak vznikne formule; tuto
výslednou formuli m̊užeme označit φ′.

Řešeńı. Pokud se p ve φ nevyskytuje, je tvrzeńı triviálńı (a φ′ = φ). Předpokládejme dále,
že se p ve φ vyskytuje. Při provedeńı strukturálńı indukce rozlǐśıme 3 př́ıpady (omeźıme
se na funkcionálně úplný systém logických spojek {¬,→}):

• φ je atomická; v našem př́ıpadě tedy φ = p :

zde je očividně φ′ = ψ;

• φ = ¬ξ :
podle indukčńıho předpokladu, nahrazeńım všech výskyt̊u p ve formuli ξ formuĺı ψ
vznikne formule ξ′; nahrad́ıme-li tedy všechny výskyty p ve formuli ¬ξ formuĺı ψ,
vznikne formule ¬ξ′, což je kýžená φ′;

• φ = (φ1 → φ2) :

podle indukčńıho předpokladu, nahrazeńım všech výskyt̊u p ve formuli φ1 formuĺı ψ
vznikne formule φ′

1 a nahrazeńım všech výskyt̊u p ve formuli φ2 formuĺı ψ vznikne
formule φ′

2; nahrad́ıme-li tedy všechny výskyty p ve formuli (φ1 → φ2) formuĺı ψ,
vznikne formule (φ′

1 → φ′
2), což je kýžená φ′.

Cvičeńı 15 Mějme formuli φ, jej́ı podformuli ψ a formuli ψ′. Ukažte, že nahrad́ıme-li jeden
výskyt ψ ve φ formuĺı ψ′, dostaneme formuli, kterou m̊užeme označit φ′.

Důkaz. (Tvrzeńı 6)

1. Mějme φ, p, ψ, φ′ jak je popsáno v tvrzeńı. Zvolme libovolně pravdivostńı ohodnoceńı
e; hodnotu ∥ψ∥e označme b (b ∈ {0, 1}). Je zřejmé (a strukturálńı indukćı snadno demon-
strovatelné), že hodnota ∥φ′∥e je stejná jako ∥φ∥e′ , kde e′(p) = b a e′(q) = e(q) pro každé
q ∈ VS∖ {p}. Jelikož φ je tautologie, máme ∥φ∥e′ = 1, a tedy také ∥φ′∥e = 1. Jelikož e bylo
zvoleno libovolně, dokázali jsme, že φ′ je tautologie.

2. Důkaz je přenechán čtenáři. □
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Sémantické vyplýváńı.

Řekneme, že množina formuĺı T ⊆ FML je splněna pravdivostńım ohodnoceńım e, jestliže
∥φ∥e = 1 pro každou φ ∈ T . Množina T je splnitelná, jestliže existuje pravdivostńı ohodnoceńı
e, které ji splňuje; v opačném př́ıpadě je T nesplnitelná.

Zavedli jsme značeńı T |= φ (čteme “φ sémanticky vyplývá z T” nebo také “φ je tautolo-
gickým d̊usledkem T”). T |= φ plat́ı, jestliže pro každé pravdivostńı ohodnoceńı e splňuj́ıćı T
máme ∥φ∥e = 1.

Ṕı̌seme také T, φ |= ψ mı́sto T ∪ {φ} |= ψ, dále φ1, φ2 |= ψ mı́sto {φ1, φ2} |= ψ, apod. Také
ṕı̌seme |= φ mı́sto ∅ |= φ. Uvědomili jsme si, že

|= φ je vlastně vyjádřeńı faktu, že φ je tautologie,

a také že

když T je nesplnitelná, tak pro všechny formule φ máme T |= φ.

Cvičeńı 16 Vysvětlete, proč plat́ı p → q, q → r |= p → r a proč neplat́ı p → q |= ¬p → ¬r.
Zjistěte, zda plat́ı T |= φ, kde T = {r → p,¬q → r} a φ = ¬(p ∧ ¬q).

Uvědomili jsme si jednoduchý užitečný fakt:

Tvrzeńı 7 T |= φ právě tehdy, když T ∪ {¬φ} je nesplnitelná.

Důkaz. Podle definice, T ∪ {¬φ} je nesplnitelná právě tehdy, když neexistuje pravdivostńı
ohodnoceńı e splňuj́ıćı zároveň (všechny formule v) T i ¬φ, tedy právě tehdy, když každé
pravdivostńı ohodnoceńı e splňuj́ıćı T nesplňuje ¬φ; přitom e nesplňuje ¬φ právě tehdy,
když splňuje φ. □

Sémantická věta o dedukci.

Tvrzeńı 8 T, φ |= ψ právě tehdy, když T |= φ→ ψ.

Důkaz.

“⇒” (implikace zleva doprava):
Předpokládejme, že pro každé pravdivostńı ohodnoceńı e plat́ı: jestliže e splňuje T a φ, tak
splňuje také ψ. Uvažme ted’ libovolné pravdivostńı ohodnoceńı e′ splňuj́ıćı T ; ukážeme, že e′

splňuje formuli (φ→ ψ), č́ımž bude d̊ukaz (implikace zleva doprava) hotov.

Pokud ∥φ∥e′ = 0, pak máme ∥(φ → ψ)∥e′ = 1 (jelikož f→(0, b) = 1 pro obě b ∈ {0, 1}).
Pokud ∥φ∥e′ = 1, pak podle úvodńıho předpokladu plat́ı ∥ψ∥e′ = 1, a tedy ∥(φ → ψ)∥e′ = 1
(jelikož f→(1, 1) = 1).

“⇐” (implikace zprava doleva): cvičeńı. □

Cvičeńı 17 Doplňte část “⇐” v předchoźım d̊ukazu.

Uvedené tvrzeńı se také nazývá sémantická věta o dedukci; později uvedeme jej́ı syntaktickou
verzi.

12



Věta o kompaktnosti výrokové logiky.

Všimněme si, že při zavedeńı T |= φ jsme nemluvili o př́ıpadu, kdy je T nekonečná, což
je užitečné v některých kontextech uvažovat. Dokážeme ted’ následuj́ıćı větu, ze které např.
plyne, že když vrcholy nekonečného grafu G nelze obarvit k barvami (tak, aby žádné dva
vrcholy spojené hranou neměly stejnou barvu), tak takto nelze obarvit ani vrcholy nějakého
konečného podgrafu G′ grafu G.

Věta 9 (o kompaktnosti). T ⊆ FML je splnitelná právě tehdy, když každá konečná T ′ ⊆ T je
splnitelná. (Tedy když T je nesplnitelná, tak existuje konečná T ′ ⊆ T , která je nesplnitelná.)

Důkaz. Směr “⇒” je zřejmý (když je množina formuĺı splnitelná, tak každá jej́ı podmnožina
je splnitelná).

Pro d̊ukaz směru “⇐” je kĺıčové si uvědomit, že když každá konečná T ′ ⊆ T je splnitelná
a pro nějaký výrokový symbol p plat́ı, že p ani ¬p nepatř́ı do T (obě formule p a ¬p do
T pochopitelně patřit nemohou), tak nutně bud’ plat́ı, že každá konečná T ′ ⊆ T ∪ {p} je
splnitelná, nebo plat́ı, že každá konečná T ′ ⊆ T ∪ {¬p} je splnitelná. Kdyby totiž existovala
konečná T1 ⊆ T ∪ {p}, která je nesplnitelná, a zároveň konečná T2 ⊆ T ∪ {¬p}, která je
nesplnitelná, tak (T1 ∪ T2)∖ {p,¬p} je nesplnitelná. (Proč?)

Připomeňme si ted’, že množinu VS výrokových symbol̊u máme uspořádánu a tato množina
je spočetná. Pro účely d̊ukazu zde označme jej́ı prvky p0, p1, p2, . . . . Výše uvedenou úvahu
provedeme postupně pro p0, pak pro p1, atd., a zamysĺıme se, k čemu dojdeme po provedeńı
tohoto nekonečného procesu.

Vycháźıme z množiny T , o ńıž předpokládáme, že každá jej́ı konečná podmnožina je splni-
telná. Množinu T postupně rozšǐrujeme tak, že nakonec dospějeme k množině T̄ ⊇ T , pro niž
také plat́ı, že každá jej́ı konečná podmnožina je splnitelná, a nav́ıc pro každý výrokový symbol
p plat́ı, že právě jedna z formuĺı p a ¬p patř́ı do T̄ . Pak ovšem pravdivostńı ohodnoceńı e
definované

e(p) =

{
1 . . . jestliže p ∈ T̄

0 . . . jestliže ¬p ∈ T̄

splňuje všechny formule z T̄ , a tedy i všechny formule z T . Skutečně: kdyby totiž existovala
φ = φ(p1, p2, . . . , pn) v T̄ taková, že ∥φ∥e = 0, tak množina T ′ = {p̄1, p̄2, . . . , p̄n, φ}, kde p̄i
jen ten prvek množiny {pi,¬pi}, který patř́ı do T̄ , je nesplnitelná (což je spor, protože T ′ je
konečná podmnožina množiny T̄ ). □

Důsledek 10 T |= φ právě tehdy, když existuje konečná T ′ ⊆ T taková, že T ′ |= φ, tedy
právě tehdy, když |= φ1 → (φ2 → (· · ·φn−1 → (φn → φ) · · · )) pro nějaké φ1, φ2, . . . , φn ∈ T
(kde m̊uže být n = 0; v tom př́ıpadě |= φ).

Cvičeńı 18 Dokažte, že když T ′ |= φ a T ′ = {φ1, φ2, . . . , φn}, tak plat́ı

|= φ1 → (φ2 → (· · ·φn−1 → (φn → φ) · · · )).
(Použijte sémantickou větu o dedukci.)

13



Týden 4

Nejprve ukážeme ještě podrobněǰśı d̊ukaz věty o kompaktnosti pro výrokovou logiku než
minule.

Věta (o kompaktnosti). T ⊆ FML je splnitelná právě tehdy, když každá konečná T ′ ⊆ T je
splnitelná. (Tedy když T je nesplnitelná, tak existuje konečná T ′ ⊆ T , která je nesplnitelná.)

Důkaz. Směr “⇒”je zřejmý: Když existuje pravdivostńı ohodnoceńı e, které splňuje T , tedy
takové, že ∥φ∥e = 1 pro všechny φ ∈ T , tak př́ımo toto e ukazuje, že každá T ′ ⊆ T je
splnitelná, tedy i každá konečná T ′ ⊆ T je splnitelná.

Ukážeme směr “⇐”. Předpokládáme tedy, že každá konečná T ′ ⊆ T je splnitelná, tedy pro
každou konečnou T ′ ⊆ T existuje e takové, že ∥φ∥e = 1 pro všechny φ ∈ T ′. Neńı ovšem hned
zřejmé, že existuje jedno fixńı e′, které splňuje každou konečnou T ′ ⊆ T . (Takové e′ by pak
samozřejmě splňovalo celou T . Proč?) My ale takové e′ vybudujeme.

Pro jednoduchost přeznačme výrokové symboly tak, že VS = {p1, p2,p3, . . . }. Všimněme si,
že pro každé i ≥ 1 máme {pi,¬pi} ̸⊆ T , jelikož {pi,¬pi} je konečná množina, která očividně
neńı splnitelná.

Polož́ıme T0 = T a pro i = 1, 2, . . . budeme definovat e′(pi) a množinu Ti tak, že Ti =
Ti−1 ∪ {pi} když e′(pi) = 1 a Ti = Ti−1 ∪ {¬pi} když e′(pi) = 0. Budeme přitom udržovat
vlastnost, že každá konečná T ′ ⊆ Ti je splnitelná nějakým ohodnoceńım e, které se na množině
{p1, p2, · · · ,pi} shoduje s e′. (Pro T0 to tedy jen ř́ıká, že každá jej́ı konečná podmnožina je
splnitelná.)

Pro i = 1, 2, 3, . . . postupujeme takto:

1. Pokud plat́ı pi ∈ Ti−1, tak definujeme Ti = Ti−1 a e′(pi) = 1.

Ověřme, že každá konečná T ′ ⊆ Ti je splněna nějakým ohodnoceńım e, které se na
{p1, p2, · · · ,pi} shoduje s e′: Jelikož T ′ ∪ {pi} je konečnou podmnožinou Ti−1, je tato
množina splněna ohodnoceńım e, které se na {p1, p2, · · · ,pi−1} shoduje s e′ (podle
indukčńıho předpokladu); nav́ıc nutně plat́ı i e(pi) = 1.

2. Pokud plat́ı ¬pi ∈ Ti−1, tak definujeme Ti = Ti−1 a e′(pi) = 0.

Ověřeńı, že každá konečná T ′ ⊆ Ti je splněna nějakým ohodnoceńım e, které se na
{p1, p2, · · · ,pi} shoduje s e′, se provede podobně jako výše.

3. Pokud máme pi ̸∈ Ti−1 a ¬pi ̸∈ Ti−1, tak plat́ı (alespoň) jedna z těchto podmı́nek:

(a) každá konečná T ′ ⊆ Ti−1 je splněna nějakým ohodnoceńım e, které se na
{p1, p2, · · · ,pi−1} shoduje s e′ a nav́ıc plat́ı e(pi) = 1,

(b) každá konečná T ′ ⊆ Ti−1 je splněna nějakým ohodnoceńım e, které se na
{p1, p2, · · · ,pi−1} shoduje s e′ a nav́ıc plat́ı e(pi) = 0.

Kdyby totiž neplatilo ani (a) ani (b), tak by existovala konečná T ′ ⊆ Ti−1 taková, že
pro každé e splňuj́ıćı T ′, které se na {p1, p2, · · · ,pi−1} shoduje s e′, plat́ı e(pi) = 0, a
zároveň by existovala konečná T ′′ ⊆ Ti−1 taková, že pro každé e splňuj́ıćı T ′′, které se na
{p1, p2, · · · ,pi−1} shoduje s e′, plat́ı e(pi) = 1. Pak ovšem konečná T ′ ∪ T ′′ ⊆ Ti−1 neńı
splnitelná žádným e, které se na {p1,p2, · · · ,pi−1} shoduje s e′, což je spor s udržovanou
vlastnost́ı (která je zde součást́ı indukčńıho předpokladu).
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V př́ıpadě (a) definujeme Ti = Ti−1 ∪{pi} a e′(pi) = 1; pokud (a) neplat́ı (a tedy nutně
plat́ı (b)), definujeme Ti = Ti−1 ∪ {¬pi} a e′(pi) = 0.

I zde pro Ti tedy očividně plat́ı, že každá jej́ı konečná množina je splnitelná nějakým
ohodnoceńım e, které se na množině {p0,p1, · · · , pi} shoduje s e′.

Vid́ıme, že pro množinu T̄ =
⋃
i≥0 Ti plat́ı, že pro každé i ≥ 1 je v T̄ právě jeden z literál̊u pi a

¬pi. Je přitom zřejmé, že e′ splňuje každou formuli v T̄ (tedy také splňuje množinu T = T0).
Pro každou formuli φ ∈ T̄ existuje totiž j takové, že všechny výrokové symboly ve φ jsou
obsaženy v množině {p1,p2, . . . ,pj}. Máme tedy φ ∈ Tj a φ je proto splněna ohodnoceńım
e, které se na {p1, p2, · · · ,pj} shoduje s e′, což v tomto př́ıpadě znamená, že φ je splněna i
ohodnoceńım e′. □

Axiomatický systém výrokové logiky.

Dosud jsme se zaj́ımali o sémantiku výrokové logiky (význam formuĺı, pojmy jako je splnitel-
nost, tautologie, sémantické vyplýváńı ...). Ted’ se zaj́ımáme o syntaktické aspekty. Pohovořili
jsme o významu tzv. výrokového kalkulu (výrokového počtu) a pustili se do jeho budováńı.

Omezili jsme se na funkcionálně úplný systém {¬,→} stejně jako [1]. Formule použ́ıvaj́ıćı
také některou ze spojek ∧, ∨ (nebo ↔) zde tedy formálně považujeme za zkratky formuĺı
v systému {¬,→}. (Připomeňme si, že φ ∨ ψ ≡ ¬φ→ ψ a φ ∧ ψ ≡ ¬(φ→ ¬ψ).)
Uvedli jsme postupně tři schémata axiom̊u jako v [1]:

1. φ→ (ψ → φ),

2. (φ→ (ψ1 → ψ2)) → ((φ→ ψ1) → (φ→ ψ2)),

3. (¬ψ → ¬φ) → (φ→ ψ).

Dosazeńım jakýchkoli formuĺı (výrokové logiky) za (metaproměnné) φ,ψ, . . . do výše uve-
dených schémat dostaneme konkrétńı axiomy. Např. dosazeńım formule (¬p → (q → ¬r)) za
φ a formule (¬r → p) za ψ ve schématu 1 dostaneme axiom

(¬p → (q → ¬r)) → ((¬r → p) → (¬p → (q → ¬r))).

Cvičeńı 19 Demonstrujte, že každý axiom (tedy každá formule, která je instanćı uvedených
schémat) je tautologie.

Dále jsme uvedli dedukčńı (odvozovaćı) pravidlo MP (Modus Ponens):

φ,φ→ ψ

ψ
,

které čteme “z formuĺı φ a φ → ψ (nad čarou) lze odvodit formuli ψ (pod čarou)”. Např.
tedy z formuĺı (¬p → (q → ¬r)) a ((¬p → (q → ¬r)) → (¬r → p)) odvod́ıme pravidlem MP
formuli (¬r → p).

Cvičeńı 20 Demonstrujte, že když φ a (φ→ ψ) jsou tatutologie, pak také ψ je tautologie.
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Řekli jsme, co je to d̊ukaz formule φ v teorii T (zde T je nějaká, třeba i nekonečná, množina
formuĺı, tedy podmnožina množiny FML) a definovali jsme značeńı

T ⊢ φ ,

které znač́ı, že formule φ je dokazatelná z T , tedy že existuje d̊ukaz formule φ z T ; také
ř́ıkáme, že φ je teorém teorie T .

D̊ukazem φ z T je jakákoli posloupnost formuĺı φ1, φ2, . . . , φk, kde φk = φ a pro každé
i ∈ {1, 2, . . . , k} plat́ı, že φi je bud’ axiom (tedy instance nějakého axiomového schématu),
nebo prvek množiny T , nebo se dá odvodit pravidlem MP z formuĺı φj1 a φj2 pro nějaká
j1, j2 ∈ {1, 2, . . . , i−1}.
Sestavme si d̊ukaz formule p → p z ∅, tedy ukažme ∅ ⊢ p → p, což také ṕı̌seme jako ⊢ p → p.

Náš d̊ukaz je posloupnost pěti formuĺı φ1, φ2, φ3, φ4, φ5, kde:

1. φ1 je: p → ((p → p) → p) (instance ax. schématu 1 [φ = p, ψ = (p → p)]),

2. φ2 je: (p → ((p → p) → p)) → ((p → (p → p)) → (p → p)) (instance ax. schématu 2),

3. φ3 je: (p → (p → p)) → (p → p) (vznikne aplikaćı MP na φ1 a φ2),

4. φ4 je: p → (p → p) (instance ax. schématu 1),

5. φ5 je: p → p (vznikne aplikaćı MP na φ4 a φ3).

Ukažme ještě, že plat́ı T ⊢ φ, kde T = {r, (¬q → ¬r)} a φ = q. To lze prokázat např. t́ımto
d̊ukazem: ((¬q → ¬r) → (r → q)), (¬q → ¬r), (r → q), r, q.

Ověřili jsme korektnost axiomatického systému:

Věta 11 (o korektnosti). Jestlǐze T ⊢ φ, pak T |= φ.

Cvičeńı 21 Dokažte větu o korektnosti indukćı podle délky d̊ukazu; konkrétně ukažte, že pro
každý d̊ukaz φ1, φ2, . . . , φk z T plat́ı, že φk je pravdivá pro každé pravdivostńı ohodnoceńı
splňuj́ıćı T .

Opačná věta, věta o úplnosti (jestliže T |= φ, pak T ⊢ φ) je obt́ıžněǰśı; dokážeme ji postupně.
Začneme (syntaktickou) větou o dedukci.

Nejprve připomeňme triviálńı pozorováńı:

Pozorováńı 12 Jestlǐze T ⊢ φ a T ⊆ T ′, pak T ′ ⊢ φ.

Nyńı již k oné (syntaktické) větě o dedukci:

Věta 13 (o dedukci). Pro každé T ⊆ FML a φ,ψ ∈ FML plat́ı

T, φ ⊢ ψ právě tehdy, když T ⊢ φ→ ψ.

Důkaz. Implikace “⇐” je jednoduchá:

Jestliže plat́ı T ⊢ φ→ ψ, tak samozřejmě také plat́ı T, φ ⊢ φ→ ψ. Triviálně plat́ı T, φ ⊢ φ.
Použit́ım pravidla MP tedy vyvod́ıme, že T, φ ⊢ ψ.
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Implikaci “⇒” dokážeme takto:

Předpokládáme, že plat́ı T, φ ⊢ ψ. Existuje tedy d̊ukaz formule ψ z teorie T ∪ {φ}, tj.
př́ıslušná posloupnost formuĺı φ1, φ2, . . . , φk, kde φk = ψ. Ukážeme indukćı pro i = 1, 2, . . . , k,
že T ⊢ φ→ φi; z toho plyne, že T ⊢ φ→ ψ. Rozlǐśıme přitom tyto př́ıpady:

1. φi je axiom,

2. φi ∈ (T ∪ {φ}); zde rozlǐśıme podpř́ıpady

(a) φi ∈ T ,

(b) φi = φ,

3. φi je vyvozena z φj a φℓ pomoćı pravidla MP (pro nějaké j, ℓ menš́ı než i). □

Cvičeńı 22 Proved’te pečlivě celý d̊ukaz. (V bodě 3 tedy předpokládáme, že např. φℓ je tvaru
φj → φi, a z indukčńıho předpokladu plyne, že T ⊢ φ→ φj a T ⊢ φ→ (φj → φi).)

Všimli jsme si, že k d̊ukazu stačila schémata axiomů (1) a (2), tedy φ → (ψ → φ) a
(φ→ (ψ1 → ψ2)) → ((φ→ ψ1) → (φ→ ψ2)).

Cvičeńı 23 Použijte větu o dedukci k d̊ukazu tvrzeńı o tranzitivitě implikace:

pokud plat́ı T ⊢ φ1 → φ2 a T ⊢ φ2 → φ3, tak také plat́ı T ⊢ φ1 → φ3.

Pak jsme se pustili do d̊ukazu věty doplňuj́ıćı zmı́něnou větu o korektnosti:

Věta 14 (o úplnosti). Jestlǐze T |= φ, pak T ⊢ φ.

Kĺıčem bylo následuj́ıćı Churchovo lemma, kde jsme použili tuto notaci (pro formuli φ a
ohodnoceńı e):

φe =

{
φ, jestliže ∥φ∥e = 1,

¬φ, jestliže ∥φ∥e = 0.

(Např. pro φ = (p → (¬q → r)) a e, kde e(p) = 1 a e(q) = e(r) = 0, výraz φe označuje
formuli ¬(p→ (¬q → r))).)

Lemma 15 Pro každou φ(p1, . . . , pn) a každé e : VS → {0, 1} plat́ı pe1, . . . , p
e
n ⊢ φe.

Důkaz. Pro φ = p je to triviálńı, nebot’ plat́ı p ⊢ p i ¬p ⊢ ¬p.
Pro φ = ¬ψ, kde φ je φ(p1, . . . , pn) a tedy také ψ je ψ(p1, . . . , pn), postupujeme takto:

1. ∥φ∥e = 1

Zde tedy φe = φ = ¬ψ a ψe = ¬ψ. Podle indukčńıho předpokladu pe1, . . . , p
e
n ⊢ ψe, a

tedy pe1, . . . , p
e
n ⊢ ¬ψ; jelikož ¬ψ = φ = φe, máme pe1, . . . , p

e
n ⊢ φe.
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2. ∥φ∥e = 0

Zde tedy φe = ¬φ = ¬¬ψ a ψe = ψ. Podle indukčńıho předpokladu pe1, . . . , p
e
n ⊢ ψe, a

tedy pe1, . . . , p
e
n ⊢ ψ. Kdybychom měli dokázáno, že

⊢ ψ → ¬¬ψ (1)

tak pravidlem MP odvod́ıme pe1, . . . , p
e
n ⊢ ¬¬ψ, tedy pe1, . . . , p

e
n ⊢ φe. ((1) dokážeme

př́ı̌stě.)

Pro φ = (φ1 → φ2), kde φ je φ(p1, . . . , pn) a tedy také φ1 je φ1(p1, . . . , pn) a φ2 je
φ2(p1, . . . , pn), postupujeme takto:

1. ∥φ∥e = 1

(a) ∥φ1∥e = 0 (cvičeńı)

(b) ∥φ2∥e = 1 (cvičeńı)

2. ∥φ∥e = 0

Zde tedy ∥φ1∥e = 1 a ∥φ2∥e = 0. Podle ind. předp. pe1, . . . , p
e
n ⊢ φ1 a pe1, . . . , p

e
n ⊢ ¬φ2.

Chceme ukázat, že pe1, . . . , p
e
n ⊢ ¬(φ1 → φ2). Kdybychom věděli, že

⊢ φ1 → (¬φ2 → ¬(φ1 → φ2)) (2)

tak pravidlem MP odvod́ıme. ((2) dokážeme př́ı̌stě.)

□

Cvičeńı 24 Dokončete d̊ukaz kompletně za předpokladu, že plat́ı (1) a (2).
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Týden 5

Připomı́náme, že jsme Churchovo lemma (Lemma 15) dokázali za předpokladu, že plat́ı (1)
a (2), tedy ⊢ ψ → ¬¬ψ a ⊢ φ1 → (¬φ2 → ¬(φ1 → φ2)) (pro všechny formule ψ,φ1, φ2).
Ukažme si ted’ platnost těchto našich předpoklad̊u.

Odvozeńı platnosti ⊢ φ→ ¬¬φ .

Podle věty o dedukci chceme vlastně ukázat, že plat́ı φ ⊢ ¬¬φ. Při d̊ukazu věty o dedukci
nám stačila axiomová schémata (1) a (2). Ted’ se zřejmě neobejdeme bez schématu (3). Dı́ky
tomuto schématu by vlastně stačilo ukázat, že plat́ı ⊢ ¬¬¬φ→ ¬φ, neboli ¬¬¬φ ⊢ ¬φ.

Cvičeńı 25 Proč z předpokladu ⊢ ¬¬¬φ→ ¬φ plyne ⊢ φ→ ¬¬φ ?

Obecněji by mělo platit (má-li být náš axiomatický systém úplný) ¬¬φ ⊢ φ (pro všechny
formule φ, tedy speciálně pak plat́ı i ¬¬¬φ ⊢ ¬φ). Pořád ale neńı jasné, jak to demonstrovat.
Možná nás napadne, že ¬¬φ ⊢ φ by plynulo z ¬¬φ ⊢ ¬φ→ ¬¬¬φ.

Cvičeńı 26 Proč z předpokladu ¬¬φ ⊢ ¬φ→ ¬¬¬φ plyne ¬¬φ ⊢ φ ?
(Nápověda. Použijte axiomové schéma (3) a větu o dedukci.)

Všimněme si, že ¬¬φ ⊢ ¬φ → ¬¬¬φ plat́ı právě tehdy, když ¬¬φ,¬φ ⊢ ¬¬¬φ. Ale přece
obecně by mělo platit ¬φ,φ ⊢ ψ (pro všechny formule φ,ψ); ze sporného předpokladu
bychom totiž měli být schopni dokázat jakýkoli závěr. Napǐsme si to ve dvou verźıch
(verze si odpov́ıdaj́ı d́ıky větě o dedukci):

¬φ,φ ⊢ ψ neboli ⊢ ¬φ→ (φ→ ψ) .

Platnost je jasná d́ıky tomu, že plat́ı ⊢ ¬φ → (¬ψ → ¬φ) (instance axiom. schématu (1)),
⊢ (¬ψ → ¬φ) → (φ → ψ) (instance axiom. schématu (3)) a dř́ıve dokázané tvrzeńı o
tranzitivitě implikace.

Zvýrazněme, že jsme také ukázali

⊢ ¬¬φ→ φ .

Odvozeńı platnosti

⊢ φ→ (¬ψ → ¬(φ→ ψ)). (3)

Dı́ky pravidlu Modus Ponens a větě o dedukci máme φ,φ→ ψ ⊢ ψ a tedy φ ⊢ (φ→ ψ) → ψ.

Cvičeńı 27 Kdychom tedy měli k axiomovému schématu (3) ještě obměněné schéma ve formě
(φ→ ψ) → (¬ψ → ¬φ), tak bychom byli s demonstraćı platnosti (3) hotovi. Proč?

My ovšem ukážeme, že opravdu plat́ı

⊢ (φ→ ψ) → (¬ψ → ¬φ) :

Jelikož plat́ı ⊢ (¬¬φ → φ) a (φ → ψ) ⊢ (φ → ψ) a ⊢ (ψ → ¬¬ψ), tak d́ıky tvrzeńı o
tranzitivitě implikace odvod́ıme, že plat́ı (φ → ψ) ⊢ (¬¬φ → ¬¬ψ), a tedy také (φ → ψ) ⊢
(¬ψ → ¬φ) (d́ıky axiom. schématu (3) a Modus Ponens).
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Ted’ jsme tedy kompletně dokončili d̊ukaz Lemmatu 15 a pokračujeme v d̊ukazu věty o
úplnosti (Věty 14).

Nejprve si ukážeme, že pro každou tautologii φ (tedy |= φ) plat́ı ⊢ φ. Podle Churchova lem-
matu v́ıme, že pro tautologii φ = φ(p1, p2, . . . , pn) plat́ı p

e
1, . . . , p

e
n ⊢ φ pro každé pravdivostńı

ohodnoceńı e (nebot’ φe = φ pro všechna e). Speciálně tedy pro každé e plat́ı

p1, p
e
2 . . . , p

e
n ⊢ φ a ¬p1, pe2, . . . , pen ⊢ φ.

Umı́me se tak zbavit p1 v předpokladech a ukázat, že plat́ı pe2, . . . , p
e
n ⊢ φ ? Ano, obecněji to

ukazuje daľśı tvrzeńı, známé jako věta o neutrálńı formuli:

Věta 16 (Věta o neutrálńı formuli) Jestlǐze T, φ ⊢ ψ a T,¬φ ⊢ ψ, pak také T ⊢ ψ.
(Opačně je to triviálńı: jestlǐze T ⊢ ψ, pak T, φ ⊢ ψ a T,¬φ ⊢ ψ.)

Důkaz. Nejprve si ukažme fakt, který speciálně zd̊urazńıme:

⊢ (¬φ→ φ) → φ . (4)

Když totiž použijeme ⊢ φ→ (¬ψ → ¬(φ→ ψ)), což už jsme ukázali jako (3), a dosad́ıme zde
za φ formuli ¬φ a za ψ formuli φ, dostaneme ⊢ ¬φ→ (¬φ→ ¬(¬φ→ φ)). Několikanásobným
použit́ım věty o dedukci dostaneme tedy ⊢ ¬φ→ ¬(¬φ→ φ) (jak?), a d́ıky axiom. schématu
(3) a pravidlu Modus Ponens dostaneme (4).

Ted’ tedy předpokládejme, že plat́ı T, φ ⊢ ψ a T,¬φ ⊢ ψ, neboli T ⊢ φ→ ψ a T ⊢ ¬φ→ ψ.
Máme tedy také T ⊢ ¬ψ → φ a tud́ıž T ⊢ ¬ψ → ψ (využit́ım dř́ıve dokázaného včetně tvrzeńı
o tranzitivitě implikace). Podle (4) plat́ı ⊢ (¬ψ → ψ) → ψ, z čehož ted’ vyvod́ıme T ⊢ ψ. □

Cvičeńı 28 Dokončete ted’ demonstraci toho, že když plat́ı |= φ (φ je tautologie), tak také
plat́ı ⊢ φ (φ je dokazatelná).

Věta o úplnosti (Věta 14) tvrd́ı obecně, že když plat́ı T |= φ, tak také plat́ı T ⊢ φ.
Pokud je T konečná, tedy T = {φ1, φ2, . . . , φk}, tak prostě použijeme věty o dedukci (v

sémantické a syntaktické verzi): z T |= φ plyne |= φ1 → (φ2 → · · · (φk → φ) · · · ), a tedy
podle už dokázaného ⊢ φ1 → (φ2 → · · · (φk → φ) · · · ), a proto T ⊢ φ.

Cvičeńı 29 Pro př́ıpad, kdy T |= φ a T je nekonečná, použijte větu o kompaktnosti a ukažte,
že T ⊢ φ.

Dokončili jsme tak kompletně d̊ukaz věty o úplnosti. Připomeneme-li větu o korektnosti,
v́ıme tedy, že plat́ı

T |= φ právě tehdy, když T ⊢ φ.

Cvičeńı 30 Pod́ıvejte se na větu o d̊ukazu rozborem př́ıpad̊u (Věta 2.36) v [1] a dokažte
ji využit́ım faktu, že T |= φ právě tehdy, když T ⊢ φ.

Speciálně se ještě pod́ıvejme na větu o d̊ukazu sporem (2.35 v [1]):

T ⊢ φ právě tehdy, když T,¬φ ⊢ ¬(ψ → ψ) (pro jakékoli T, φ, ψ).
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Vzpomněli jsme si na dř́ıvěǰśı sémantické tvrzeńı

T |= φ právě tehdy, když T ∪ {¬φ} je nesplnitelná

a z vět o korektnosti a úplnosti (tedy z faktu T ⊢ φ ⇐⇒ T |= φ) jsme pak platnost věty o
d̊ukazu sporem snadno vyvodili.

Cvičeńı 31 Jako cvičeńı si proved’te př́ımý d̊ukaz věty o d̊ukazu sporem, podobně jako v [1].
(Částečně jsme to jǐz udělali v rámci d̊ukazu věty o úplnosti.)

Věta o d̊ukazu sporem se dá také formulovat takto:

T ⊢ φ právě tehdy, když T ∪ {¬φ} je sporná,

přičemž pojem sporné množiny je definován následovně: množina formuĺı T je sporná, jestliže
z T lze dokázat každá formule. Následuj́ıćı tvrzeńı totiž ukazuje, že T je sporná právě tehdy,
když z T lze dokázat nějakou kontradikci. Platnost tvrzeńı zase plyne ihned z vět o korektnosti
a úplnosti (tedy z faktu T ⊢ φ ⇐⇒ T |= φ).

Tvrzeńı 17 Pro každou množinu T ⊆ FML plat́ı:

T ⊢ φ pro nějakou kontradikci φ právě tehdy, když T ⊢ ψ pro každou formuli ψ.

Zmı́nili jsme i větu o ekvivalenci (2.34 v [1]). Základem je fakt, že vznikne-li formule φ′

z formule φ nahrazeńım jednoho výskytu podformule ψ formuĺı ψ′, pak ψ ↔ ψ′ ⊢ φ ↔ φ′

(tedy z předpokladu, že ψ a ψ′ jsou ekvivalentńı lze dokázat ekvivalenci φ a φ′). Z faktu
“T ⊢ φ ⇐⇒ T |= φ” lze zase odvodit snadno; připomeňte si v této souvislosti sématickou
verzi věty o ekvivalenci, tedy Tvrzeńı 6(2).

Cvičeńı 32 Existuje ovšem i př́ımý d̊ukaz věty o ekvivalenci, m̊užete si na něm procvičit
strukturálńı indukci.

Př́ıklady analýzy pomoćı logiky. Rozebrali jsme si jednoduchý “př́ıklad ze života” o
zv́ı̌ratech putuj́ıćıch do českých zoo, na což nám stačilo modelováńı v rámci výrokové logiky.

Pak jsme se pod́ıvali na jednoduchý poč́ıtačový program prováděj́ıćı celoč́ıselné děleńı a
zamysleli se nad d̊ukazem jeho správnosti. K formulaci invariantu cyklu (podmı́nky, která
plat́ı vždy na začátku prováděńı cyklu) i k formulaci daľśıch výrok̊u už nám výroková logika
nestačila. Uvědomili jsme si, že potřebujeme výroky strukturovat, nevystač́ıme s výrokovými
symboly. Při d̊ukazu správnosti jsme využili tzv. predikátovou logiku (prvńıho řádu); zat́ım
jsme se spolehli na jej́ı intuitivńı pochopeńı.

Také jsme predikátovou logiku intuitivně využili při rozboru př́ıkladu ze Smullyanovy
kńıžky; jednalo se o soubor dvou tvrzeńı “Já nemám bratra” a “Otec muže na obrázku je
synem mého otce”, z nichž máme zjistit, kdo je na obrázku.
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Týden 6

Predikátová logika

Syntaxe predikátové logiky. (Rámcově podle kap. 3.1. v [1].)

Uvedli jsme, co je konkrétńı jazyk J predikátové logiky (prvńıho řádu). Tedy, že kromě

• obecně dané (nekonečné spočetné) množiny proměnných (také tzv. předmětových
proměnných, či individuových proměnných), jej́ıž prvky jsou typicky značeny
x, y, z, x1, x2, . . . apod.,

• symbol̊u logických spojek ¬,∧,∨,→ (př́ıpadně ještě ↔),

• kvantifikátor̊u ∀, ∃

• a pomocných symbol̊u (závorky a čárka),

je konkrétńı jazyk určen

• množinou funkčńıch symbol̊u, obecně typicky značených f, g, h, f1, f2, . . . apod.,

• a množinou predikátových symbol̊u (také nazývaných relačńı symboly), obecně typicky
značených P,Q,R, P1, P2, . . . apod.;

• každý funkčńı symbol a predikátový symbol muśı mı́t přǐrazenu svou árnost, též
nazývanou arita či četnost, což je nezáporné celé č́ıslo.

Funkčńım symbol̊um s aritou 0 (tzv. nulárńım funkčńım symbol̊um) ř́ıkáme také konstanty a
typicky je označujeme symbolem c s př́ıpadnými indexy apod.

Znovu jsme se vrátili k př́ıkladu “Kdo je na obrázku?” a navrhli jsme jej formalizovat v

jazyce, který měl unárńı funkčńı symbol otec, unárńı predikátový symbol Muz, binárńı

predikátové symboly Bratr a Syn, a dále konstanty mluvci a clovekZobrazku. (Pro

stručnost jsme tyto symboly psali zkráceně.)

Definovali jsme termy a formule (v daném jazyce); využili jsme opět strukturálńı indukci.

Pro jazyk J = (F ,R,ar) (ar : F ∪R → N) ,jsou termy definovány takto:

1. Každá proměnná x je term.

2. Je-li f funkčńı symbol arity n (f ∈ F , ar(f) = n) a t1, t2, . . . , tn jsou termy,
pak f(t1, t2, . . . , tn) je term.

Formule v daném jazyce J jsou definovány takto:

1. Je-li P predikátový symbol arity n (P ∈ R, ar(P ) = n) a t1, t2, . . . , tn jsou termy,
pak P (t1, t2, . . . , tn) je formule; je to tzv. atomická formule.

2. Jsou-li φ a ψ formule, pak ¬φ, (φ ∧ ψ), (φ ∨ ψ), (φ→ ψ) jsou formule.

3. Je-li x proměnná a φ formule, pak (∀x)φ a (∃x)φ jsou formule.
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Cvičeńı 33 Uvažujme např. jazyk J = (F ,R,ar), kde F = {0,1,+, ·}, R = {=, <},
ar(0) = ar(1) = 0 a arita ostatńıch symbol̊u je 2. Sestavte několik term̊u a formuĺı v
daném jazyku. Napǐste je jednak striktně podle definice (př́ıkladem je term +(x, y)) a také si
připomeňte běžně už́ıvanou infixovou notaci (v ńı̌z naṕı̌seme např. term +(x, y) jako (x+y)).

Sémantika predikátové logiky. (Rámcově podle části 3.2. v [1].)

Uvědomili jsme si, že k jazyku J určenému trojićı (F ,R,ar), kde F je množina funkčńıch
symbol̊u, R množina predikátových (neboli relačńıch) symbol̊u, a ar : F∪R → N je zobrazeńı
určuj́ıćı aritu jednotlivých symbol̊u, existuje nekonečně mnoho možných realizaćı, nebo též
interpretaćı. Realizace jazyka J = (F ,R,ar) je struktura

M = (UM,FM,RM), kde

• UM je neprázdná množina zvaná univerzum,

• FM = {fM | f ∈ F}, kde pro funkčńı symbol f s aritou n je
fM funkce typu (UM)n −→ UM,

• RM = {PM | P ∈ R}, kde pro predikátový symbol P s aritou n je PM n-árńı predikát
(neboli relace) na UM, tedy PM ⊆ (UM)n.

(Výrazem (UM)n znač́ıme kartézský součin UM × UM × · · · × UM s n výskyty UM.)

Máme-li konkrétńı strukturu M, ohodnoceńım (valuaćı) rozumı́me zobrazeńı

v : Var → UM,

kde Var označuje množinu (předmětových) proměnných. Definovali jsme si, co to je hodnota
termu t pro dané M, v; je to jistý prvek UM, který označujeme ∥t∥M,v. Hodnota ∥φ∥M,v pro
formuli φ je prvek množiny {0, 1} (nebo též prvek množiny {false,true}).

Cvičeńı 34 Definujte hodnoty ∥t∥M,v a ∥φ∥M,v strukturálńı indukćı.
Ilustrujte pak např. pro jazyk J = (F ,R,ar), kde F = {0,1,+, ·}, R = {=, <}, ar(0) =
ar(1) = 0 a arita ostatńıch symbol̊u je 2. Jako realizaci jazyka J vezměte strukturu M
s univerzem N = {0, 1, 2, . . . } a standardně realizovanými funkčńımi a predikátovými symboly.

Uvědomili jsme si terminologii, mj. význam následuj́ıćıch pojmů:

• formule φ je pravdivá (nebo splněna) ve struktuře M při ohodnoceńı v (tj. ∥φ∥M,v = 1),

• formule φ je pravdivá ve struktuře M (č́ımž se rozumı́, že je pravdivá v M při každém
ohodnoceńı v),

• formule φ je logicky platná (neboli tautologie); t́ım se rozumı́, že je pravdivá v každé
struktuře M (realizuj́ıćı př́ıslušný jazyk).

Ekvivalence formuĺı.

Předpokládáme ted’, že jazyk J = (F ,R,ar) je zafixován. Ekvivalenci ≡, kterou jsme
zavedli u výrokové logiky, jsme v př́ıpadě predikátové logiky přirozeně definovali takto:
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polož́ıme φ ≡ ψ, jestliže pro každou strukturu M a ohodnoceńı v plat́ı ∥φ∥M,v = ∥ψ∥M,v.

Tedy φ ≡ ψ plat́ı právě tehdy, když formule φ↔ ψ je logicky platná (neboli tautologie).

Cvičeńı 35 Ukažte, že ke každé formuli φ lze sestrojit ekvivalentńı formuli φ′, v ńı̌z nejsou
jiné logické spojky než ¬ a → a neńı v ńı kvantifikátor ∃. (Takové formule φ′ jsou tedy omezeny
na logické spojky ¬,→ a kvantifikátor ∀.)

Volné a vázané výskyty proměnných ve formuli. Připomeňme, že formuli chápeme
(také) jako konečný řetězec symbol̊u z př́ıslušné (obecně nekonečné) abecedy. Pokud je v
daném řetězci φ, který je formuĺı, na pozici i symbol, který je proměnnou x, přičemž na pozici
i−1 neńı kvantifikátor (∀ nebo ∃), tak symbol x na pozici i chápeme jako (jeden konkrétńı)
výskyt proměnné x ve formuli φ.

Např. ve formuli (P (c) ∧ (∀x)(P (f(x, y)) → (∃y)Q(g(y, z), x))) jsou dva výskyty

proměnné x (nikoli 3); dále jsou tam dva výskyty proměnné y a jeden výskyt proměnné

z. Jak bylo řečeno dř́ıve, symbol c použ́ıváme pro konstantu (tj. nulárńı funkčńı symbol).

Výskyt proměnné x ve formuli φ je vázaný, jestliže je součást́ı podřetězce (∀x)ψ nebo (∃x)ψ
řetězce φ, kde řetězec ψ je formuĺı; př́ıslušný výskyt je tedy součást́ı podřetězce ψ. Výskyt
proměnné x ve formuli φ, který neńı vázaný, je volný.

Ve formuli (P (c) ∧ (∀x)(P (f(x, y)) → (∃y)Q(g(y, z), x))) jsou oba výskyty proměnné x

vázané; proměnná y má v této formuli jeden volný výskyt a jeden vázaný výskyt; výskyt

proměnné z v této formuli je volný.

Pokud je výskyt proměnné x ve formuli φ vázaný a (∀x)ψ nebo (∃x)ψ je nejkratš́ı podřetězec
řetězce φ, který obsahuje tento výskyt x (a ψ je formuĺı), tak ř́ıkáme, že tento výskyt x je
vázán př́ıslušným výrazem (∀x) nebo (∃x).

Např. ve formuli (∀x) ((∃x)P (x) → R(x, y)) jsou dva výskyty proměnné x, prvńı je vázán

výrazem (∃x) a druhý je vázán výrazem (∀x).

Ř́ıkáme také, že proměnná x je volná ve formuli φ, jestliže x má ve φ alespoň jeden volný
výskyt (přičemž tam může mı́t i vázané výskyty).

Uvědomili jsme si, že

formule (φ→ (∀x)ψ) a (∀x)(φ→ ψ) jsou ekvivalentńı, jestliže x neńı volná ve φ.

Dále např.

formule ((∀x)φ→ ψ) a (∃x)(φ→ ψ) jsou ekvivalentńı, jestliže x neńı volná v ψ.

Cvičeńı 36 Promyslete si d̊ukladně a podrobně demonstrujte, proč jsou formule v uvedených
dvojićıch opravdu ekvivalentńı a proč jsou uvedené podmı́nky o ne-volnosti proměnné x
d̊uležité.
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Substituovatelnost termu za proměnnou. Zavedli jsme značeńı φ(x/t) pro formuli
vzniklou z φ substitućı termu t za všechny volné výskyty proměnné x. Přitom jsme defi-
novali, kdy plat́ı, že ve formuli φ je term t substituovatelný za proměnnou x: žádný výskyt
proměnné y ve formuli φ(x/t), který se v této formuli objevil d́ıky nahrazeńı konkrétńıho
výskytu x ve φ termem t, nesmı́ být ve φ(x/t) vázaným.

Např. term z · x neńı substituovatelný za y ve formuli y < z → (∃x) y + x = z.

Př́ıkladem si také připomı́náme běžnou infixovou notaci pro binárńı funkce a predikáty.

(Striktně dle definice bychom měli uvedenou formuli psát < (y, z) → (∃x) = (+(y, x), z).)

Cvičeńı 37 Ukažte, že formule (∀x)φ→ φ(x/t) je tautologie (tedy logicky platná), jestlǐze t
je term substituovatelný za x ve φ.
Je to obecně tautologie i bez uvedené podmı́nky substituovatelnosti?

Na závěr jsme si uvědomili, že v našem př́ıkladu s mužem na obrázku jsme z uvedených
formalizovaných předpoklad̊u vyvodili závěr Syn(clovekZobrazku,mluvci) (neboli “člověk
na obrázku je synem mluvč́ıho”) d́ıky naš́ı znalosti zamýšlené realizace použitého jazyka;
vše jsme totiž interpretovali v př́ıslušné struktuře Lidstvo. Pak jsme si uvědomili, že k
předpoklad̊um stač́ı dodat několik vybraných formuĺı našeho jazyka, které jsou pravdivé
ve struktuře Lidstvo (při všech konkrétńıch ohodnoceńıch proměnných), a z nich lze pak
už závěr Syn(clovekZobrazku,mluvci) vyvodit “syntakticky”, bez odvoláváńı se na znalost
konkrétńı struktury Lidstvo.

De facto jsme tak intuitivně ukázali, že závěr je pravdivý v každé struktuře, v nichž jsou
pravdivé př́ıslušné předpoklady a ony vybrané formule (tedy nejen ve struktuře Lidstvo).
Nav́ıc je závěr dokazatelný syntakticky z př́ıslušné množiny formuĺı. V daľśıch přednáškách
postav́ıme tuto intuici na rigorózńı bázi.
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Týden 7

Speciálńı role predikátu rovnosti.

Definici sémantiky predikátové logiky doplńıme touto standardńı úmluvou: Pokud
uvažovaný jazyk J = (F ,R,ar) obsahuje (v R) mj. predikátový symbol rovnosti, tedy “=” s
aritou dva, ř́ıkáme také, že J je jazyk s rovnost́ı; v tom př́ıpadě vyžadujeme u každé struktury
M realizuj́ıćı jazyk J , že realizace symbolu = (tedy binárńı relace =M) je identita na uni-
verzu UM. Tedy pravdivostńı hodnota ∥ = (t1, t2)∥M,v je 1 právě tehdy, když prvky univerza
UM reprezentované termy t1 a t2, tj. ∥t1∥M,v a ∥t2∥M,v, jsou totožné. (Pochopitelně mı́sto
= (t1, t2) ṕı̌seme většinou t1 = t2.)

Sémantické vyplýváńı; pojem T |= φ.

Zavedli jsme pojem teorie; je to prostě množina formuĺı (může být i nekonečná) v daném
jazyce predikátové logiky (určeném množinami funkčńıch a predikátových symbol̊u); prvk̊um
takové množiny T se také ř́ıká axiomy teorie T .

Definovali jsme, kdy je

struktura M (pro daný jazyk) modelem teorie T ,

totiž tehdy, když každá formule φ ∈ T je pravdivá v M.

Někdy se použ́ıvá značeńı M |= T pro fakt, že M je modelem T ; to ale raději nebudeme

použ́ıvat, at’ se nám nemı́chá s ńıže zavedeným T |= φ.

Definice. Výraz T |= φ znamená, že formule φ je pravdivá v každém modelu teorie T .

Cvičeńı 38 Ukažte, že plat́ı P (x) |= P (y) , ale neplat́ı |= P (x) → P (y), což také znač́ıme

takto: ̸|= P (x) → P (y) .

Ukažte, že na druhé straně plat́ı jak (∀x)P (x) |= P (y) , tak |= (∀x)P (x) → P (y) .

Uvědomme si, že to tedy neńı tak, že by T |= φ znamenalo, že pro každou strukturu M
(realizuj́ıćı př́ıslušný jazyk) a každé ohodnoceńı v plat́ı, že když ∥ψ∥M,v = 1 pro každou ψ ∈ T ,
tak ∥φ∥M,v = 1. (Speciálně např. ∥P (x)∥M,v = 1 obecně neimplikuje ∥P (y)∥M,v = 1, ačkoliv
plat́ı P (x) |= P (y).)

Cvičeńı 39 Vzpomeňme si na sémantickou větu o dedukci pro výrokovou logiku: T, φ |= ψ
právě tehdy, když T |= φ→ ψ. Plat́ı tato věta bezpodmı́nečně i pro predikátovou logiku?

Sémantickou větu o dedukci pro predikátovou logiku formulujeme takto:

Věta 18 Pokud je φ uzavřená formule (tj. neobsahuje volný výskyt žádné proměnné), pak
T, φ |= ψ právě tehdy, když T |= φ→ ψ.

Důkaz. “⇒”
Předpokládejme, že T, φ |= ψ, kde φ je uzavřená formule. Uvažujme libovolně zvolený model
M teorie T a zkoumejme hodnotu ∥φ → ψ∥M,v pro libovolně zvolené ohodnoceńı v. Pokud
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ukážeme, že ∥φ→ ψ∥M,v = 1, bude prokázáno T |= φ→ ψ (jelikož model M a ohodnoceńı v
byly zvoleny libovolně).

Protože φ je uzavřená, hodnota ∥φ∥M,v je nezávislá na v a je tedy rovna hodnotě ∥φ∥M . Když
∥φ∥M = 0, tak ∥φ→ ψ∥M,v = 1. Když ∥φ∥M = 1, tak M je modelem teorie T ∪ {φ} a podle
předpokladu tedy plat́ı ∥ψ∥M = 1, tedy ∥ψ∥M,v′ = 1 pro všechna v′. Tud́ıž ∥φ→ ψ∥M,v = 1.

“⇐”
Předpokládejme, že T |= φ→ ψ (zde φ ani nemuśı být uzavřená). Uvažujme libovolně zvolený
model M teorie T ∪ {φ} a zkoumejme hodnotu ∥ψ∥M,v pro libovolně zvolené ohodnoceńı
v; podle předpokladu je ∥φ → ψ∥M,v = 1. Jelikož pro M nutně plat́ı ∥φ∥M = 1, tedy i
∥φ∥M,v = 1, vyvod́ıme, že ∥ψ∥M,v = 1. Plat́ı tedy T, φ |= ψ. □

Př́ıklad: teorie grup.

Připomněli jsme si mj. standardńı axiomatizaci teorie grup G užit́ım axiomů, které nejsou
všechny uzavřené; konkrétně šlo o axiomy

x · (y · z) = (x · y) · z , x · 1 = x , 1 · x = x , (∀x)(∃y)x · y = 1 , (∀x)(∃y)y · x = 1 .

Všimli jsme si mj., že neplat́ı G |= x ·y = y ·x, ale plat́ı např. G |= (y ·x=1∧z ·x=1) → y = z.
(Připomněli jsme přitom speciálńı vlastnost predikátu rovnosti “=”.)

Cvičeńı 40 Demonstrujte, proč plat́ı G |= (y · x=1 ∧ z · x=1) → y = z.

(Hilbertovský d̊ukazový) kalkulus pro predikátovou logiku.

Promysleli jsme si rozš́ı̌reńı d̊ukazového kalkulu pro výrokovou logiku, které zahrnuje práci
s kvantifikátory. Diskutovali jsme tak

axiomové schéma specializace (nebo též konkretizace či substituce)

(∀x)φ→ φ(x/t), kde t je term substituovatelný za x ve φ.

Cvičeńı 41 Připomeňte si argumenty, proč za dané podmı́nky substituovatelnosti plat́ı
|= (∀x)φ→ φ(x/t) a proč je ta podmı́nka pro tuto platnost d̊uležitá.

Dále jsme diskutovali axiomové schéma distribuce (kvantifikátoru)

(∀x)(φ→ ψ) → (φ→ (∀x)ψ) za předpokladu, že x neńı volná ve φ.

Cvičeńı 42 Připomeňte si, proč za dané podmı́nky plat́ı |= (∀x)(φ → ψ) → (φ → (∀x)ψ)
a proč je ta podmı́nka pro tuto platnost d̊uležitá.

Přidali jsme dedukčńı pravidlo generalizace:

z φ odvod’ (∀x)φ, psáno také

φ

(∀x)φ
.

Cvičeńı 43 Argumentujte, proč plat́ı tato implikace: T |= φ implikuje T |= (∀x)φ.
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Tak jsme dostali pojem dokazatelnosti T ⊢ φ i pro predikátovou logiku.

Cvičeńı 44 Definujte pojem T ⊢ φ analogicky jako v př́ıpadě výrokové logiky.

Diskutovali jsme pak větu o korektnosti (pro predikátovou logiku):

Věta 19 T ⊢ φ implikuje T |= φ.

Cvičeńı 45 Argumentujte detailně, proč věta o korektnosti plat́ı.

Nakonec jsme jen zformulovali tuto podstatnou větu:

Věta 20 (Věta o úplnosti predikátového počtu.)
Pro každou teorii T a každou formuli φ (v jazyce teorie T ) plat́ı: jestlǐze T |= φ, pak T ⊢ φ.

Věta tedy tvrd́ı, že naše (tj. hilbertovské) axiomy a dedukčńı pravidla dostačuj́ı k tomu, že
každý sémantický d̊usledek (totiž fakt, že formule φ je pravdivá v každém modelu T , kterých
je obecně nekonečně mnoho a mohou být nekonečné) může být demonstrován syntakticky,
konečnou posloupnost́ı formuĺı, která představuje př́ıslušný d̊ukaz (ukazuj́ıćı, že φ je dokaza-
telná z T , neboli že φ je teorémem teorie T ).
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Týden 8

Naš́ım úkolem je dokázat Větu 20, tedy větu o úplnosti pro predikátový počet: pokud plat́ı
T |= φ, pak také plat́ı T ⊢ φ.
Pokusili jsme se o poněkud netradičńı postup demonstrace platnosti věty o úplnosti, kdy

potřebná pomocná tvrzeńı zjǐst’ujeme až v pr̊uběhu (a odkazujeme se na jejich d̊ukazy
v následuj́ıćım textu či v [1]).

T́ımto postupem simulujeme situaci, kdy se v praxi pokouš́ıme nějaký problém řešit,

nějaké tvrzeńı (např. o nějakém systému) dokázat, a při tomto pokusu zjǐst’ujeme př́ıslušné

(pod)problémy, které je třeba dořešit. V učebńıch textech obvykle tento postup vytvářeńı

d̊ukazu neńı zachycen a čtenáři je předložen už “vyleštěný d̊ukaz”, v němž jsou pomocná

tvrzeńı uvedená předem, ve chv́ıli, kdy jejich role v celkovém d̊ukazu nemuśı být ještě

zřejmá.

Nejprve se budeme zabývat teoriemi s jazyky bez rovnosti (tj. bez speciálńıho binárńıho pre-
dikátu “=”). Na př́ıpad jazyk̊u s rovnost́ı rozš́ı̌ŕıme d̊ukaz až následně.

Představme si ted’ situaci, že máme konkrétńı teorii T a formuli φ, kde plat́ı T |= φ a T ̸⊢ φ
(což označuje, že neplat́ı T ⊢ φ); postupně ukážeme, že taková situace neńı možná. Nejprve
si uvědomme, že formule φ nemuśı být uzavřená (tj. může mı́t nějaké volné proměnné); v
takových př́ıpadech může doj́ıt k jistým problémům v deduktivńım uvažováńı. Pro neuzavřené
formule např. neplat́ı úplně analogie věty o dedukci, kterou známe z výrokového počtu.

Minule jsme si všimli, že φ |= ψ obecně neimplikuje |= φ→ ψ. Kdyby tedy obecně platilo,

že T, φ ⊢ ψ implikuje T ⊢ φ → ψ, byl by náš d̊ukazový systém nekorektńı. Implikace

T, φ ⊢ ψ ⇒ T ⊢ φ→ ψ ovšem plat́ı v př́ıpadě, že φ je uzavřená.

Podle definice sémantiky predikátové logiky máme T |= φ právě, když T |= φ, kde φ je uzávěr
formule φ.

Má-li φ volné proměnné x1, x2, . . . , xn, pak φ = (∀x1)(∀x2) . . . (∀xn)φ; pokud je n = 0
(tedy φ je uzavřená), pak φ = φ. Pořad́ı proměnných zde neńı d̊uležité (snadno
nahlédneme, že plat́ı |= (∀x)(∀y)ψ ↔ (∀y)(∀x)ψ pro libovolnou formuli ψ), ale nějaké
dohodnuté uspořádáńı proměnných se hod́ı k tomu, že uzávěr formule lze definovat jed-
noznačně. Jiná možnost je povolit v́ıce uzávěr̊u k dané formuli φ; pak φ prostě označuje
jeden z nich.

Poznamenejme ještě, že někdy se také použ́ıvá existenčńı uzávěr (∃x1)(∃x2) . . . (∃xn)φ;
výše definovaný uzávěr φ je také nazýván univerzálńım uzávěrem.

Sémantický fakt “T |= φ právě tehdy, když T |= φ ” je reflektován i v našem (syntaktickém)
kalkulu: je totiž T ⊢ φ právě tehdy, když T ⊢ φ.

Cvičeńı 46 Dokažte následuj́ıćı větu.
Věta o uzávěru.
Pro každou teorii T a každou formuli φ (v jazyce teorie T ) plat́ı:

T ⊢ φ právě tehdy, když T ⊢ φ.

(Nápověda. Bude se hodit dedukčńı pravidlo generalizace a axiom konkretizace.)
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V naš́ı předpokládané situaci T |= φ a T ̸⊢ φ (kterou později přivedeme ke sporu) máme
tedy také T |= φ a T ̸⊢ φ. Z předpokladu T ̸⊢ φ ovšem plyne, že teorie T ∪{¬φ} je bezesporná.

Intuitivně je vidět, že pokud z T nelze dokázat φ, pak φ nebude dokazatelná ani po
přidáńı ¬φ k T ; jinými slovy, T ̸⊢ φ implikuje T,¬φ ̸⊢ φ (což znamená, že z T ∪ {¬φ}
nelze dokázat všechny formule, a tud́ıž T ∪ {¬φ} je bezesporná).

Obecně totiž plat́ı ⊢ (¬φ→ φ) → φ, podle jednoduché, ale velmi užitečné,

věty o dosazeńı do tautologie výrokového počtu

(což je Lemma 3.42 v [1]); formule (¬φ → φ) → φ vznikne dosazeńım do tautologie
(¬p → p) → p a proto je dokazatelná (v každé teorii; dokonce je tzv. výrokově dokazatelná,
tj. je dokazatelná výhradně z axiomů výrokového počtu s využit́ım dedukčńıho pravidla
Modus Ponens).

Kdyby tedy platilo T,¬φ ⊢ φ, tak by podle věty o dedukci (viz Věta 3.44 v [1]) platilo
i T ⊢ ¬φ → φ (jelikož ¬φ nemá volné proměnné); pak ovšem d́ıky ⊢ (¬φ → φ) → φ
pomoćı pravidla Modus Ponens vyvod́ıme T ⊢ φ — což je spor s předpokladem T ̸⊢ φ.
Lemma 3.56 v [1] ukazuje obecněji, že

T ⊢ φ právě tehdy, když T ∪ {¬φ} je sporná.

Cvičeńı 47 Promyslete si podrobněji zmı́něné Lemma 3.42 a Větu 3.44 v [1] s d̊ukazy. (Větu
o dedukci v našem textu najdete jako Větu 23.)

Předpokládejme ted’, že ona bezesporná teorie T ∪{¬φ} má nějaký model M; v něm je tedy
pravdivá každá formule z T a také formule ¬φ. Struktura M je tedy také modelem teorie T a
proto je v ńı pravdivá také formule φ (d́ıky našemu předpokladu T |= φ). Neńı ovšem možné,
aby v M byla pravdivá jak φ tak ¬φ. Takže bud’ T ∪ {¬φ} nemá žádný model nebo př́ıpad
T |= φ, T ̸⊢ φ (a tedy ani př́ıpad T |= φ, T ̸⊢ φ) neexistuje. Následně ukážeme větu 21 (každá
bezesporná teorie má model), z čehož vyplyne, že př́ıpad T |= φ, T ̸⊢ φ neexistuje, a tedy
věta 20 (o úplnosti) skutečně plat́ı.

Věta 21 Každá bezesporná teorie má model.

Důkaz. Uvažujme bezespornou teorii T . O teorii T tedy nic v́ıc nev́ıme, než že je bezesporná,
tedy nelze z ńı dokázat všechny formule; speciálně pro žádnou formuli φ nemůže platit T ⊢ φ
a zároveň T ⊢ ¬φ.

Spornost teorie je obvykle definována takto: teorie je sporná, jestliže z ńı lze dokázat

všechny formule. Jiná ekvivalentńı definice ř́ıká, že teorie T je sporná, jestliže z T lze

dokázat nějakou kontradikci; speciálně jestliže T ⊢ ¬(φ → φ) pro nějakou formuli φ.

(Připomeňme si, že ¬(φ → φ) je vlastně “překladem” formule φ ∧ ¬φ.) Ta druhá defi-

nice spornosti je opravdu ekvivalentńı té prvńı: pro libovolné formule φ,ψ totiž máme

⊢ ¬(φ→ φ) → ψ (jelikož ¬(φ→ φ) → ψ vznikne dosazeńım do tautologie ¬(p → p) → q

výrokového počtu); z toho plyne, že T ⊢ ¬(φ→ φ) implikuje T ⊢ ψ pro každou formuli ψ

(užit́ım Modus Ponens).
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Dokázat, že T má model, lze nejlépe jeho sestrojeńım. K teorii T sice př́ısluš́ı nějaký jazyk
J = (F ,R, ar), ale my o něm nic bližš́ıho nev́ıme; jakou strukturu tedy máme zvolit k jeho
realizaci? Přicháźıme k hlavńı myšlence d̊ukazu: uvažujeme tzv. kanonickou strukturu teorie
T , označenou MT = (UMT ,FMT ,RMT ), kde jako univerzum UMT vezmeme množinu všech
uzavřených termů jazyka J (teorie T ); uzavřeným termem chápeme term neobsahuj́ıćı žádnou
proměnnou.

Procvičme si strukturálńı indukci: každá konstanta (tedy nulárńı funkce jazyka J ) je

prvkem UMT ; je-li f ∈ F funkčńı symbol s aritou ar(f) = n > 0 a t1, t2, . . . , tn jsou

prvky UMT , pak také řetězec f(t1, t2, . . . , tn) je prvkem UMT .

Nemáme ovšem zaručeno, že jazyk J nějakou konstantu obsahuje; kdyby neobsahoval, tak
množina UMT by byla prázdná a nesplňovala by tak podmı́nku neprázdnosti, kterou klademe
na univerza. V takovém př́ıpadě prostě libovolnou konstantu c k jazyku teorie T přidáme;
vzniklou teorii označme Tc. Je zřejmé, že Tc je rovněž bezesporná; přidáńı konstanty c, o ńıž nic
speciálńıho nepředpokládáme, nemůže vést ke sporu. V daľśım tedy rovnou předpokládáme,
že T obsahuje alespoň jednu konstantu.

Formálně můžeme ř́ıci, že rozš́ı̌reńı Tc teorie T je konzervativńı. Přesněǰśı a obecněǰśı

vyjádřeńı tohoto faktu obsahuje věta o konstantách, která je uvedena jako Věta 3.52 v [1].

My se k této problematice ještě vrát́ıme později.

Máme tedy definováno neprázdné univerzum UMT . Muśıme rozhodnout, jak budeme inter-
pretovat funkčńı symboly, tedy jakou konkrétńı funkci fMT přǐrad́ıme n-árńımu funkčńımu
symbolu f . Pro každou n-tici (t1, t2, . . . , tn) prvk̊u univerza UMT , tedy pro n-tici uzavřených
termů, muśıme určit prvek univerza UMT , který je hodnotou fMT (t1, t2, . . . , tn). Jelikož
řetězec f(t1, t2, . . . , tn) je také uzavřený term (tedy prvek UMT ), přirozeně se nab́ıźı následuj́ıćı
interpretace:

fMT (t1, t2, . . . , tn) = f(t1, t2, . . . , tn).

Konstanta (nulárńı funkce) je speciálńı př́ıpad uvedené definice: máme tedy cMT = c.

Jako př́ıklad můžeme vźıt jazyk s binárńım funkčńım symbolem “f” a kon-
stantou “1”. Př́ıslušné univerzum je tedy nekonečná množina řetězc̊u v
abecedě obsahuj́ıćı symboly “1”, “f”, “(”, “)” a “,”, konkrétně množina
{1; f(1, 1); f(1, f(1, 1)); f(f(1, 1), 1); f(f(1, 1), f(1, 1)); f(1, f(1, f(1, 1))); . . . }, v jej́ımž
zápisu je použit symbol “;” pro odděleńı jednotlivých prvk̊u.

Máme-li mı́sto f binárńı funkčńı symbol “·” a použijeme-li infixovou notaci, je př́ıslušné

univerzum {1; (1·1); (1·(1·1)); ((1·1)·1); ((1·1)·(1·1)); (1·(1·(1·1))); . . . }. Aplikujeme-li

funkci ·MT např. na argumenty (1 · 1) a 1, dostaneme jako výsledek ((1 · 1) · 1).

Dále muśıme rozhodnout, jak interpretovat predikátové symboly zR, konkrétně, kdy zařad́ıme
n-tici (t1, t2, . . . , tn) uzavřených termů do množiny PMT pro n-árńı predikátový symbol P
(tedy, kdy prohláśıme PMT (t1, t2, . . . , tn) za pravdivý).

Viděli jsme, že univerzum a interpretace funkčńıch symbol̊u jsou plně určeny jazykem teorie
T (či jej́ıho rozš́ı̌reńı Tc), nejsou přitom d̊uležité axiomy teorie T .
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Připomeňme, že pojmem axiomy teorie T rozumı́me formule, které jsou prvky T . (Ř́ıká

se jim také mimologické axiomy, at’ se odlǐśı od obecně platných logických axiomů od-

pov́ıdaj́ıćıch pěti schémat̊um hilbertovského kalkulu.) Pojmem teorémy teorie T rozumı́me

všechny formule, které jsou dokazatelné z T (tedy všechny φ, pro něž máme T ⊢ φ). Každý

axiom teorie T je tedy také teorémem teorie T (ale ne nutně naopak).

Interpretace predikátových symbol̊u už ovšem na axiomech T záviśı. Chceme totiž, aby struk-
tura MT byla modelem teorie T , tedy aby všechny axiomy teorie T byly v MT pravdivé; pak
tam ovšem budou pravdivé i všechny teorémy teorie T (podle věty o korektnosti). Definujeme
tedy n-árńı PMT tak, že pro každou n-tici uzavřených termů (t1, t2, . . . , tn) máme

PMT (t1, t2, . . . , tn) právě tehdy, když T ⊢ P (t1, t2, . . . , tn).

Když tedy plat́ı T ⊢ P (t1, t2, . . . , tn), pak plat́ı PMT (t1, t2, . . . , tn); pokud T ̸⊢
P (t1, t2, . . . , tn), plat́ı ¬PMT (t1, t2, . . . , tn). Zde připoušt́ıme možnost, že z T nelze dokázat

ani P (t1, t2, . . . , tn) ani ¬P (t1, t2, . . . , tn). Potřeba tzv. úplnosti teorie T vyvstane až za

chv́ıli.

Pro demonstraci toho, že struktura MT je modelem teorie T , stač́ı ukázat, že pro každý axiom
φ ∈ T je jeho uzávěr φ pravdivý v MT .

Budeme postupovat strukturálńı indukćı. Jak tomu ovšem často bývá, k tomu, abychom
dokázali požadované, ukáže se potřebným ześılit indukčńı předpoklad. Ześıĺıme ho nejdř́ıve
tak, že pro každou uzavřenou formuli φ budeme cht́ıt, aby z platnosti T ⊢ φ plynulo ∥φ∥MT

=
1 (neboli: každý uzavřený teorém teorie T je pravdivý v MT ).

Toto jistě plat́ı pro uzavřené atomické formule P (t1, . . . , tn), protože v tom př́ıpadě jsou
t1, . . . , tn uzavřené termy a z T ⊢ P (t1, . . . , tn) plyne ∥P (t1, . . . , tn)∥MT

= 1 př́ımo z naš́ı
definice struktury MT .

Zkusme ted’ uplatnit strukturálńı indukci na př́ıpad φ = ¬ψ; jelikož diskutujeme jen
uzavřené formule, je φ uzavřená, a tedy také ψ je uzavřená (tj. nemá volné proměnné).

Pokud plat́ı T ⊢ ψ, tak podle indukčńıho předpokladu máme ∥ψ∥MT
= 1; v tom př́ıpadě je

vše v pořádku, protože ∥¬ψ∥MT
= 0 a nemůže platit T ⊢ ¬ψ, protože T je bezesporná. Když

tedy T ⊢ ψ, tak máme T ̸⊢ φ a ∥φ∥MT
= 0.

Pokud ovšem máme T ̸⊢ ψ, indukčńı předpoklad nám moc nepomůže. Muśıme ho ještě
ześılit takto: chceme doćılit, aby pro každou uzavřenou φ platilo, že

T ⊢ φ právě tehdy, když ∥φ∥MT
= 1. (5)

To ovšem pro naši teorii T nemuśı platit. Můžeme totiž mı́t T ̸⊢ P (t1, . . . , tn) a zároveň
T ̸⊢ ¬P (t1, . . . , tn); pak pro φ = ¬P (t1, . . . , tn) máme ∥φ∥MT

= 1 ale T ̸⊢ φ. Jistě nás
napadne, že v takovém př́ıpadě lze do T přidat P (t1, . . . , tn) (nebo ¬P (t1, . . . , tn)); vznikne
tak sice nekonzervativńı rozš́ı̌reńı T ′ teorie T , ale je to bezesporné rozš́ı̌reńı (jak jsme si již v
obecněǰśı formě všimli dř́ıve); pochopitelně každý model teorie T ′ (pokud nějaký existuje) je
i modelem teorie T .

To nás vede k pojmu úplné teorie T a k větě o zúplněńı bezesporné teorie, kterou se budeme
zabývat později. Dále tedy budeme rovnou předpokládat, že naše T je úplná, tedy že pro
každou uzavřenou formuli φ plat́ı právě jedna z možnost́ı T ⊢ φ a T ⊢ ¬φ.
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Pojem úplnosti teorie je samozřejmě jiný než pojem úplnosti predikátového počtu. Teorie

je úplná, jestliže je bezesporná a zároveň každou uzavřenou formuli φ “rozhoduje”, tj.

dokáže bud’ ji samotnou nebo jej́ı negaci.

Pust’me se ted’ do d̊ukazu vztahu (5) pro uzavřené formule φ strukturálńı indukćı.

1. Př́ıpad, kdy φ je atomická.
Podle definice MT máme T ⊢ P (t1, . . . , tn) právě tehdy, když ∥P (t1, . . . , tn)∥MT

= 1
(pro uzavřené termy t1, . . . , tn).

2. Př́ıpad φ = ¬ψ.

• (Pod)př́ıpad T ⊢ ψ jsme už vyřešili dř́ıve.

• Když T ̸⊢ ψ, tak z indukčńıho předpokladu (5) aplikovaného na ψ (která je
uzavřená, protože φ je uzavřená) plyne ∥ψ∥MT

= 0, a tedy ∥φ∥MT
= 1 (nebot’

φ = ¬ψ); přitom z faktu T ̸⊢ ψ a z úplnosti T plyne T ⊢ ¬ψ, tj. T ⊢ φ.

3. Př́ıpad φ = (ψ1 → ψ2).
Využit́ım indukčńıho předpokladu pro ψ1 a ψ2 (obě jsou uzavřené, jelikož φ je uzavřená)
rutinně prověř́ıme, že ve všech čtyřech možnostech ohledně (ne)dokazatelnosti ψ1, ψ2 z
teorie T skutečně plat́ı, že T ⊢ φ právě tehdy, když ∥φ∥MT

= 1.

Pod́ıvejme se alespoň na př́ıpad, kdy ∥ψ1∥MT
= 0 a ∥ψ2∥MT

= 1; tedy ∥φ∥MT
= 1.

Podle indukčńıho předpokladu plat́ı T ̸⊢ ψ1 a T ⊢ ψ2; d́ıky úplnosti teorie T máme

T ⊢ ¬ψ1. Jelikož formule ¬ψ1 → (ψ2 → (ψ1 → ψ2)) vznikne dosazeńım do tautologie

výrokové logiky, v́ıme, že plat́ı ⊢ ¬ψ1 → (ψ2 → (ψ1 → ψ2)). Dvojnásobným použit́ım

Modus Ponens tedy odvod́ıme, že T ⊢ (ψ1 → ψ2), neboli T ⊢ φ.

4. Př́ıpad φ = (∀x)ψ.
Vztah (5) dokazujeme pro uzavřené formule, uvažujeme tedy uzavřenou φ; to ovšem
nevylučuje, že ψ má jednu volnou proměnnou (označenou zde x). Nelze tedy př́ımo
využ́ıt platnost indukčńıho předpokladu pro ψ. Můžeme ho ovšem využ́ıt pro každou
uzavřenou instanci formule ψ, tj. pro každou formuli ψ(x/t), kde t je uzavřený term
(tedy prvek univerza UMT ). Čili podle indukčńıho předpokladu máme

pro každý term t ∈ UMT plat́ı T ⊢ ψ(x/t) právě tehdy, když ∥ψ(x/t)∥MT
= 1

a chceme vyvodit, že

T ⊢ (∀x)ψ právě tehdy, když ∥(∀x)ψ∥MT
= 1. (6)

Připomeňme, že podle definice sémantiky predikátové logiky je ∥(∀x)ψ∥MT
= 1 právě

tehdy, když pro každé ohodnoceńı v přǐrazuj́ıćı proměnným prvky univerza UMT plat́ı
∥ψ∥MT ,v = 1. Vı́me, že z ohodnoceńı v je zde významná pouze hodnota v(x), což je
nějaký uzavřený term t. Podle definice UMT pro uzavřený term t plat́ı ∥t∥MT ,v = t (pro
libovolné v), takže ∥(∀x)ψ∥MT

= 1 právě tehdy, když pro každý uzavřený term t je
∥ψ(x/t)∥MT

= 1.
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• (Pod)př́ıpad, kdy pro nějaký uzavřený term t máme T ̸⊢ ψ(x/t).
Podle indukčńıho předpokladu zde máme ∥ψ(x/t)∥MT

= 0, z čehož také plyne
∥(∀x)ψ∥MT

= 0. Protože T ̸⊢ ψ(x/t), máme také T ̸⊢ (∀x)ψ (nebot’ z T ⊢ (∀x)ψ
by d́ıky axiomu konkretizace (∀x)ψ → ψ(x/t) plynulo T ⊢ ψ(x/t)).
Máme zde tedy T ̸⊢ (∀x)ψ a ∥(∀x)ψ∥MT

= 0, což odpov́ıdá dokazovanému
vztahu (6).

• (Pod)př́ıpad, kdy pro všechny uzavřené termy t máme T ⊢ ψ(x/t).
Podle indukčńıho předpokladu zde máme ∥ψ(x/t)∥MT

= 1 pro všechny t ∈ UMT ,
z čehož také plyne ∥(∀x)ψ∥MT

= 1. K d̊ukazu vztahu (6) potřebujeme, aby zde
platilo T ⊢ (∀x)ψ.
Ale ouha! Obecné teorie (byt’ třeba úplné) nemaj́ı vlastnost, že by T ⊢ (∀x)ψ nutně
plynulo z toho, že T ⊢ ψ(x/t) pro všechny uzavřené termy t.

Mějme např. jazyk daný konstantou c a unárńım predikátovým symbolem P (jiné

funkčńı a predikátové symboly tedy jazyk nemá). Uvažujme teorii T obsahuj́ıćı

jedinou formuli, a sice P (c). Pro formuli φ = P (x) máme očividně T ⊢ φ(x/t) pro
všechny uzavřené termy t; jediným uzavřeným termem v našem jazyce je totiž

c a máme T ⊢ P (c). Nemáme ale T ⊢ (∀x)φ, tj. nemáme T ⊢ (∀x)P (x); např.
struktura M s univerzem {1, 2}, v ńıž cM = 1 a PM = {1}, je modelem teorie

T (protože ∥P (c)∥M = 1), v němž formule (∀x)P (x) neńı pravdivá (protože

∥P (x)∥M,v = 0, když v(x) = 2). Neplat́ı tedy T |= (∀x)P (x) a podle věty o

korektnosti nemůže tedy platit ani T ⊢ (∀x)P (x).

V pr̊uběhu d̊ukazu jsme si postupně uvědomili potřebnost rozš́ı̌reńı teorie T tak, aby měla
aspoň jednu konstantu a aby byla úplná; ted’ si uvědomujeme, že potřebujeme ještě daľśı
vlastnost. Tuto vlastnost naštěst́ı opět můžeme źıskat vhodným rozš́ı̌reńım uvažované teorie.
Půjde o tzv. henkinovské rozš́ı̌reńı p̊uvodńı teorie T , které je konzervativńı (a tak zachovává
bezespornost) a v němž bude při jeho úplnosti skutečně zaručeno T ⊢ (∀x)ψ v př́ıpadě, že
plat́ı T ⊢ ψ(x/t) pro všechny uzavřené termy t. Zbývá tedy definovat henkinovské teorie a
dokázat, že každá bezesporná teorie má úplné henkinovské rozš́ı̌reńı.

Připomeňme si jeden z běžných postup̊u, když chceme prokázat, že všechny prvky jisté

množiny A maj́ı jistou vlastnost φ, tedy chceme prokázat (∀x ∈ A)φ(x). Zvoĺıme si nový

symbol, např. c, a prohláśıme, že označuje libovolně zvolený prvek množiny A. Když

se nám pak podař́ı prokázat φ(c), tedy, že c má vlastnost φ, tak vyvod́ıme, že plat́ı

(∀x ∈ A)φ(x). Z toho lze vytušit, že když k teorii T přidáme novou konstantu c a axiom

φ(x/c) → (∀x)φ(x) (neboli (∃x)¬φ(x) → ¬φ(x/c)), tak vznikne konzervativńı rozš́ı̌reńı

teorie T .

Henkinovské teorie se standardně definuj́ı s využit́ım existenčńıho kvantifikátoru: teorie T je
henkinovská, jestliže pro každou formuli φ s jednou volnou proměnnou, označenou x, existuje
nějaká konstanta c taková, že T ⊢ (∃x)φ→ φ(x/c).

Pro úplnou henkinovskou teorii T snadno odvod́ıme, že platnost T ⊢ ψ(x/t) pro všechny
uzavřené termy t implikuje T ⊢ (∀x)ψ (kde x je jediná volná proměnná formule ψ):

Předpokládejme T ̸⊢ (∀x)ψ; d́ıky úplnosti teorie T máme T ⊢ ¬(∀x)ψ, tj. T ⊢ (∃x)¬ψ.
Dı́ky henkinovosti existuje pro formuli ¬ψ konstanta c taková, že T ⊢ (∃x)¬ψ → ¬ψ(x/c).
Pak ovšem T ⊢ ¬ψ(x/c), a tedy T ̸⊢ ψ(x/c) (nebot’ T je úplná, což také zahrnuje, že neńı

sporná). Tedy neplat́ı, že T ⊢ ψ(x/t) pro všechny uzavřené termy t.
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Později ukážeme, že každou bezespornou teorii T lze rozš́ı̌rit na T ′, která je úplná (a tedy
bezesporná) a henkinovská.

Důkaz věty (že každá bezesporná teorie má model) t́ım bude tedy ukončen, zat́ım pro př́ıpad
teoríı v jazyćıch bez rovnosti. □
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Týden 9

Vybraná tvrzeńı (na jejichž užitečnost jsme narazili při d̊ukazu věty o úplnosti).

Připomeňme si, co je (univerzálńı) uzávěr φ formule φ, a následuj́ıćı větu:

Věta 22 (Věta o uzávěru.)
Pro každou teorii T a každou formuli φ (v jazyce teorie T ) plat́ı: T ⊢ φ právě, když T ⊢ φ.

Důkaz. Z T ⊢ φ plyne T ⊢ φ (v́ıcenásobným) užit́ım pravidla generalizace. Jelikož (∀x)φ→ φ
je instance axiomu konkretizace (je totiž φ = φ(x/x)), je fakt, že z T ⊢ φ plyne T ⊢ φ, také
zřejmý. □

Věta 23 (Věta o dedukci.)
Pro každou teorii T , každou uzavřenou formuli φ (tedy φ bez volných proměnných) a každou
formuli ψ plat́ı:

T, φ ⊢ ψ právě tehdy, když T ⊢ φ→ ψ.

Cvičeńı 48 Připomeňte si d̊ukaz věty pro výrokovou logiku a ten rozšiřte pro predikátovou
logiku. Připomeňte si také, proč je zde uzavřenost φ d̊uležitá.

Řešeńı cvičeńı. Nejprve si všimněme, že z T ⊢ φ → ψ triviálně plyne T, φ ⊢ φ → ψ;

protože také triviálně plat́ı T, φ ⊢ φ, d́ıky pravidlu Modus Ponens vyvod́ıme T, φ ⊢ ψ.
Ted’ předpokládejme T, φ ⊢ ψ. Existuje tedy př́ıslušný d̊ukaz, tedy posloupnost formuĺı

φ1, φ2, . . . , φk, kde φk = ψ a φi, pro každé i ∈ {1, 2, . . . , k}, je bud’ axiom (tedy instance

jednoho z pěti axiomových schémat hilbertovského kalkulu), nebo prvek množiny T ∪{φ},
nebo plyne z předchoźıch formuĺı v d̊ukazu podle pravidla Modus Ponens či podle pravidla

Generalizace. Ukažme, že plat́ı T ⊢ φ→ φi, pro i = 1, 2, . . . , k. Pokud φi je axiom, tak z

platnosti ⊢ φi a ⊢ φi → (φ→ φi) (instance axiomového schématu 1) vyvod́ıme ⊢ φ→ φi

(podle Modus Ponens), tedy také T ⊢ φ → φi. Pokud φi je prvek T , tak podobně z

T ⊢ φi a ⊢ φi → (φ→ φi) vyvod́ıme T ⊢ φ→ φi. Pokud φi = φ, tak využijeme, že plat́ı

⊢ φ→ φ (např. podle věty o dosazeńı do tautologie výrokového počtu); opět tedy máme

T ⊢ φ → φi. Pokud φi plyne z φj a φℓ = (φj → φi) (pro j, ℓ < i) podle Modus Ponens,

využijeme, že máme T ⊢ φ → φj a T ⊢ φ → (φj → φi) podle indukčńıho předpokladu:

protože ⊢ (φ → (φj → φi)) → ((φ → φj) → (φ → φi)) (axiomové schéma 2), vyvod́ıme

T ⊢ φ → φi dvojnásobným použit́ım Modus Ponens. Pokud φi plyne z φj (j < i)

podle pravidla Generalizace, tedy φi = (∀x)φj (pro nějakou proměnnou x), využijeme

indukčńı předpoklad T ⊢ φ → φj , z něhož také plyne T ⊢ (∀x)(φ → φj). Připomeneme

si, že (∀x)(φ → φj) → (φ → (∀x)φj) je instanćı axiomového schématu 5 (distribuce

kvantifikátoru), pokud ovšem x neńı volná ve φ. Tady vid́ıme, proč v podmı́nkách věty

o dedukci uvád́ıme předpoklad, že φ je uzavřená; v tom př́ıpadě tedy skutečně vyvod́ıme

T ⊢ φ→ (∀x)φj , tj. T ⊢ φ→ φi. Jelikož φk = ψ, ukázali jsme tak, že T ⊢ φ→ ψ.

Připomeňme, že teorie S je rozš́ıřeńım teorie T , jestliže jazyk JS teorie S je rozš́ı̌reńım
jazyka JT teorie T (tj. všechny funkčńı a predikátové symboly jazyka JT jsou také př́ıslušnými
symboly, se stejnými aritami, v jazyce JS , přičemž jazyk JS může obsahovat i nějaké daľśı
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symboly) a každý teorém teorie T je teorémem teorie S (tedy T ⊢ φ implikuje S ⊢ φ). Jedná se
o konzervativńı rozš́ıřeńı, jestliže nav́ıc každý teorém teorie S v jazyce JT je rovněž teorémem
teorie T (v jazyce JT tedy z teorie S lze dokázat přesně ty formule, které jsou dokazatelné z
T ).

Cvičeńı 49 Když S je rozš́ıřeńım T , plat́ı nutně, že T ⊆ S ? (Zd̊uvodněte, proč ne.)

Věta 24 (Věta o zúplněńı.)
Ke každé bezesporné teorii T existuje jej́ı rozš́ıřeńı T ′ se stejným jazykem, které je úplnou
teoríı (tedy pro každou uzavřenou φ plat́ı právě jedna z možnost́ı T ′ ⊢ φ, T ′ ⊢ ¬φ).

Důkaz. Diskutovali jsme již, že když pro uzavřenou formuli φ máme T ̸⊢ φ, tak T ∪ {¬φ} je
bezesporná. Jestliže tedy máme pro uzavřenou φ jak T ̸⊢ φ tak T ̸⊢ ¬φ, tak teorie T ∪ {φ} i
teorie T ∪ {¬φ} jsou bezesporné.

V (pro nás standardńım) př́ıpadě, že formuĺı v jazyce teorie T je (jen) spočetně mnoho,
lze všechny uzavřené formule uspořádat do posloupnosti φ0, φ1, φ2, . . . a definovat teorie
T0, T1, T2, . . . následovně:

• T0 = T (tedy T0 je výchoźı bezesporná teorie);

• Pokud Ti ̸⊢ φi a Ti ̸⊢ ¬φi, pak polož́ıme Ti+1 = Ti ∪ {φi}; jinak Ti+1 = Ti.

Je zřejmé, že pro každé i = 0, 1, 2, . . . je Ti bezesporná. Pak je ovšem bezesporná i T ′ =
T0 ∪ T1 ∪ T2 ∪ · · · . (Kdyby v T ′ bylo možné dokázat nějakou kontradikci, tak by př́ıslušný
d̊ukaz byl d̊ukazem už v Ti pro nějaké i.)

Teorie T ′ tak má stejný jazyk jako T , plat́ı T ⊆ T ′ a T ′ je úplná (pro každé i ∈ N plat́ı
právě jeden ze vztah̊u T ′ ⊢ φi a T ′ ⊢ ¬φi).

(Poznámka (pro hloubavé čtenáře). Kdyby bylo nespočetně mnoho formuĺı v jazyce teorie

T , tj. jazyk teorie T by obsahoval nespočetně mnoho funkčńıch a predikátových symbol̊u,

použili bychom nějaké dobré uspořádáńı uzavřených formuĺı a transfinitńı indukci pro de-

finici teoríı Tλ, kde λ prob́ıhá př́ıslušný počátečńı úsek ordinálńıch č́ısel, nejen přirozených.

Pro limitńı ordinál λ pak definujeme Tλ jako
⋃

κ<λ Tκ.) □

Daľśı věta mj. ř́ıká, jak lze udělat formuli uzavřenou jinak než dodáńım kvantifikátor̊u —
za volné proměnné dodáme nové konstanty (o nichž nic nepředpokládáme).

Věta 25 (Věta o konstantách.)
Přidáme-li k jazyku teorie T nové konstanty c1, c2, . . . , cn, dostaneme rozš́ıřeńı teorie T ,
které m̊užeme označit Tc1,c2,...,cn. Pro každou formuli φ jazyka teorie T a libovolné proměnné
x1, x2, . . . , xn pak plat́ı

T ⊢ φ právě tehdy, když Tc1,c2,...,cn ⊢ φ(x1/c1, x2/c2, . . . , xn/cn).

(Z toho rovněž plyne, že Tc1,c2,...,cn je konzervativńım rozš́ıřeńım teorie T .)

Důkaz. Připomněli jsme nejprve d̊ukaz pro n = 1:
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• Necht’ T ⊢ φ ; vezměme nějaký d̊ukaz φ1, φ2, . . . , φk formule φ z T , tedy mj. plat́ı φk = φ.
Posloupnost φ1, φ2, . . . , φk je tedy i d̊ukazem v Tc1 . Přidáme formuli φk+1 = (∀x1)φ
(použili jsme pravidlo generalizace na φk), φk+2 = (∀x1)φ→ φ(x1/c1) (instance axiomu
konkretizace) a φk+3 = φ(x1/c1) (použijeme Modus Ponens na φk+2 a φk+1). Takto jsme
demonstrovali, že Tc1 ⊢ φ(x1/c1).

• Necht’ Tc1 ⊢ φ(x1/c1) a posloupnost ψ1, ψ2, . . . , ψm je př́ıslušným d̊ukazem (kde ψm =
φ(x1/c1)). Zvoĺıme-li proměnnou y, která se v žádné formuli v d̊ukazu nevyskytuje, a na-
hrad́ıme-li každý výskyt konstanty c1 v každé formuli ψi onou proměnnou y, dostaneme
d̊ukaz v teorii T (jak lze snadno ověřit postupně pro ψ1, ψ2, . . . , ψm).

Z toho plyne T ⊢ φ(x1/y), a tedy také T ⊢ (∀y)φ(x1/y). Jelikož (∀y)φ(x1/y) →
(φ(x1/y))(y/x1) je instance axiomu konkretizace (x1 je substituovatelná za y) a
(φ(x1/y))(y/x1) = φ, vyvod́ıme, že plat́ı T ⊢ φ.

Dokázali jsme tedy, že pro každou φ v jazyce teorie T plat́ı T ⊢ φ právě tehdy, když Tc1 ⊢
φ(x1/c1). T́ım jsme také dokázali, že pro každou ψ v jazyce teorie Tc1 plat́ı Tc1 ⊢ ψ právě
tehdy, když Tc1,c2 ⊢ ψ(x2/c2). Pro každou ξ v jazyce teorie Tc1,c2 plat́ı Tc1,c2 ⊢ ξ právě tehdy,
když Tc1,c2,c3 ⊢ ψ(x3/c3), atd. Z toho již tvrzeńı věty snadno vyvod́ıme. □

Daľśı věta ř́ıká, proč je volba vázaných proměnných v (pod)formuĺıch nepodstatná, pokud
nekoliduje s volnými proměnnými.

Cvičeńı 50 Vysvětlete, proč např. formule (∀x)(∃y)P (x, y, z) je ekvivalentńı s formuĺı
(∀x)(∃y′)P (x, y′, z), ale neńı ekvivalentńı s formuĺı (∀y)(∃y)P (y, y, z) [kde y neńı substitu-
ovatelná za x v (∃y)P (x, y, z)] či s formuĺı (∀z)(∃y)P (z, y, z) [kde sice z je substituovatelná
za x v (∃y)P (x, y, z), ale z má volný výskyt v (∃y)P (x, y, z)]).

Věta 26 (Věta o variantách.)
Necht’ y neńı volná v ψ a je substituovatelná za x v ψ. Pokud φ′ vznikne z φ nahrazeńım
(jednoho výskytu) podformule (∀x)ψ formuĺı (∀y)ψ(x/y), tak plat́ı ⊢ φ↔ φ′.

Důkaz. Ukažme nejprve, že za uvedených předpoklad̊u plat́ı ⊢ (∀x)ψ ↔ (∀y)ψ(x/y). (Obecná
forma je nechána jako cvičeńı.)

Nejprve ukažme ⊢ (∀x)ψ → (∀y)ψ(x/y):
Dı́ky axiomu substituce máme ⊢ (∀x)ψ → ψ(x/y). Použit́ım pravidla generalizace pak od-
vod́ıme ⊢ (∀y) ((∀x)ψ → ψ(x/y)). Axiomem distribuce a pravidlem modus ponens odvod́ıme
⊢ (∀x)ψ → (∀y)ψ(x/y).
Analogicky se ukáže ⊢ (∀y)(ψ(x/y)) → (∀x)ψ.

Máme ⊢ (∀y)ψ(x/y) → ψ (jelikož ψ(x/y)(y/x) = ψ) a ⊢ (∀x) ((∀y)ψ(x/y) → ψ), a tedy

⊢ (∀y)ψ(x/y) → (∀x)ψ.

Stač́ı tedy vyvodit, že také plat́ı ⊢ ((∀x)ψ → (∀y)ψ(x/y)) ∧ ((∀y)ψ(x/y) → (∀x)ψ).
Ovšem obecně plat́ı ⊢ φ1 → (φ2 → (φ1 ∧ φ2)), nebot’ se jedná o dosazeńı do tautologie

výrokového počtu ve formě p → (q → (p ∧ q)). □

Cvičeńı 51 Promyslete si, jak dokončit d̊ukaz předchoźı věty.
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Nápověda. Postupujeme strukturálńı indukćı.

Když podformule (∀x)ψ je př́ımo formuĺı φ, je φ′ rovno (∀y)ψ(x/y) a demonstraci toho,
že plat́ı ⊢ φ↔ φ′ jsme již provedli.

Když φ = ¬φ̄, tak (∀x)ψ je podformuĺı formule φ̄ a podle indukčńıho předpokladu v́ıme, že
⊢ φ̄↔ φ̄′, kde φ̄′ vznikne z φ̄ nahrazeńım podformule (∀x)ψ formuĺı (∀y)ψ(x/y). Využit́ım
věty o dosazeńı do tautologie výrokového počtu snadno odvod́ıme, že plat́ı ⊢ ¬φ̄ ↔ ¬φ̄′

(nebot’ (p ↔ q) → (¬p ↔ ¬q) je tautologie), a tedy ⊢ φ↔ φ′.

Postup pro př́ıpad φ = φ1 → φ2 je analogický. (Proved’te jej!)

Když φ = (∀z)ξ (a (∀z)ξ ̸= (∀x)ψ), tak φ′ = (∀z)ξ′, kde ξ′ vznikne z ξ nahrazeńım

podformule (∀x)ψ formuĺı (∀y)ψ(x/y). Podle indukčńıho předpokladu máme ⊢ ξ ↔ ξ′,

tedy ⊢ ξ → ξ′ a ⊢ ξ′ → ξ. Z faktu ⊢ ξ → ξ′ d́ıky pravidlu generalizace odvod́ıme, že

⊢ (∀z)(ξ → ξ′). Nyńı si stač́ı uvědomit, že plat́ı ⊢ ((∀z)(ξ → ξ′)) → ((∀z)ξ → (∀z)ξ′), což
ukážeme v daľśım cvičeńı. (Zde to předpokládejte a d̊ukaz dokončete.)

Cvičeńı (neoč́ıslováno). Ukažte, že plat́ı ⊢ ((∀x)(φ→ ψ)) → ((∀x)φ→ (∀x)ψ).

Nápověda. Vı́me, že plat́ı (∀x)(φ → ψ) ⊢ φ → ψ a (∀x)φ ⊢ φ (proč?), tedy použit́ım

pravidla modus ponens odvod́ıme, že (∀x)(φ → ψ), (∀x)φ ⊢ ψ; pravidlem generalizace

tedy dostaneme (∀x)(φ→ ψ), (∀x)φ ⊢ (∀x)ψ. Vypadá to, že ted’ stač́ı dvakrát použ́ıt větu

o dedukci a jsme hotovi. To ale lze za předpokladu, že formule (∀x)φ a (∀x)(φ→ ψ) jsou

uzavřené. Pokud nejsou, tak prostě jejich volné proměnné nahrad́ıme novými konstantami;

takto upravené formule jsou uzavřené a větu o dedukci lze pro ně použ́ıt. Kýžený fakt pro

p̊uvodńı formule pak plyne z věty o konstantách. (Promyslete si!)

Cvičeńı (neoč́ıslováno). Ukažte, že věta o variantách plat́ı i pro existenčńı kvantifikátor
(mı́sto univerzálńıho).

Nápověda. Stač́ı ukázat, že když y neńı volná v ψ a je substituovatelná za x v ψ, tak

plat́ı ⊢ (∃x)ψ ↔ (∃y)ψ(x/y), neboli ⊢ ¬(∀x)¬ψ ↔ ¬(∀y)¬ψ(x/y). Vı́me již, že plat́ı

⊢ (∀x)¬ψ ↔ (∀y)¬ψ(x/y), takže kýžené odvod́ıme dosazeńım do tautologie výrokového

počtu (konkrétně do již dř́ıve použité (p ↔ q) → (¬p ↔ ¬q)).

Všimněme si, že postupem ve výše uvedeném d̊ukazu také snadno odvod́ıme i tuto větu
(kterou lze přirozeně rozš́ı̌rit na nahrazeńı v́ıce výskyt̊u jejich “ekvivalenty”):

Věta 27 (Věta o ekvivalenci.) Když φ′ vznikne z φ nahrazeńım (jednoho výskytu) podformule
ψ formuĺı ψ′, tak plat́ı ψ ↔ ψ′ ⊢ φ↔ φ′.

Připomeňme si, jak je definována henkinovská teorie; neformálně řečeno, každá existence je
potvrzena speciálńı konstantou. Přesněji: teorie T je henkinovská, jestliže pro každou formuli
φ s jednou volnou proměnnou, označenou x, existuje nějaká konstanta c taková, že plat́ı
T ⊢ (∃x)φ → φ(x/c). Ukážeme ted’ větu, která se nám hodila pro d̊ukaz věty o úplnosti pro
predikátovou logiku; jde o větu 29, před niž předřad́ıme (pomocnou) větu 28.

Věta 28 (Věta o henkinovské konstantě.)
Je-li φ(x) formule jazyka JT teorie T a je-li S = T ∪{(∃x)φ→ φ(x/cφ)}, kde cφ je konstanta,
o nǐz jsme jazyk JT rozš́ıřili, pak teorie S je konzervativńım rozš́ıřeńım teorie T .
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Důkaz. Uvažujme T, φ, cφ, S tak, jak je uvedeno v předpokladu věty; mı́sto cφ pǐsme c. Podle
věty o konstantách je teorie Tc (která má oproti T jen jazyk rozš́ı̌rený o c) konzervativńım
rozš́ı̌reńım teorie T . Máme ovšem ukázat, že S = T ∪ {(∃x)φ → φ(x/c)} je konzervativńım
rozš́ı̌reńım T .

Necht’ tedy plat́ı S ⊢ ψ pro nějakou (pevně zvolenou) formuli ψ v jazyce teorie T ; máme
ukázat, že plat́ı i T ⊢ ψ. Podle věty o dedukci máme

Tc ⊢ ((∃x)φ→ φ(x/c)) → ψ.

Pokud v př́ıslušném d̊ukazu v teorii Tc nahrad́ıme každý výskyt konstanty c proměnnou y,
která se v žádné formuli d̊ukazu nevyskytuje, dostaneme d̊ukaz v teorii T , jak lze snadno
ověřit. Ukázali jsme tak, že

T ⊢ ((∃x)φ→ φ(x/y)) → ψ.

Použit́ım generalizace a korektńı distribućı kvantifikátor̊u (o práci s kvantifikátory jsme po-
jednali a ještě pojednáme zvlášt’) dostaneme postupně:

T ⊢ (∀y)
(
((∃x)φ→ φ(x/y)) → ψ

)
,

T ⊢
(
(∃y)((∃x)φ→ φ(x/y))

)
→ ψ,

T ⊢
(
(∃x)φ→ (∃y)φ(x/y)

)
→ ψ.

Podle věty o variantách (pro existenčńı kvantifikátor) máme ⊢ (∃x)(φ) → (∃y)φ(x/y), ne-
bot’ y se ve φ nevyskytuje. Užit́ım Modus Ponens dostáváme T ⊢ ψ. Takže S je skutečně
konzervativńım rozš́ı̌reńım teorie T . □

Cvičeńı (neoč́ıslováno). Doplňte d̊ukaz předchoźı věty, tedy ukažte, že

1. ⊢ (∀x)(φ→ ψ) → ((∃x)φ→ ψ), když x neńı volná v ψ;

2. ⊢ (∃x)(φ→ ψ) → (φ→ (∃x)ψ), když x neńı volná ve φ.

Nápověda.

1. Dı́ky větě o okvivalenci stač́ı ukázat, že ⊢ (∀x)(¬ψ → ¬φ) → (¬ψ → ¬(∃x)φ) (proč?),
tedy že ⊢ (∀x)(¬ψ → ¬φ) → (¬ψ → (∀x)¬φ); to je ovšem axiom distribuce.

2. Jelikož ⊢ (∀x)¬ψ → ¬ψ, máme i ⊢ ψ → (∃x)ψ. Dosazeńım do tautologie výrokového

počtu (p2 → p3) → ((p1 → p2) → (p1 → p3)) odvod́ıme, že plat́ı

⊢ (ψ → (∃x)ψ) → ((φ → ψ) → (φ → (∃x)ψ)), a tedy ⊢ (φ → ψ) → (φ → (∃x)ψ) (užit́ım
modus ponens). Generalizaćı dostaneme ⊢ (∀x)

(
(φ→ ψ) → (φ→ (∃x)ψ)

)
, a pak aplikaćı

faktu 1 a pravidla modus ponens dostáváme ⊢ (∃x)(φ→ ψ) → (φ→ (∃x)ψ).

Věta 29 (Věta o henkinovském rozš́ı̌reńı.)
Ke každé teorii existuje jej́ı konzervativńı rozš́ıřeńı, které je henkinovskou teoríı.

Důkaz. Uvažujme (výchoźı) teorii T , označenou také T0. Ukázali jsme (v předchoźı větě), jak
zař́ıdit “henkinovost” pro jednu formuli φ(x). Nyńı uvažujme proces, který to udělá naráz pro
všechny př́ıslušné formule s jednou volnou proměnnou: pro každou formuli typu φ(x) přidá
jej́ı výlučnou novou “henkinovskou konstantu” cφ a př́ıslušný henkinovský axiom (∃x)φ →
φ(x/cφ). T́ım vznikne teorie T1, která je konzervativńım rozš́ı̌reńım T0, jak lze snadno ověřit
(uvažte př́ıpad T1 ⊢ ψ pro formuli ψ v jazyce JT0 a ukažte, proč plat́ı i T0 ⊢ ψ).
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Ovšem T1 nemuśı být henkinovská, jej́ı jazyk byl oproti T0 rozš́ı̌ren a může tak obsahovat
nové formule s jednou volnou proměnnou, v jazyce JT1 , které př́ıslušné henkinovské konstanty
nemaj́ı. Proto uvažujme stejný proces rozš́ı̌reńı T1, č́ımž dostaneme T2, atd. Nakonec pro teorii
T ′ = T0∪T1∪T2∪· · · snadno ověř́ıme, že je henkinovská a přitom je konzervativńım rozš́ı̌reńım
teorie T . □
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Týden 10

Začneme ještě procvičeńım práce s kvantifikátory.

Cvičeńı 52 Ukažte, že plat́ı

|= (∀x)(φ→ ψ) → ((∀x)φ→ (∀x)ψ),

|= (∀x)(φ→ ψ) → ((∃x)φ→ (∃x)ψ).

Jsou logicky platné i obrácené implikace?

Cvičeńı 53 Ukažte, že

1. (∀x)(φ→ ψ) → ((∀x)φ→ (∀x)ψ) je ekvivalentńı s ((∀x)(φ→ ψ) ∧ (∀x)φ) → (∀x)ψ;

2. (∀x)(φ→ ψ) → ((∃x)φ→ (∃x)ψ) je ekvivalentńı s ((∀x)(φ→ ψ) ∧ (∃x)φ) → (∃x)ψ.

(Nápověda. Všimněte si, že (p → (q → r)) ↔ ((p ∧ q) → r) je tautologie výrokové logiky.)

Jazyky s rovnost́ı (a věta o úplnosti).

Dokončili jsme již d̊ukaz věty o úplnosti predikátového počtu pro teorie s jazyky bez rovnosti.

Ted’ zkoumáme jazyky a teorie s rovnost́ı; připomı́náme, že u nich se (binárńı) predikátový
symbol “=” muśı ve strukturách povinně realizovat identitou. To sice axiomy predikátového
počtu nevynut́ı, ale k dosavadńım axiomovým schémat̊um se (alespoň) dodaj́ı tzv.

axiomy rovnosti :

1. x = x ;

2. (x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn) → f(x1, x2, . . . , xn) = f(y1, y2, . . . , yn),
pro každý n-árńı funkčńı symbol f v př́ıslušném jazyku;

3. (x1 = y1 ∧ x2 = y2 ∧ · · · ∧ xn = yn) → (P (x1, x2, . . . , xn) → P (y1, y2, . . . , yn)),
pro každý n-árńı predikátový symbol v př́ıslušném jazyku.

Tyto formule jsou očividně pravdivé v každé struktuře, kde je relačńı (neboli predikátový)
symbol “=” realizován identitou. Věta o korektnosti (T ⊢ φ implikuje T |= φ) tedy plat́ı i
pro teorie s rovnost́ı.

Mluvili jsme také o závislosti a nezávislosti v množinách axiomů. Mj. bychom mezi axiomy
rovnosti mohli také očekávat formule typu “x = y → y = x” (symetrie relace rovnosti) a
“(x = y ∧ y = z) → x = z” (tranzitivita). Uvědomili jsme si ale, že ty se daj́ı odvodit (v
našem hilbertovském predikátovém kalkulu) d́ıky axiomům rovnosti 1 a 3.

Cvičeńı 54 Ukažte, že v hilbertovském kalkulu s axiomy rovnosti plat́ı ⊢ x = y → y = x.

Řešeńı. Jednou z instanćı axiomu rovnosti 3 je (x = y ∧ x = x) → (P (x, x) → P (y, x))

pro jakýkoli binárńı predikátový symbol P v př́ıslušném jazyku. Když za P vezmeme

predikát “=”, dostáváme instanci (x = y ∧x = x) → (x = x→ y = x). Využit́ım toho, že

předchoźı formule vznikne dosazeńım do formule (p ∧ q) → (q → r) výrokové logiky a že

((p ∧ q) → (q → r)) → (q → (p→ r)) je tautologie výrokového počtu, odvod́ıme, že plat́ı

⊢ x = x→ (x = y → y = x). Protože x = x je axiom, odvod́ıme ⊢ x = y → y = x.
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Cvičeńı 55 Zkuste podobně ukázat, že plat́ı ⊢ (x = y ∧ y = z) → x = z.

Když nepožadujeme od realizace relačńıho symbolu “=” nic v́ıc, než splněńı uvedených
axiomů rovnosti, pak v modelu M teorie T může být “=” realizován nějakou kongruenćı
vzhledem k realizaćım všech funkčńıch a predikátových symbol̊u př́ıslušného jazyka.

Připomeňme, že relace ρ na množině U je ekvivalence, jestliže je binárńı (ρ ⊆ U × U),

reflexivńı (xρx), symetrická (xρy implikuje yρx) a tranzitivńı (xρy a yρz implikuje xρz).

Ekvivalence ρ je kongruenćı vzhledem k funkci (neboli operaci) f : Un −→ U , jestliže z

x1ρy1, x2ρy2, . . . , xnρyn plyne f(x1, x2, . . . , xn) ρ f(y1, y2, . . . , yn). Relaci ρ chápeme jako

kongruenci vzhledem k predikátu P ⊆ Un, jestliže z x1ρy1, x2ρy2, . . . , xnρyn plyne, že

(x1, . . . , xn) ∈ P právě tehdy, když (y1, . . . , yn) ∈ P .

Z věty 21 (každá bezesporná teorie má model) plyne, že i každá bezesporná teorie s rov-
nost́ı má model, pokud dovoĺıme realizovat symbol “=” jakoukoli relaćı splňuj́ıćı axiomy
rovnosti; taková relace je pak nutně kongruence v̊uči realizaćım všech př́ıslušných funkčńıch
a predikátových symbol̊u. Muśıme ale dokázat, že v tom př́ıpadě existuje i model, v němž je
symbol “=” realizován identitou. K tomu stač́ı př́ıslušnou strukturu faktorizovat podle oné
kongruence:

Máme-li strukturu M = (U,F ,R), ve které je nějaká relace ≡ kongruenćı vzhledem ke všem
f ∈ F a P ∈ R, pak definujeme strukturu M/ ≡ (faktorizace M podle kongruence ≡) jako
trojici (U ′,F ′,R′) sestrojenou takto:

• jako univerzum U ′ vezmeme množinu všech tř́ıd ekvivalence ≡, tedy

U ′ = {[a]≡ | a ∈ U}, kde [a]≡ = {b ∈ U | b ≡ a};

• ke každé n-árńı funkci f ∈ F zařad́ıme do F ′ n-árńı funkci f ′ splňuj́ıćı

f ′([a1]≡, . . . , [an]≡) = [f(a1, . . . , an)]≡;

• pro každý n-árńı predikát P ∈ R zařad́ıme do R′ n-árńı predikát P ′, pro nějž plat́ı

P ′([a1]≡, . . . , [an]≡) právě tehdy, když P (a1, . . . , an).

Dı́ky tomu, že ≡ je kongruence, je uvedená definice korektńı (tedy opravdu jednoznačně
definuje funkce f ′ a predikáty P ′, jak lze snadno ověřit). Zároveň je zřejmé, že když M je
modelem teorie T , tak také struktura M/ ≡ je modelem této teorie. Nav́ıc pro relaci ≡ v M
je jej́ı protěǰsek ≡′ ve struktuře M/ ≡ identitou.

Máme totiž [a]≡ ≡′ [b]≡ právě tehdy, když a ≡ b, tedy právě tehdy, když tř́ıdy ekvivalence

[a]≡ a [b]≡ jsou si rovny.

Když tedy M je modelem teorie T , ve kterém relace ≡ realizuje symbol “=”, pak M/ ≡ je
modelem teorie T , ve kterém je symbol “=” realizován identitou.

Faktorizaci podle kongruence jsme si také připomněli na známé struktuře (Z, {+, ·}, {≡5})
množiny celých č́ısel s operacemi sč́ıtáńı a násobeńı a s kongruenćı “modulo 5” (kde a ≡5 b,

jestliže hodnoty (a mod 5) a (b mod 5) jsou si rovny; např. 17 ≡5 2 ≡5 −8).
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T́ım jsme dokončili d̊ukaz věty o úplnosti (T |= φ implikuje T ⊢ φ) i pro teorie s rovnost́ı.

Věta o kompaktnosti.

Všimněme si zobecněńı věty o kompaktnosti, kterou jsme diskutovali u výrokové logiky;
uvedeme ji ve dvou verźıch:

Věta 30 (Věta o kompaktnosti (pro predikátovou logiku).)
1. Teorie T má model právě tehdy, když každá konečná T ′ ⊆ T má model.
2. T |= φ právě tehdy, když existuje konečná T ′ ⊆ T , pro nǐz plat́ı T ′ |= φ.

Všimněme si, že je to tvrzeńı o sémantice. V př́ıpadě výrokové logiky jsme př́ıslušné tvrzeńı
dokázali př́ımo a pak jsme jej použili k demonstraci úplnosti (syntaktického) axiomatického
systému výrokového počtu. U predikátové logiky toto tvrzeńı naopak elegantně dokážeme
využit́ım věty o úplnosti:

Důkaz. 1. Model teorie T je pochopitelně modelem i každé T ′ ⊆ T . Předpokládejme ted’,
že T nemá model; je tedy sporná (protože každá bezesporná má model). V T tedy existuje
d̊ukaz sporu, tedy d̊ukaz nějaké kontradikce. Tento d̊ukaz je ovšem konečnou posloupnost́ı
formuĺı, takže je to d̊ukaz i v nějaké konečné T ′ ⊆ T ; tedy existuje i konečná T ′ ⊆ T , která
je sporná a tud́ıž nemá model.

2. Implikace “⇐” plyne snadno z definice |=. Pro d̊ukaz “⇒” předpokládejme T |= φ. Podle
věty o úplnosti máme i T ⊢ φ. Př́ıslušný d̊ukaz je d̊ukazem i v nějaké konečné T ′ ⊆ T , tedy
T ′ ⊢ φ, a podle věty o korektnosti máme T ′ |= φ. □

Uved’me alespoň jednu aplikaci věty o kompaktnosti; ukazuje, že v predikátové logice
prvńıho řádu (kterou se zabýváme) nelze zachytit pojem konečnosti struktur:

Tvrzeńı 31
Když má teorie T konečné modely neomezených velikost́ı, tak má i nekonečný model.

Důkaz. Uvažujme teorii T , pro niž pro libovolné n ∈ N existuje model, jehož univerzum je
konečné a má v́ıce než n prvk̊u. Definujme množinu formuĺı α1, α2, α3, . . . , kde

αi je formule (∀x1)(∀x2) · · · (∀xi)(∃y)(x1 ̸= y ∧ x2 ̸= y ∧ · · · ∧ xi ̸= y).

(Zápis x ̸= y je pochopitelně zkratka za ¬(x = y).)

Snadno odvod́ıme, že každá konečná podmnožina množiny T ∪ {α1, α2, α3, . . . } má model.
(Odvod’te.)

Podle věty 30(1) má tedy i množina T ∪ {α1, α2, α3, . . . } model. V něm jsou pravdivé mj.
všechny formule αi, z čehož vyvod́ıme, že onen model nemůže být konečný. □

Prenexńı forma formuĺı. Na variantě př́ıkladu 3.74 z [1] jsme si přibĺıžili převod formule
φ na ekvivalentńı formuli φ′ v prenexńı formě (neboli v prenexńım tvaru).

Formule φ je v prenexńı formě, jestliže je ve tvaru (Q1x1)(Q2x2) · · · (Qnxn)ψ, kde
x1, x2, . . . , xn jsou navzájem r̊uzné proměnné, Qi ∈ {∃, ∀} pro každé i = 1, 2, . . . , n, a ψ
neobsahuje žádné kvantifikátory (formuli ψ se ř́ıká otevřené jádro, nebo též matrice či matice,
dané formule φ v prenexńı formě, přičemž sekvenci (Q1x1)(Q2x2) · · · (Qnxn) se ř́ıká prefix).

44



K převodu se speciálně hod́ı si připomenout ekvivalence zachycené např. ve větě 3.47

v [1], umožňuj́ıćı korektně “prohazovat implikace s kvantifikátory”. (Prob́ırali jsme při

přednáškách a mj. diskutovali chybu v posledńı ekvivalenci, (24), v 3.47 v [1].)

Poznámka. Převod formule do prenexńı formy žádá mj. jeden př́ıklad z druhé zápočtové
ṕısemky. Např.: k formuli

(∀x)
(
¬(∀y)¬R(x, y, z) → ¬(∀z)R(y, x, z)

)
sestrojte ekvivalentńı formuli v prenexńı formě. Převedeńı do ekvivalentńıho tvaru

(∀x)
(
(∃y)R(x, y, z) → (∃z)¬R(y, x, z)

)
je jasné. Pokud ale ted’ chceme “vytáhnout” (∃y) z předpokladu implikace uvnitř závorky
před závorku, muśıme nejen otočit kvantifikátor (∃ změnit na ∀), ale dát také pozor na to,
že v závěru implikace, tedy ve formuli (∃z)¬R(y, x, z) se y vyskytuje volně! Abychom za-
mezili svázáńı volné proměnné, nemůžeme ovšem změnit onen volný výskyt y na (např.) y′

– výsledná formule by nebyla ekvivalentńı p̊uvodńı formuli! (Je to jasné?) Použijeme tedy
variantu (pod)formule (∃y)R(x, y, z), konkrétně např. (∃y′)R(x, y′, z) (použit́ım “čerstvé”
proměnné y′, která se dosud v celé formuli nevyskytuje). Ve formuli

(∀x)
(
(∃y′)R(x, y′, z) → (∃z)¬R(y, x, z)

)
už př́ıslušným vytažeńım před závorku žádný volný výskyt nesvazujeme, takže formule

(∀x)(∀y′)
(
R(x, y′, z) → (∃z)¬R(y, x, z)

)
je opravdu ekvivalentńı výchoźı formuli.

Při vytažeńı (∃z) ze závěru implikace uvnitř závorky před závorku se kvantifikátor neměńı,
ale opět to nelze př́ımo udělat kv̊uli svázáńı volného výskytu proměnné z v předpokladu
implikace. Proto závěr (∃z)¬R(y, x, z) nahrad́ıme ekvivalentńı variantou (∃z′)¬R(y, x, z′) a
pak provedeme “vytažeńı”; dostáváme tedy formuli

(∀x)(∀y′)(∃z′)
(
R(x, y′, z) → ¬R(y, x, z′)

)
,

která je ekvivalentńı výchoźı formuli a je už v prenexńı formě.

Cvičeńı 56 Vyzkoušejte si převod formuĺı do prenexńıho tvaru na daľśıch př́ıkladech, at’ jste
si jisti, že rozumı́te všem nuanćım.
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Týden 11

Seznámili jsme se s následuj́ıćımi d̊uležitými fakty z logiky. (Jde nám ted’ o pochopeńı
výsledk̊u, byt’ jejich d̊ukazy nejsou součást́ı našeho kurzu.)

Nejprve jsme si připomněli základńı pojmy teorie vyč́ıslitelnosti, speciálně pojem rozhodnu-
telné množiny (neboli rekurzivńı množiny) a částečně rozhodnutelné množiny (neboli rekur-
zivně spočetné množiny), a obecně algoritmicky (částečně) rozhodnutelného problému; přitom
jsme připomněli i pojem Turing̊uv stroj.

Otázky rozhodnutelnosti množin TautJ , SatJ , ProvJ , ProofsJ , ...

Položili jsme si otázku, zda pro každý konkrétńı jazyk J = (F ,R, ar), řekněme s konečnými
množinami F a R, je množina tautologíı (neboli logicky platných formuĺı) v jazyce J , tedy
množina

TautJ = {φ | φ je formule v jazyce J , pro niž plat́ı |= φ},

rozhodnutelná. Jelikož d́ıky větě o úplnosti máme TautJ = ProvJ , kde

ProvJ = {φ | φ je formule v jazyce J , pro niž plat́ı ⊢ φ}

(Prov ze slova “provable”), tak jsme odvodili, že

množina TautJ je částečně rozhodnutelná:

jelikož množina d̊ukaz̊u ProofsJ (tj. množina posloupnost́ı φ1, φ2, . . . , φk splňuj́ıćıch
př́ıslušné podmı́nky) je očividně rozhodnutelná, tak algoritmu, který má mı́t konečný výpočet
pro zadanou formuli φ právě tehdy, když φ je tautologie, stač́ı systematicky postupně gene-
rovat všechny d̊ukazy a zastavit se, pokud našel d̊ukaz pro φ.

Zda je TautJ rozhodnutelná (nejen částečně rozhodnutelná), záviśı na konkrétńım J =
(F ,R, ar). Např. když F je prázdná množina a R obsahuje pouze predikát rovnosti “=”, tak
TautJ je rozhodnutelná.

Připomeňme, že φ je tautologie právě tehdy, když ¬φ je nesplnitelná (tj. nemá model). Dá

se snadno odvodit, že formule φ(x1, x2, . . . , xm) v jazyce s pouhým predikátem rovnosti

má model právě tehdy, když má model, jehož univerzum má maximálně m prvk̊u. Z toho

snadno plyne rozhodnutelnost množiny TautJ pro zmı́něný “chudý” jazyk J .

Připomněli jsem si nerozhodnutelný problém zastaveńı:

Halting Problem (HP)
Instance: Turing̊uv stroj M a jeho vstup w.
Otázka: Je výpočet M na w konečný?

a intuitivně jsme nahlédli, že pro vhodný (malý) jazyk J lze navrhnout formuli φM,w v jazyce
J , která má model právě tehdy, když M,w je pozitivńı instanćı problému HP. V tom př́ıpadě
tedy máme algoritmickou redukci problému HP na problém př́ıslušnosti k množině

SatJ = {φ | φ je formule v jazyce J , která má model}
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(Sat ze slova “satisfiable”), z čehož plyne, že SatJ je nerozhodnutelná. Jelikož pro každou
formuli φ v jazyce J máme φ ∈ TautJ ⇐⇒ ¬φ ∈ SatJ , vyvod́ıme také, že

TautJ je nerozhodnutelná.

Dokonce stač́ı použ́ıt jediný binárńı predikátový symbol kromě predikátového symbolu

rovnosti a výše uvedená redukce z HP se dá realizovat. Demonstrace tohoto faktu vyžaduje

ovšem ještě daľśı technickou práci.

Diskutovali jsme i relativizace výše uvedených množin vzhledem k dané teorii T , tedy
množinu formuĺı “pravdivých v T” (tj. sémantických d̊usledk̊u množiny T )

Conseq(T ) = {φ | T |= φ},

která je podle věty o úplnosti (predikátového počtu) rovna množině teorémů teorie T

Thm(T ) = {φ | T ⊢ φ}.

Uvědomili jsme si, že zde má smysl diskutovat otázky rozhodnutelnosti jen za předpokladu, že
samotná množina T je rozhodnutelná (což implikuje, že Thm(T ) je částečně rozhodnutelná).

Otázky rozhodnutelnosti množin Th(N,Plus) a Th(N,Plus,Mult)

Uvažme konkrétńı strukturu (N,Plus), s univerzem N = {0, 1, 2, . . . } a ternárńı relaćı Plus,
kde Plus(x, y, z) plat́ı právě pro trojice č́ısel x, y, z splňuj́ıćı podmı́nku x+ y = z.

Množinu Th(N,Plus), teorii struktury (N,Plus), definujeme jako množinu těch uzavřených
formuĺı jazyka s jediným predikátovým symbolem Plus (s aritou 3), které jsou v uvedené
struktuře pravdivé. Všimněme si, že tato teorie je bezesporná (má model) a úplná (pro každou
uzavřenou formuli φ je bud’ φ nebo ¬φ dokazatelná, dokonce př́ımo prvkem oné teorie).

Cvičeńı 57 Ač zde uvažujeme jen jazyk s jediným predikátovým symbolem, konkrétně s
ternárńım symbolem Plus, ekvivalentně jsme mohli použ́ıt binárńı funkčńı symbol “+” a
predikát rovnosti “=” a př́ıpadně doplnit např. konstanty “0” a “1” a binárńı predikátový
symbol “≤”, se standardńı interpretaćı ve struktuře přirozených č́ısel. Např. formuli x ≤ y
m̊užeme chápat jako zkratku za formuli (∃z)Plus(x, z, y). Promyslete si, jak lze pomoćı Plus
vyjádřit např. x = 0 či x = 1.

Neńı ovšem zřejmé, zda Th(N,Plus) je rozhodnutelná. Tuto otázku vyřešil pozitivně
Presburger na konci dvacátých let dvacáteho stolet́ı:

Věta 32 Množina Th(N,Plus) (také zvaná Presburgerova aritmetika) je rozhodnutelná.

Důkaz se (dnes) dá elegantně provést využit́ım teorie konečných automat̊u (neprovedli jsme).

V rámci tzv. Hilbertova programu bylo potřeba mj. ukázat, že také Th(N,Plus,Mult) je
rozhodnutelná; zde Mult je daľśı ternárńı predikát kde Mult(x, y, z) plat́ı právě pro trojice
č́ısel x, y, z splňuj́ıćı podmı́nku x · y = z.
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Přesněji bychom měli ř́ıci, že šlo o nalezeńı úplné rozhodnutelné teorie T , pro niž je

(N,Plus,Mult) modelem. Dı́ky rozhodnutelnosti T by množina Thm(T ) byla částečně

rozhodnutelná a d́ıky úplnosti pak i rozhodnutelná (pro každou φ stač́ı souběžně hledat

d̊ukaz pro φ a ¬φ, kde φ je (univerzálńı) uzávěr formule φ).

Následuj́ıćı d̊uležitý (Gödel̊uv) výsledek z třicátých let dvacátého stolet́ı byl překvapivý:

Věta 33 Množina Th(N,Plus,Mult) neńı rozhodnutelná.

Nám už je podstata d̊ukazu nerozhodnutelnosti jasná: ke každému Turingovu stroji M a
jeho vstupu w lze algoritmicky sestrojit formuli ΦM,w(x) v jazyce s Plus a Mult (v ńıž je
x jediná volná proměnná) tak, že M se zastav́ı na w právě tehdy, když (uzavřená) formule
(∃x)ΦM,w je pravdivá (ve standardńım modelu N, tj. je prvkem Th(N,Plus,Mult)). Formule
ΦM,w(x) je konstruována tak, že de facto ř́ıká: č́ıslo x je kódem výpočtu stroje M na w, který
skonč́ı v koncové konfiguraci. (Č́ıslo x tedy kóduje př́ıslušnou posloupnost konfiguraćı stroje
M ; podmı́nka, že posloupnost odpov́ıdá instrukćım stroje M se dá vyjádřit pomoćı sč́ıtáńı a
násobeńı, což vyžaduje kus technické práce.)

Gödelovy věty o neúplnosti.

Prvńı Gödelova věta o neúplnosti.

Podstatu této věty jsme již viděli výše, zformulujme ji ted’ v́ıce standardně:

Věta 34 Každá axiomatizace struktury (N,Plus,Mult), tj. teorie T (predikátové logiky
prvńıho řádu) s př́ıslušným jazykem, která je korektńı (tj. všechny jej́ı uzavřené dokazatalné
formule patř́ı do Th(N,Plus,Mult)) a rozhodnutelná (tj. existuje algoritmus, který rozho-
duje, zda daná formule je prvkem T neboli axiomem), je neúplná, což znamená, že existuje
formule v Th(N,Plus,Mult), která neńı v T dokazatelná (neboli existuje formule, která
je pravdivá ve struktuře přirozených č́ısel, ale neńı dokazatelná ve výchoźım axiomatickém
systému).

Věta 34 sice plyne z věty 33, ale nav́ıc vede k otázce, zda lze pro konkrétńı korektńı a
rozhodnutelnou axiomatizaci T struktury (N,Plus,Mult) sestrojit konkrétńı formuli, která
je pravdivá (t́ım mysĺıme je prvkem Th(N,Plus,Mult)), ale neńı dokazatelná (tedy neńı v
Thm(T )). To Gödel ukázal; neformálně řečeno, ukázal zp̊usob, jak zkonstruovat aritmetickou
formuli φ, která de facto ř́ıká “já jsem v T nedokazatelná”. (Detailněji, φ ř́ıká “pro formuli s
určitým pořadovým č́ıslem neexistuje posloupnost, která by byla jej́ım d̊ukazem v T”, ovšem
to pořadové č́ıslo je ve skutečnosti č́ıslem formule φ.) Taková φ je jistě pravdivá, protože jinak
by se jednalo o nepravdivou formuli, která je dokazatelná v T , a T by tedy nebyla korektńı.

Ve zbytku této části načrtneme určitý “programátorský” postup možného d̊ukazu.

Využijeme výše zmı́něnou formuli ΦM,w(x) a větu o rekurzi (zmı́něnou ńıže), a dále očividný
fakt, že pro každou rozhodnutelnou axiomatizaci T existuje enumerátor (Turing̊uv stroj) ET ,
který generuje všechny uzavřené formule dokazatelné v T .

Věta o rekurzi je d̊uležitý výsledek teorie vyč́ıslitelnosti; dá se formulovat tak, že ř́ıká, že
př́ıkaz “źıskej sv̊uj vlastńı kód” lze chápat jako korektńı instrukci programu (Turingova stroje)
– dá se totiž implementovat standardńımi instrukcemi.
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Věta o rekurzi. Mějme Turing̊uv stroj M realizuj́ıćı (částečnou) funkci fM : Σ∗×Σ∗ 7→
Σ∗. (Můžeme si stroj M představit jako dvoupáskový s t́ım, že jeho vstup má dvě části,
prvńı napsanou na prvńı pásce a druhou na druhé pásce.) Pak existuje (lze algoritmicky
sestrojit) stroj R realizuj́ıćı funkci fR : Σ∗ 7→ Σ∗ takovou, že pro všechna w ∈ Σ∗ plat́ı
fR(w) = fM (w, ⟨R⟩), kde ⟨R⟩ je kódem stroje R.

Idea d̊ukazu. Připomeňme si nějaké standardńı kódováńı Turingových stroj̊u řetězci v
pevné abecedě; stač́ı abeceda {0, 1}, přičemž budeme předpokládat, že {0, 1} ⊆ Σ pro
abecedu Σ z předpokladu věty. Kód stroje S označme ⟨S⟩; jestliže řetězec u je kódem
stroje, tak Mu označuje př́ıslušný stroj.

Snadno si uvědomı́me, že pro každý řetězec u ∈ Σ∗ lze algoritmicky zkonstruovat Turing̊uv
stroj Pu, který poč́ıtá se dvěma páskami a po spuštěńı jen zaṕı̌se řetězec u na druhou
pásku (řekněme, že př́ıpadný p̊uvodńı obsah druhé pásky přeṕı̌se, přičemž prvńı pásku
ignoruje). Navrhněme ted’ stroj B, který po spuštěńı pracuje také jen na druhé pásce, jej́ıž
obsah v okamžiku spuštěńı B označme u: B nejdř́ıve zkontroluje, zda řetězec u je kódem
nějakého Turingova stroje, tedy stroje Mu; v kladném př́ıpadě přeṕı̌se druhou pásku
kódem ⟨Pu;Mu⟩ (znak “;” znamená sekvenčńı kompozici, po ukončeńı práce prvńıho stroje
je iniciován druhý stroj). Nyńı definujme stroj A jako P⟨B;M⟩, a stroj R jako A;B;M .

Stroj R si tedy představujeme jako dvoupáskový s t́ım, že jeho vstup w ∈ Σ∗ je napsán

na prvńı pásce (a druhá páska je na začátku prázdná). Nejdř́ıve se tedy spust́ı A, který na

druhou pásku zaṕı̌se kód strojeB;M . Pak se spust́ıB, který řetězec ⟨B;M⟩ na druhé pásce
přeṕı̌se řetězcem ⟨P⟨B;M⟩;B;M⟩, což je podle definice ⟨A;B;M⟩ a tedy ⟨R⟩. Pak se spust́ı

M , který má na prvńı pásce onen p̊uvodńı vstup w a na druhé pásce ⟨R⟩. Pokud je jeho

výpočet konečný, vydá nakonec fM (w, ⟨R⟩); takže opravdu máme fR(w) = fM (w, ⟨R⟩).

Konkrétně můžeme sestrojit Turing̊uv stroj S, který se pro každý vstup chová následovně:

Źıskej sv̊uj kód ⟨S⟩ a sestav formuli ¬(∃x)ΦS,0 (která ř́ıká “Stroj S se nezastav́ı na vstup
0”). Spust’ enumerátor E ; pokud ten někdy vygeneruje onu formuli ¬(∃x)ΦS,0, zastav se.

Je zřejmé, že program S se na vstup 0 nemůže zastavit (jinak bychom dostali spor s korekt-
nost́ı axiomatizace). Formule ¬(∃x)ΦS,0 je tedy pravdivá (patř́ı do Th(N,Plus,Mult)), ale
neńı v dané axiomatizaci dokazatelná. (Když ji přidáme jako daľśı axiom, enumerátor E a t́ım
i stroj S se př́ıslušně změńı a dostaneme opět pravdivou nedokazatelnou formuli ¬(∃x)ΦS′,0,
kde S′ je onen “změněný S”.)

Druhá Gödelova věta o neúplnosti.

Prvńı Gödelova věta o neúplnosti se obecněji formuluje tak, že jakýkoli konzistentńı formálńı
systém F obsahuj́ıćı základńı aritmetiku neńı úplný – existuje tedy uzavřená formule φ, pro
niž systém F nedokáže ani φ ani ¬φ. (V systému F se automaticky předpokládá algoritmická
rozhodnutelnost axiomů.)

Druhá Gödelova věta o neúplnosti ř́ıká, že zmı́něný systém F nedokáže svou vlastńı be-
zespornost (neńı v něm dokazatelná formule Cons(F ), která např. vyjadřuje, že v F neńı
dokazatelná nějaká zvolená kontradikce).

Důkaz druhé věty je založen na formalizaci d̊ukazu prvńı věty v rámci F .
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Logické programováńı (Prolog), rezolučńı metoda

Zde se jen letmo dotkneme teoretických základ̊u, v́ıce se dočtete v [1] a jinde.

Rezoluce ve výrokové logice. Princip rezolučńı metody se u výrokové logiky dá zachytit
následovně:

(p ∨ φ), (¬p ∨ ψ) |= φ ∨ ψ. (7)

Pokud φ a ψ jsou “prázdné formule” (tedy ve výrazu chyb́ı), dostáváme

p,¬p |= □,

kde □ označuje tzv. prázdnou klauzuli, kterou chápeme jako označeńı kontradikce.

Nab́ıźı se tedy možnost následuj́ıćıho př́ıstupu k automatizovanému dokazováńı T |= φ
(rezolučńı metodou):

Připomeňme, že T |= φ právě tehdy, když je T ∪ {¬φ} nesplnitelná, tedy vlastně právě
tehdy, když plat́ı T,¬φ |= □.

Každou formuli z T ∪{¬φ} můžeme převést do konjunktivńı normálńı formy a źıskáme tak
souhrnně množinu klauzuĺı, jej́ıž nesplnitelnost máme prokázat. (Připomeňme, že klauzule je
disjunkce literál̊u, kde literál je bud’ výrokový symbol nebo jeho negace.) Pokud dvě klauzule
v této množině obsahuj́ı komplementárńı pár literál̊u, tedy jedna obsahuje p a druhá ¬p,
můžeme vytvořit daľśı klauzuli, tzv. rezolventu, podle rezolučńıho pravidla (7). Postupně se
tak snaž́ıme vyvodit kontradikci, tedy prázdnou klauzuli □.

Např. chceme ukázat, že plat́ı p→ q, q → r |= p→ r:

V klauzulárńı formě je zde T ∪ {¬φ} množinou klauzuĺı

(¬p ∨ q), (¬q ∨ r), p, ¬r

(posledńı dvě klauzule vzniknou z ¬(¬p∨ r)). Aplikaćı rezolučńıho pravidla např. na klauzule
(¬p ∨ q) a (¬q ∨ r) vyvod́ıme rezolventu (¬p ∨ r) (využ́ıváme komutativity ∨) a množinu
klauzuĺı tak rozš́ı̌ŕıme na

(¬p ∨ q), (¬q ∨ r), p, ¬r, (¬p ∨ r).

Dı́ky (¬p ∨ r) a p vyvod́ıme r a máme množinu klauzuĺı

(¬p ∨ q), (¬q ∨ r), p, ¬r, (¬p ∨ r), r.

Nyńı užit́ım r a ¬r rozš́ı̌ŕıme množinu o rezolventu □ a máme tedy množinu klauzuĺı

(¬p ∨ q), (¬q ∨ r), p, ¬r, (¬p ∨ r), r, □,

která je očividně nesplnitelná. Nutně tedy i výchoźı množina je nesplnitelná, a tedy
p→ q, q → r |= p→ r skutečně plat́ı.

Cvičeńı 58 Zformalizujte tyto poznatky

Karel jel autobusem nebo vlakem.

Jel-li Karel autobusem nebo svým vozem, pak přǐsel pozdě na sch̊uzku.

Karel nepřǐsel pozdě na sch̊uzku.
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ve výrokové logice a pak rezolučńı metodou dokažte, že Karel jel vlakem.

Je zřejmé, že když z množiny klauzuĺı C opakovaným použit́ım rezolučńıho pravidla vy-
vod́ıme □, tak množina C je nesplnitelná. Opačný směr zřejmý neńı, tak načrtneme d̊ukaz.
Stač́ı ukázat, že z každé konečné nesplnitelné množiny klauzuĺı lze odvodit □, protože podle
věty o kompaktnosti je nekonečná množina nesplnitelná právě tehdy, když existuje jej́ı konečná
podmnožina, která je nesplnitelná.

Pro konečné množiny C ukážeme tvrzeńı indukćı podle počtu m výrokových symbol̊u ob-
jevuj́ıćıch se v klauzuĺıch v C. V každé klauzuli ovšem nedovolujeme v́ıce než jeden výskyt
každého literálu, jinak bychom např. z nesplnitelné množiny {(p ∨ p), (¬p ∨ ¬p)} kýženou □
neodvodili.

Když máme nesplnitelnou C s jediným výrokovým symbolem p, tak v C nutně muśı být
klauzule p i klauzule ¬p, takže □ odvod́ıme. Necht’ tvrzeńı plat́ı pro všechny nesplnitelné
množiny klauzuĺı s nejvýšm výrokovými symboly a uvažujme nesplnitelnou C sm+1 symboly;
necht’ jeden z nich je p.

Soustřed’me se nejprve na ta pravdivostńı ohodnoceńı e, pro něž je e(p) = 1. Vypust’me
z C všechny klauzule obsahuj́ıćı p a v každé zbylé klauzuli vypust’me literál ¬p, pokud se
v ńı vyskytuje. Vznikne množina klauzuĺı C′ s nanejvýš m výrokovými symboly, která je
nesplnitelná (proč?). Z C′ podle indukčńıho předpokladu odvod́ıme □. Když přesně totéž
odvozeńı (aplikuj pravidlo rezoluce na tyto klauzule podle tohoto výrokového symbolu, pak na
tyto klauzule podle tohoto symbolu, atd.) provedeme v p̊uvodńı C, tak pokud jsme nevyvodili
□, tak vyvod́ıme ¬p (proč?). Když pak provedeme analogické úvahy pro př́ıpad e(p) = 0,
dospějeme k odvozeńı p. Ovšem z odvozených klauzuĺı p a ¬p odvod́ıme □.
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Týden 12

Herbrandova věta (včetně skolemizace). Ilustrovali jsme na konkrétńım př́ıkladu.
Uvážili jsme teorii obsahuj́ıćı tyto formule φ1, φ2, φ3, φ4:

(∀x)(∃y)P (y, x), P (x, y) → D(y, x), (P (x, y) ∧D(x, z)) → D(y, z), D(x, y) → ¬(x = y)

(např. lze chápat P (x, y) jako “x je rodičem y” a D(x, y) jako “x je potomkem y”).

Usoudili jsme, že plat́ı

{φ1, φ2, φ3, φ4} |= φ5, kde φ5 je formule (∃x)(∃y)(P (x, y) ∧ ¬(x = y)).

Demonstrujeme to prokázáńım, že množina {φ1, φ2, φ3, φ4,¬φ5} je nesplnitelná (kde φ je
univerzálńı uzávěr formule φ; v našem př́ıpadě ovšem φ5 = φ5). Vı́me, že všechny formule
můžeme univerzálně uzavř́ıt (v našem př́ıpadě např. P (x, y) → D(y, x) je nahrazena formuĺı
(∀x)(∀y)(P (x, y) → D(y, x))) a převést do prenexńı formy. V našem př́ıpadě jen přeṕı̌seme
¬φ5 jako (∀x)(∀y)(¬P (x, y) ∨ x = y).

Existenčńıch kvantifikátor̊u se zbav́ıme tzv. skolemizaćı. V našem př́ıpadě se ∃ objevuje jen
ve formuli (∀x)(∃y)P (y, x). Zavedeme nový funkčńı symbol f1 a mı́sto oné formule naṕı̌seme
(∀x)P (f1(x), x). Tato formule sice neńı ekvivalentńı p̊uvodńı formuli, ale p̊uvodńı množina
formuĺı je nesplnitelná právě tehdy, když nová množina je nesplnitelná; promyslete si proč.
Také zformulujte, jak byste se postupně zbavili všech daľśıch př́ıpadných existenčńıch kvan-
tifikátor̊u (zaváděńım stále nových funkčńıch symbol̊u).

Máme tedy prokázat nesplnitelnost jisté množiny formuĺı v prenexńı formě bez existenčńıch
kvantifikátor̊u. Když zaṕı̌seme jejich otevřená jádra (matrice) v konjunktivńı normálńı formě,
dostaneme množinu {ψ1, ψ2, ψ3, ψ4, ψ5}, konkrétně

ψ1 ... P (f1(x), x),
ψ2 ... ¬P (x, y) ∨D(y, x),
ψ3 ... ¬P (x, y) ∨ ¬D(x, z) ∨D(y, z),
ψ4 ... ¬D(x, y)) ∨ ¬(x = y),
ψ5 ... ¬P (x, y) ∨ x = y.

Rezolučńı metodou vyvod́ıme prázdnou klauzuli □, když použijeme vhodné instance for-
muĺı ψ1, ψ2, ψ3, ψ4, ψ5 vzniklé substitucemi uzavřených termů (prvk̊u tzv. Herbrandova uni-
verza, které již známe) za proměnné; budeme ovšem potřebovat i instance axiomů rovnosti.
Zavedeme konstantu c (dostaneme tedy Herbrandovo univerzum {c, f1(c), f1(f1(c)), . . . })
a z instanćı P (f1(c), c) (ψ1[x/c]) a (¬P (f1(c), c) ∨D(c, f1(c)) (ψ2[x/f1(c), y/c]) vyvod́ıme

klauzuli D(c, f1(c)). Z této klauzule a z instance ¬D(c, f1(c))) ∨ ¬(c = f1(c)) vyvod́ıme
¬(c = f1(c). Z instanćı axiomů rovnosti vyvod́ıme (f1(c) = c → c = f1(c) a tedy)
¬(f1(c) = c) ∨ c = f1(c); daľśım použit́ım rezolučńıho pravidla pak dostaneme ¬(f1(c) = c).
Použit́ım ¬P (f1(c), c) ∨ f1(c) = c (instance ψ5) vyvod́ıme ¬P (f1(c), c). Aplikujeme pak re-

zolučńı pravidlo na klauzule P (f1(c), c) a ¬P (f1(c), c) a dostáváme kýženou □.

Jedna z variant prezentace Herbrandovy věty je tato:

Věta 35 (Herbrandova) Pro uzavřenou formuli φ v prenexńım tvaru plat́ı |= φ právě
tehdy, když existuje konečná výrokově sporná teorie, která obsahuje pouze instance formule
(¬φ)OS a instance axiom̊u rovnosti. (Výrazem (ψ)OS označujeme otevřenou skolemovskou
variantu formule ψ).
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Rezoluce v logickém programováńı. Logické programováńı je založeno na automati-
zovaném rezolučńım dokazováńı v predikátové logice, což vyžaduje i tzv. unifikaci termů.
Budeme to ilustrovat na jednoduchém př́ıkladu programu v Prologu.
(Název “ProLog” je de facto zkratka za “Programming in Logic”.)

parent(adam,peter). % adam is a parent of peter

parent(eve,peter).

parent(adam,paul).

parent(mary,paul).

parent(paul,john).

descendent(D,A):-parent(A,D).

descendent(D,A):-parent(P,D),descendent(P,A).

Poznámka. Jedná se o standardńı př́ıklad při úvodu do jazyka Prolog (či obecně při úvodu
do logického programováńı); viz např. webovou stránku R. Bartáka na MFF UK Praha:

http://ktiml.mff.cuni.cz/~bartak/prolog/contents.html.

Z Internetu si nějakou implementaci Prologu snadno můžete nainstalovat a vyzkoušet (což
vám samozřejmě velmi doporučuji).

Pokud programu výše (např. v souboru facts.pl) zadáme (consult(’facts.pl’). a pak) dotaz

?- descendent(X,adam),parent(mary,Y).

odpov́ı nám (postupně, např. nový řádek vyṕı̌se vždy po zadáńı středńıku)

X = peter, Y = paul ;

X = Y, Y = paul ;

X = john, Y = paul ;

false.

Diskutovali jsme vztah uvedeného př́ıkladu prologovského programu k predikátové logice.
Přirozeně jsme navrhli tento jazyk odpov́ıdaj́ıćı našemu programu:

• výrazy adam, john, mary, peter, paul chápeme jako konstanty (tedy funkčńı sym-
boly arity 0);

• výrazy parent, zkráceně P , a descendent, zkráceně D, chápeme jako predikátové (ne-
boli relačńı) symboly arity 2;

• výraz descendent(D,A):-parent(A,D) chápeme jako formuli P (y, x) → D(x, y) (sym-
boly D,A chápeme jako proměnné a nahradili jsme je tak raději našimi zavedenými
symboly x, y pro proměnné), která je ekvivalentńı formuli D(x, y) ∨ ¬P (y, x);

• výraz descendent(D,A):-parent(P,D),descendent(P,A) chápeme jako formuli
(P (z, x) ∧D(z, y)) → D(x, y), která je ekvivalentńı formuliD(x, y)∨¬P (z, x)∨¬D(z, y).

Prologovský program pak chápeme jako “teorii”, tedy množinu formuĺı, resp. klauzuĺı (po
převodu formuĺı do klauzulárńı formy). V našem př́ıkladu ji označ́ıme Prog; je to množina
těchto klauzuĺı:
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1. P (adam, peter)

2. P (eve, peter)

3. P (adam, paul)

4. P (mary, paul)

5. P (paul, john)

6. D(x, y) ∨ ¬P (y, x)

7. D(x, y) ∨ ¬P (z, x) ∨ ¬D(z, y)

Dotaz (položený prologovskému programu)

?- descendent(X,adam), parent(mary,Y)

lze chápat jako formuli (∃x1)(∃y1) (D(x1, adam) ∧ P (mary, y1)), označme ji jako Dotaz, a
položeńı dotazu lze chápat tak, že zjǐst’ujeme, zda plat́ı

Prog |= Dotaz.

To ovšem plat́ı právě tehdy, když množina Prog ∪ {¬Dotaz} je nesplnitelná, tedy nemá
žádný model, neboli když

Prog,¬Dotaz |= □,

kde □ označuje (nějakou) kontradikci. V našem konkrétńım př́ıpadě to znamená, že když k
uvedeným formuĺım 1− 7 přidáme formuli

8. ¬D(x1, adam) ∨ ¬P (mary, y1),

tak z formuĺı 1 − 8 plyne kontradikce. Podle věty o úplnosti je tedy teorie 1 − 8 sporná, je
v ńı dokazatelná každá formule (k čemuž stač́ı, že je v ńı dokazatelná nějaká kontradikce).
Implementace Prologu ovšem nejsou založeny na hledáńı d̊ukazu v hilbertovském kalkulu, ale
na tzv. rezolučńı metodě.

V našem př́ıkladu z predikátové logiky můžeme zkusit uplatnit rezoluci na formule 6 a
8, označme je φ6 a φ8, ale potřebujeme uplatnit tzv. unifikaci pomoćı (vhodné) substituce.
Substituce σ je zobrazeńı přǐrazuj́ıćı proměnným termy. V našem př́ıkladě použijme substituci
σ1 = (x1/x, y/adam), č́ımž znázorňujeme zobrazeńı, které přǐrazuje proměnné x1 term x,
proměnné y term adam a na ostatńıch proměnných je identitou. Formule φ6σ1 (tj. formule
φ6 na niž aplikujeme substituci σ1) je tedy

D(x, adam) ∨ ¬P (adam, x)

a φ8σ1 je
¬D(x, adam) ∨ ¬P (mary, y1).

Rezolučńım pravidlem vyvod́ıme φ9:

9. ¬P (adam, x) ∨ ¬P (mary, y1)
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Aplikaćı substituce σ2 = (x/peter) na φ1 a φ9 vyvod́ıme

10. ¬P (mary, y1)

a aplikaćı substituce σ3 = (y1/paul) na φ4 a φ10 vyvod́ıme □. Ted’ už vid́ıme, jak Prolog
přǐsel na svou prvńı odpověd’ X = peter,Y = paul. (Jak?)

Stručně jsme diskutovali i daľśı souvislosti (včetně prologovského prohledáváńı do hloubky),
speciálně z pohledu našich znalost́ı predikátové logiky. Mluvili jsme mj. o

• rezolučńı metodě, využ́ıvaj́ıćı mj. unifikaci termů a formuĺı,

• hornovských klauzuĺıch (ty obsahuj́ı nejvýš jeden pozitivńı literál), které mohou být
definitńı (právě jeden pozitivńı literál), neboli fakty a pravidla [z nichž je tvořen prolo-
govský program], nebo ćılové [odpov́ıdaj́ıćı dotaz̊um v Prologu]).

Potenciál užitečnosti programováńı v Prologu jsme si ještě naznačili na př́ıkladu obarveńı
grafu (reprezentuj́ıćıho mapu stát̊u středńı Evropy); diskutovali jsme program

color(red).

color(green).

color(blue).

diffcol(X,Y) :- color(X), color(Y), X\= Y.

colmideur(CZ,SK,PL,GE,AU,HG) :-

diffcol(CZ, SK), diffcol(CZ, PL), diffcol(CZ, GE), diffcol(CZ, AU),

diffcol(SK, PL), diffcol(SK, AU), diffcol(SK, HG),

diffcol(PL, GE),

diffcol(GE, AU),

diffcol(AU, HG).

a dotaz

?- colmideur(CZ,SK,PL,GE,AU,HG).

Některé daľśı typy logik.

Fuzzy logika. Jen stručně jsme si nast́ınili, proč je někdy výhodné rozš́ı̌rit množinu prav-
divostńıch hodnot {1, 0} (neboli {true, false}), např. v př́ıpadě práce s neurčitost́ı. Větš́ı
podrobnosti lze nalézt v [1] a jinde.

Speciálně jsme zauvažovali nad př́ıpadem výrokové logiky, v němž pravdivostńı ohodnoceńı
nepřǐrazuje výrokovým symbol̊um hodnoty 0 a 1, ale podmnožiny jisté množiny E (představme
si pod E např. množinu expert̊u). Tedy ohodnoceńı e je zde typu VS −→ P(E).

P(E) označuje potenčńı množinu množiny E , tedy množinu {X | X ⊆ E}. Tato množina

se také někdy označuje 2E ; je to de facto množina zobrazeńı z E do množiny {0, 1}.

Jistě vid́ıme přirozené rozš́ı̌reńı e na zobrazeńı typu FML −→ P(E) (kde FML je množina
formuĺı výrokové logiky s množinou výrokových symbol̊u VS). Speciálně pro toto rozš́ı̌rené
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e např. plat́ı ∥φ ∧ ψ∥e = ∥φ∥e ∩ ∥ψ∥e a také ∥φ → ψ∥e = (∥φ∥e)′ ∪ ∥ψ∥e, kde ′ je operace
doplňku, tedy X ′ = (E ∖ X). Zde “plnou pravdu”, tedy 1, reprezentuje celá množina E , a
“plnou nepravdu”, tedy 0, reprezentuje prázdná množina ∅.
Jinou přirozenou možnost́ı je uvažovat pravdivostńı ohodnoceńı e jako zobrazeńı typu

VS −→ [0, 1]; oborem (pravdivostńıch) hodnot je tedy interval reálných č́ısel od 0 do 1. Zde
se ovšem naskýtá v́ıce rozumných možnost́ı, jak definovat např. ∥φ∧ψ∥e a ∥φ→ ψ∥e; jednou
z možnost́ı jsou Gödelovy operace: pro konjunkci definujeme ∥φ ∧ ψ∥e = min(∥φ∥e, ∥ψ∥e) a
pro implikaci bude hodnota ∥φ→ ψ∥e rovna 1 v př́ıpadě ∥φ∥e ≤ ∥ψ∥e a rovna ∥ψ∥e v př́ıpadě
∥φ∥e > ∥ψ∥e.
Tyto a jiné možnosti struktur pravdivostńıch hodnot jsou zobecněny pojmem úplný reziduo-

vaný svaz. (Opět můžeme odkázat k [1] a daľśım snadno dostupným zdroj̊um pro podrobnosti
a daľśı souvisej́ıćı informace.)

Modálńı logika, temporálńı logika.

Připomněli jsme si následuj́ıćı protokol, který má zamezit dvěma souběžným proces̊um
současný př́ıstup do kritické zóny (např. nemohou zároveň tisknout na sd́ılené tiskárně).

Peterson̊uv protokol (zamezeńı situace s dvěma procesy v kritické sekci)

Process A :

** noncritical region **
flagA := true
turn := B
waitfor
(flagB = false ∨ turn = A)
** critical region **
flagA := false
** noncritical region **

Process B :

** noncritical region **
flagB := true
turn := A
waitfor
(flagA = false ∨ turn = B)
** critical region **
flagB := false
** noncritical region **

Např. pro automatickou verifikaci př́ıslušných vlastnost́ı se k vyjádřeńı těchto vlastnost́ı (typu
“nikdy nenastane př́ıpad, že oba procesy se současně ocitnou v kritické sekci”) přirozeně hod́ı
modálńı logika, či speciálně temporálńı logika (interpretovaná na tzv. Kripkeho struktuře,
tedy struktuře možných svět̊u, v našem př́ıpadě stav̊u programu [kde stav zahrnuje aktuálńı
hodnoty programových proměnných a aktuálńı pozice v prováděńı jednotlivých proces̊u]).
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Týden 13

Seznam otázek k ústńı zkoušce.

A) Otázky d̊ukazové (VL (výroková logika): 1.–6., PL (predikátová logika): 7.–12.)

1. Věta o dedukci (syntaktická verze).

2. Věta o d̊ukazu sporem (T ⊢ φ právě tehdy, když T,¬φ ⊢ ¬(ψ → ψ)).

3. Věta o korektnosti.

4. Churchovo lemma: pro libovolnou formuli φ, která neobsahuje jiné výrokové symboly
než p1, . . . , pn, plat́ı p

e
1, . . . , p

e
n ⊢ φe.

5. Věta o kompaktnosti.

6. Věta o úplnosti (kde lze předpokládat platnost věty o kompaktnosti).

7. Věta o konstantách.

8. Věta o henkinovské konstantě.

9. Věta o henkinovském rozš́ı̌reńı.

10. Věta o zúplňováńı teoríı.

11. Věta o úplnosti.

12. Věta o prenexńım tvaru.

B) Otázky pojmové a přehledové

1. Co a k čemu je logika? (vymezeńı pojmu logika, trocha historie, logické paradoxy).

2. Základńı syntaktické a sémantické pojmy VL (jazyk, formule, pravdivostńı ohodnoceńı,
sémantické vyplýváńı).

3. Normálńı formy, tabulková metoda.

4. Axiomatický systém VL (axiomy, pravidlo MP, pojem d̊ukazu).

5. Korektnost a úplnost VL.

6. Základńı syntaktické pojmy PL (jazyk, termy, formule).

7. Struktury pro PL, ohodnoceńı, ohodnoceńı termů a formuĺı.

8. Tautologie, splnitelné formule, sémantické vyplýváńı, teorie a model teorie v PL.

9. Axiomatický systém PL (axiomy, pravidla MP a G, pojem d̊ukazu).

10. Korektnost a úplnost PL.

11. Gödelovy věty o neúplnosti.

12. Logické programováńı (Prolog), speciálně teoretické základy (hornovské klauzule, sub-
stituce, unifikace, rezolučńı pravidlo).

Poznámky k pr̊uběhu zkoušky: bez splněného zápočtu nelze j́ıt na zkoušku;
přihlašováńı na termı́ny vypsané v IS STAG (pokud neńı dohodnuto jinak např. emailem);
zkoušeńı bude prob́ıhat do konce zkouškového obdob́ı zimńıho semestru, při problémech v
individuálńıch př́ıpadech budu vstř́ıcný domluvě o př́ıpadném pozděǰśım termı́nu;
zkouška bude ústńı, s ṕısemnou př́ıpravou: student si náhodně vytáhne otázku z okruhu A;
pokud bude v rozsahu 1-6 (7-12), vytáhne si druhou otázku z okruhu B z rozsahu 6-12 (1-5);
čas na ṕısemnou př́ıpravu: 30 minut (bez možnosti nahĺıžeńı do přinesených materiál̊u a
poznámek); čas na ústńı zkoušeńı: zhruba 30 minut.
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