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Poznamky k textu. Tento text vznikl v prubéhu kurzu v zimnim semestru 2025/26 jako
podpurny studijni materidl, dévajici piehled o celkovém priubéhu a dotykajici se vieho pod-
statného z naplné kurzu. Jedna se o mirnou modifikaci difvéjstho materialu. Text je zhruba
¢lenén po jednotlivych tydnech v semestru; pro prehlednost zépis k jednotlivému tydnu zacina
vzdy na nové strané.

N4s pracovni text neni zamyslen jako studentim plné postacujici. Piedpokladé se samostu-
dium z vice zdroju, specidlné z uc¢ebniho textu [1]:

Bélohldvek R.: Matematickd logika (PFF UP, Olomouc, 2006),

ktery je piistupny na http://belohlavek.inf.upol.cz/belohlavekteaching. html.
V [1] najdete i dalsi doporucenou literaturu.

Napf. knihu Svejdar V.: Logika: netiplnost, slozitost a nutnost (Academia 2002)
zpiistupnil jeji autor (za urcitych podminek) na adrese

wwwl.cuni.cz/"svejdar/book/LogikaSve2002.pdf

Na webu lze samoziejmé nalézt i dalsi materialy, napi. skripta
Duzi M.: Logika pro informatiky (VSB-TU Ostrava, 2012)
www.cs.vsb.cz/duzi/Matlogika ESF_Definite.pdf
¢i slidy k prednaskam
Kucera A.: Matematickd logika (FI MUNI, Brno, 2018)
https://www.fi.muni.cz/usr/kucera/teaching/logic/logika.pdf.

Studium prinejmensim textu R. Bélohldvka [1] studentim naseho kurzu velmi doporucugi,
popisuje totiz detailnéji i nekteré ¢ésti, které zde v textu zminfme jen struéné. Ctenafe by
nemeélo zmdst, ze budeme pouzivat znaceni, které se nékdy mirné lisi od znaceni v [1].

R. Bélohlavek také explicitné upozornuje:
“Ucebni texty nejspis obsahuji chyby. Pokud je objevite, sdélte mi je prosim.”

To se zpravidla tyka vSech texti (véetné pouzivanych ucebnic). Pfes mou snahu jako
autora se nepiesnosti/nejasnosti/chyby mohou samoziejmé objevovat i v tomto nasem
pracovnim textu. Také prosim studenty o upozornéni na takova mista.



Jesté poznamenam, ze tento pracovni text je misty formulovan jako zapis z prednasky, ni-
koli jako u¢ebni text pro kompletni samostudium. Uvedené piiklady k feSeni jsou feSeny na
cvicenich, ale urcité ne vSechny. Kazdy student by si pfinejmensim tyto uvedené ptiklady mél
sam kompletné vytesit. Dalsi piiklady najde v odkazované literatuie, mj. ve sbirce feSenych
piiklada doc. Kolaiika, ktera je odkazovana na web-strance naseho predmétu.



Tyden 1
Zacali jsme piikladem Aristotelova sylogismu

z predpokladu “vSechna P jsou M” a “Zadnd S nejsou M”
vyvodime “zadna S nejsou P”,

pricemz jsme si priblizili, o ¢em je logika, jez zkouma zasady spravného usuzovani. Pfipomnéli
jsme si Vennovy diagramy i Booleuv pfistup k ovéfeni spravnosti zminéného sylogismu a
podobnych tsudku.

Pro zajimavost jsme uvedli strukturu Aristotelovych sylogismu a letmo diskutovali i jiné
nez je vyse uvedeny “Camestres” (tedy AEE 2. formy), ale zkouSet se sylogismy sa-
moziejmé nebudou. Postaci, kdyz student rozpoznd spréavnost/nespravnost predlozeného
dsudku a svij ndzor umi podlozit fadnymi argumenty.

Na piikladu z pékné knizky
R. Smullyan: Jak se jmenuje tato knizka?
jsme si ukazali pouziti logiky pri analyze jednoduchého problému “ze zivota”.

O R. Smullyanovi si piectéte napi. na wikipedii. Narodil se v r. 1919 a zemfel teprve
nedavno, v inoru 2017.

.....

(kazdy jejich vyrok je nepravdivy). Navstévnik ostrova potkal 3 obyvatele A, B, C, pfi¢em?z
A mu tekl “v8ichni tii jsme padousi” a B fekl “pravé jeden z nas je poctivec”. Zjistili
jsme, Ze tato informace jednoznac¢né uréuje charaktery osob A, B, C.

Pii uvedené analyze jsme pouzili vyrokové symboly (nebo téz vyrokové proménné, ¢i atomy)
PA, PB, Pc (napi. symbol p4 oznacuje vyrok “A je poctivec”), sestavili jsme jisté formule

vyrokové logiky a hledali pravdivostni ohodnoceni, ktera je splnuji ....

Také jsme se zamysleli nad situaci, kdy ndm navstévnik ostrova sdéli, ze potkal obyvatele
D a ten mu fekl “ja jsem padouch”.

Cviceni 1 Vyreste vijse uvedené problémy z ostrova poctivct a padouchai.

Vyrokova logika

Pfipomnéli jsme si, ze (formdlni) jazyk nad abecedou ¥ je podmnozina mnoziny X*, tedy
néjakda mnozina konecnych posloupnosti prvka X, neboli slov ¢i fetézcu v abecedé X.

Napt. pro ¥ = {a,b} je ¥* = {¢,a,b, aa, ab, ba, bb, aaa, aabd, . .. }, kde £ oznacuje prdzdné
slovo (délky nula). Piikladem jazyka L C {a,b}* je

L ={u € {a,b}* | pocet vyskytu a ve slové u je stejny jako pocet vyskytu b v u}.

Predpokladejme, ze mame pevné ddnu mnozinu VS vyrokovych symboli. Postati ndm napft.
spo¢etnd mnozina



VS = {paqarap(]v d0,T0,P1,491,11,P2,92, 12, - .. }

Symboly psané p, q,r,- - budeme pouzivat jako (meta)promeénné, jejichz hodnoty jsou prvky
VS (jak uvidime hned v nasledujici definici).

Mnozinu FML vyrokoviyjch formuli (zkrédcené formuli) lze chapat jako jazyk nad abecedou
Y=VSU{—-A,V,—,(,)},
definovany strukturalni indukci nasledovné:
1. Kazdy prvek VS je formuli, tedy prvkem FML; neboli, pro kazdé p € VS je p formule.

Zde vidime pouziti p jako vySe zminéné (meta)proménné. Symbol “p” je pro nas jeden
konkrétni prvek mnoziny VS, takze napt. zapis “pro kazdé p € VS je p formule”
by byl nespravny. Nékdy ovSsem k podobné kolizi ve znaceni v textech dojde; méli
bychom si byt ale vzdy schopni ujasnit zamysleny vyznam.

2. Je-li p € FML, pak ¢ € FML. (Je-li ¢ formule, je i fetézec - formule.)

Je ndm jasné, ze symbol ¢ zde pouzivame jako proménnou, jejiz hodnotou je prvek

mnoziny FML, coz je fetézec ve vyse uvedené abecedé ¥; symbol “¢” jako takovy

formuli neni. Zapisem “—¢” pochopitelné oznacujeme fetézec, ktery zac¢ind symbolem
W,

“=” a pak pokracuje Fetézcem, ktery je oznaceny symbolem “p” [neboli fetézcem,
ktery je v daném kontextu hodnotou proménné ¢|.

3. Je-li 1 € FML a g € FML,
pak Tetézce (o1 A p2), (o1 V ¢2) a (p1 — p2) jsou formule (tedy prvky FML).

Jako vzdy u definice tohoto typu se implicitné rozumi, ze jiné Fetézce nez ty, které lze
odvodit z uvedenych pravidel, prvky FML nejsou.

Napf. fetézec ((p A—q) — —=(q — —r)) je formuli, zatimco retézce pAq — —=(q — —r) ¢ Vp—q
podle uvedené definice formulemi nejsou.

Mluvili jsme také o syntaktickém stromu formule, ¢i piislusném logickém obvodu. Je
uziteéné se nad tim zamyslet, byt formélné zde tyto pojmy nedefinujeme.

Néekdy se také zavadi pojem wvytvorujici posloupnosti wg, @1, ...,k formule @i; napt. po-
sloupnost g = p, Y1 = q, 92 = 1,93 = (o A p2) je jedna z vytvorujicich posloupnosti
formule (p A —q).

Cviceni 2 Navrhnéte definici pojmu syntakticky strom formule a nakreslete jej pro formuli
((pA=q) = =(q = ).

Pfipomnéli jsme pojem pravdivostniho ohodnoceni (zkracené ohodnocent, anglicky muzeme
fici evaluation), coz je zobrazeni typu

e: VS — {0,1}.
Zde 0 znamend nepravda (hodnota false) a 1 znamend pravda (hodnota true). K ohodnoceni
e je pritazeno jeho rozsifeni

&: FML — {0,1}
definované nasledujici strukturalni indukei; v ni pouzivame booleovské funkce f-, fa, fv, f=,
o nichz bude fe¢ nize.



1. pro p € VS je é(p) = e(p);

2. é(~p) = f-(e(p));

3. e((¢1 AN pa)) = fale(pr), e(p2));
e((p1V2)) = ful(e(er), e(p2));
e((g1 = w2)) = f(e(p1), e(w2)).

Booleovskou funkci n proménnych rozumime funkei typu f : {0,1}" — {0, 1}.

e Funkce f- ma 1 proménnou a spliuje f(0) =1 a f-(1) =0.

e Funkce fa, fv, f— maji dvé proménné a jsou definovany nasledovné:
fa(z,y) =1 prave tehdy, kdyz z =y = 1,
fu(z,y) = 0 prave tehdy, kdyz z = y = 0;
f—(x,y) = 0 prave tehdy, kdyz x =1 a y = 0.

Umluva.

e V dalsim budeme rozsiteni e oznacovat rovnéz e. Kdyz tedy fekneme “ohodnoceni” e,
muzeme myslet zobrazeni jak typu e : VS — {0, 1}, tak typu e : FML — {0,1}.
Zvl4st zdtraznime, pokud to bude tieba rozlisovat.

e Hodnotu e(y) budeme také oznacovat ||¢lle a fikdme ji hodnota formule ¢ pri pravdi-
vostnim ohodnocent e.

e Pouzijeme-li pro formuli ¢ zapis ¢(p1,p2, ..., Pn), 0znacujeme tim fakt, ze ve ¢ se nevy-
skytuji jiné vyrokové symboly nez symboly z mnoziny {p1,p2,...,pn} (ovSem nemusi se
v ni vyskytovat vSechny). Napf. pro formuli ¢ = ((p A 7q) — —=(¢ — —7)) je v porddku
jak zépis ¢(p, q,r), tak tieba zdpis ¢(p, p1,q,7,73).

Pouzili jsme zde obecnéji proménné pi,ps,... pro prvky VS, nikoli pfimo symboly
P1sDgs - - (coZ jsme také mohli udélat); vyznam by mél byt opét jasny.

Strukturalni indukei jsme snadno ukazali:

Tvrzeni 1 Shoduji-li se ohodnoceni e, ea na mnoziné {p1,pa,...,pn} (tedy e1(p;) = ea2(pi)
pro vi. i € {1,2,...,n}), pak pro o = (p1,p2,...,pn) mdme ||¢]le; = ||@les-

Cviceni 3 Pripomente si, co je to strukturdlni indukce, a tvrzeni pordadné dokazZte.
Reseni:

1. Kdyz ¢ = p (tedy ¢ je atomickd, tj. vyrokovy symbol), tak ||¢|lc = e(p) a tvrzeni je
ziejmé (hodnota ||p||. je uréena hodnotou e(p); na hodnotéch e(q) pro ¢ # p nezalezi).

2. Necht ¢ = —) a vSechny vyrokové symboly vyskytujici se v 1) patii mezi vyrokové
symboly oznacené pi,po,...,pn; lze tedy psat ¢ jako ¥ (p1,p2,...,pn) a také ¢ jako
@(pl;p% v 7pn)



Podle indukéniho predpokladu (provadéné strukturdlni indukce) predpokldddme, ze
l¥]|e je uréena hodnotami e(p;),e(p2),...,e(py) (pficemz na hodnotich e(q) pro q ¢
{p1,p2,...,pn} nezalezi). Jelikoz podle definice mame ||¢|. = f-(|||le), hodnota ||¢]le
je ur¢ena hodnotou |1 a ta je uréena hodnotami e(p;),e(p2),...,e(py). Tedy i hod-
nota ||¢l|e je uréena hodnotami e(py),e(p2),...,e(p,) (pFicemz na hodnotach e(q) pro
q ¢ {p1,p2,...,pn} nezélezi).

3. Necht ¢ = (11 A 1b2) a vSechny vyrokové symboly vyskytujici se v 11 a 1y patif mezi
vyrokové symboly oznacené pi,po,...,Pn. ....

Dokoncete cely dukaz podrobné sami. O

Cviceni 4 Navrhnéte postup, jak lze k formuli o(p1,p2,...,pn) priradit booleovskou funkci
B, :{0,1}" — {0, 1} tak, Ze pro kaZdé ohodnoceni e plati B,(e(p1),e(p2), ..., e(Pn)) = [|¢|le-

Cviceni 5 Navrhnéte postup, jak lze k booleovské funkci B : {0,1}" — {0,1} sestrojit
formuli op v niz se vyskytuji jen vyrokové symboly py, Py, ..., P, @ pro kazdé (by, ba, ..., by,) €
{0,1}™ plati B(b1,ba,...,bn) = ||¢Blle, kde e(p;) =b; proi=1,2,...,n. (Ndpovéda: zacnéte
s funkcemi B : {0,1}"™ — {0, 1}, které ddvaji 1 jen pro jednu n-tici vstupi.)

Ptipomnéli jsme definici nédsledujicich pojmu. Formule ¢ je
e pravdivd pri ohodnocend e, jestlize ||plle = 1;
o splnitelnd, jestlize existuje e tz. [|¢|le = 1;
e tautologie, neboli logicky platnd (¢i logicky pravdiva), jestlize |||l = 1 pro kazdé e;

e nesplnitelnd, neboli kontradikce, jestlize ||p|le = 0 pro kazdé e.
Pozorovani 2 Formule ¢ je tautologie prdavé tehdy, kdyz —p je nesplnitelnd.

Zavedli jsme pojem ekvivalence formuli:

Y1 a 2 jsou (sémanticky) ekvivalentni, oznacujeme o1 = @9, jestlize Ve : ||o1|le = |[¢2]le-

Relace = je relaci na mnoziné FML, tedy =C FML x FML, ktera ocividné je reflexivni,
symetrickd a tranzitivni; je to tedy relace ekvivalence a odpovida ji piislusny rozklad
mnoziny FML. (Uvédomme si ale, ze ¢1 = @2 neni formule vyrokové logiky ...)

Udélali jsme bézné dohody o vynechavani zavorek ve formulich, mj. vyuzitim priorit pro
logické spojky (v pofadi =, A, V, —, kde = vaze nejsilnéji).

Strukturalni indukci jsme definovali, co jsou podformule dané formule. VSimnéme si, zZe
napt. 1 = g — r nent podformuli formule o = p A ¢ — r, protoze plné uzavorkovana o
je ((p A q) — r) a jeji podformule jsou p,q,r,(p Aq),((p A q) — r) (prvni ¢tyfi jsou vlastni
podformule formule ¢2).

Napf. u ¢ = rV-pVq neni jasné, zda vznikla vynechédnim zavorek z 1 = ((rV-p)V¢q) nebo z
w2 = (rV(—pVq)), ale to ndm nevadi, protoze o¢ividné plati p; = ¢a. (Vynechavanim zavorek
se muzeme dopustit nejednoznacnosti ohledné reprezentované formule, ale reprezentovand
tiida rozkladu podle ekvivalence = je jednozna¢nd.)



Cviceni 6 Najdéte vsechny podformule formule (p — q) A =q — p. Pak zjistéte, zda je dand
formule splnitelnd a pripadné dokonce tautologie.

Zminili jsme i prefizovou notaci, kde se bez zavorek zcela obejdeme, aniz se dopoustime
jakékoli nejednoznaénosti: zde je formule bud vyrokovy symbol, nebo je v jednom z tvarti
—p1, ANp1pa, V1pa, — P12, kde @1, s jsou formule.

Na zavér jsme rozebrali tento (slozeny) vyrok:
Neni pravda, ze nepfisli-li dnes na prednasku ti nejhorsi studenti, pak nepftisli ani ti nejlepsi.

Cviceni 7 Zformulujte uvedenou vétu jako vyrokovou formuli a pouzijte ji k analijze situace.



Tyden 2

Tabulkova metoda.

Ptipomnéli jsme si tabulkovou metodu, kterd k dané formuli ¢ mj. sestroji tabulku repre-
zentované booleovské funkce B, : {0,1}" — {0,1}, kde n je pocet vyrokovych symboli
vyskytujicich se ve ¢ (jako atomické podformule). Uvédomili jsme si, ze aby funkce B, byla
jednozna¢éné dana formuli ¢, musime mit vyrokové symboly néjak uspotfadény. Nase volba
VS = {p,q,1, Py 995 L0, P1,d1, 1, P2 A2, L2, - - - } PFimo nabizi jedno takové usporadani.

Cviceni 8 Sestrojte tabulku funkce B, kde formule ¢ je ((qg — —(p; AT)) — p1)-

Lze uvazovat také tuto ekvivalenci na mnoziné FML: 1 a @2 jsou ekvivalentni, jestlize
B,, = B,,. Rozmyslete si, proc je to jind ekvivalence nez =.

Normalni formy formuli.
Ptipomenme, ze literdl je vyrokovy symbol, napf. oznateny p, ¢i jeho negace, napt. —p;
klauzule je formule tvaru (€1 V fo---V £y), kde k > 1 a ¢; jsou literély.

Pro k = 0 dostaneme prdzdnou klauzuli, oznac¢ovanou napt. [, coz je nesplnitelna formule
(kontradikce). Tu vyuzijeme pozdéji pti diskusi rezoluéni metody.

Formule je v konjunktivni normdlni formé (KNF), kdyz je tvaru C;y ACy -+ -ACyy, kde m > 1 a
C; jsou klauzule. Disjunktioni normdlni forma (DNF) je definovana analogicky, s prohozenou
roli A a V.

Vsimli jsme si, ze pro fixnf n mame 22" booleovskych funkef n proménnych a ukézali jsme
si, ze k tabulce jakékoli funkce f : {0,1}" — {0,1} umime sestrojit formuli ¢ v (iplné)
disjunktivni normélni forme tak, ze B, = f. Totéz jsme ukdzali pro konjunktivni normaln{
formu. Ukazali jsme tedy i platnost nasledujictho tvrzeni.

Tvrzeni 3 Ke kazdé formuli ¢ lze sestrojit o1 v KNF (Konjunktivnié Normdlni Formé) a o
v DNF' (Disjunktivni Normdlni Formé) tak, Ze ¢ = p1 = pa.

Cviceni 9 K formuli ((q3 — —(p; A 1)) — p;) 2z Cviceni 8 sestrojte ekvivalentni formule
v KNF i DNF.

Cviceni 10 Uvédomte si specialni pripad tautologii a kontradikci. Jak navrhnete ekvivalentnd
formule v KNF a DNF u nich?

Funkcionalni Gplnost systému logickych spojek.

Systém logickych spojek je funkciondlné tplngj, jestlize ke kazdé booleovské funkci f existuje
vyrokova formule ¢, v niz se nevyskytuji logické spojky, které nejsou v systému, a pro kterou
méme B, = f.

Dokézali jsme uz, ze systém logickych spojek {—, A, V} je funkcionélné tiplny. (Pro¢?)

Pripomnéli jsme si de Morganovy zdkony a dalsi ziejmé ekvivalence formuli:

01 A2 = (—p1 V), o1V = (mer A ),
Y1 = P2 =1 Ve, p1Vpr =9 — e



7 toho jsme snadno odvodili:
Tvrzeni 4 Kazdy ze systému {—, A}, {—,V} a {—, =} je funkciondlné uplny.

Vsimli jsme si také, ze spojka “NAND” (“ne oba”), neboli tzv. Shefferuiv operdtor | defi-
novany vztahem p|g = =(pAgq), je sama funkciondlné tplnym systémem. Je totiz —p = p|p
apAqg=-(=(pAq) =-(plg) = (plg)|(plg). Podobné to plati pro “NOR” (“ani ani”).
Logické obvody 1ze tedy v principu sestavovat z jednoho typu hradel.

Cviceni 11 Argumenujte, pro¢ systém {A,V,—} neni funkciondlné dplny. (Ndpovéda.
Ukazte, Ze k formuli ¢ = —p neexistuje formule ¥, v niZ véechny logické spojky patii pouze do
mnoZiny {A\,V,—} a zdroven plati B, = By.)

Logicka spojka < jako zkratka.
Zavedli jsme logickou spojku <+ jako zkratku:

(¢ <> 9) neni (formdalné vzato) formule, ale je to zkratka za formuli ((¢ — ) A (¢ — ¢)).

Jinou variantou je vzit <+ jako plnohodnotou spojku, s prislusnou funkei fo,, kde fo(z,y) =1
prave tehdy, kdyz x = y, a pfislusné doplnit nés jazyk vyrokové logiky.

I pii nasi volbé zavedeni <> jako zkratky ji muzeme pii zépisu formuli pouzivat (s nejmensi
prioritou, pokud jde o zdvorky); jsme si pfitom prosté védomi, ze néas zapis nenf striktné vzato
formuli, ale jednoznaéné reprezentuje fadnou formuli (¢i alespon jeji t¥idu ekvivalence =).

Nechali jsme dosud implicitni, ze spojky —, A, V, — nazyvame postupné negace, konjunkce,
disjunkce, implikace. Spojku <+ prirozené nazveme (logickd) ekvivalence, ale je to néco jiného
nez relace na mnoziné. Promysleli jsme si proto dukladné nésledujici tvrzeni a jeho dikaz.

Tvrzeni 5 Pro libovolné formule v1, pa plati o1 = pa (tedy 1, p2 jsou ekvivalentni, tedy
Ve : |e1]le = ||lp2lle) prdave tehdy, kdyz o1 <> w2 je tautologie.

Pro stru¢nost bychom mohli napsat: ¢1 = @2 <= 1 < w2 € TAUT, kde TAUT je
mnozina tautologii. Tady symbol <= nahrazuje ono “pravé tehdy, kdyz” a je to tedy
symbol pro logickou ekvivalenci na metatirovns.

Cviceni 12 Udélejte si dikaz Tvrzeni 5 poradné. Jednd se o dvé implikace (na metairovni).
Nejprve tedy ukazte, Ze kdyz p1 = @2, tak o1 <> @2 je tautologie. Pak ukazte, Ze kdyz o1 < o
je tautologie, tak p1 = @o.

Reseni:

Implikace “=".

Predpokladejme, ze plati o1 = o, tedy Ze pro kazdé pravdivostni ohodnoceni e mame
leille = llw2lle- Uvazme nyni formuli ¢ odpovidajici zépisu @1 <> @9, tedy vlastné formuli
(p1 = @2) A (p2 = 1). Ukdzeme, ze 1 je tautologie:

Uvazme libovolné ohodnoceni e a pfipomenme si, ze

[Plle = Fa (F=(lerlle, llpalle)s fl@zlle, lealle))-



Jelikoz ||¢1]le = ||p2]le, mame

bud [[¢[le = fa (f-(0,0), f-(0,0)) nebo [y)lle = fr (f-(1,1), f-(1,1)).

Protoze f,(0,0) = f(1,1) =1 a fa(1,1) = 1, vyjde v obou ptipadech |[?||e = 1.
Implikace “<".
Udélejte sami. 0

Cviceni 13 Pripomerite si (najdéte) axiomy Booleovy algebry a vyjddrete je jako sadu tau-
tologii vyrokové logiky.

Reseni:

Pouzijme 1 jako zkratku za formuli (p V —p) a 0 jako zkratku za formuli (p A —=p).
Komutativita V: (¢ V1) <> (¢ V @),

komutativita A: (¢ A1) <> (P A @),

asociativita V: (¢ VY)VE) < (¢ V (¥ VE)),

asociativita A: ((p AY) AE) < (A (P AE)),

absorpéni zakony: (@ A (V1)) <> v a (eV (e AY)) < ¢,

distributivni zadkony: @ A (Y V&) <> (p AY)V (e AE) apV (YAE) < (V) A(pVE),
komplementarita: (¢ V =p) <> 1 a (p A =) < 0.

(Pozdéji se zminime o vzdjemné (ne)zavislosti téchto axiomu ...)

Dodatek k normdlnim formam. Formule je v konjunktivni normdlni formé (KNF),
jestlize je to konjunkce koneéného poctu elementdrnich disjunkci (tedy tzv. klauzuli, tj. dis-
junkei koneéného poctu literdlu). Formule je v disjunktivni normélni formé (DNF), jestlize je
to disjunkce konecného poéctu elementdrnich konjunkei (konjunkei koneéného poctu literdlu).

Vedle “tabulkového” postupu konstrukce dplngjch normalnich forem, jsme si ukazali i prevod
formuli do KNF ¢i DNF vyuzitim strukturalni indukce. Klicovym byl pfitom fakt, Zze formule

(CrANCy---ANCp)V(CINCh---NCY)
je ekvivalentni formuli
(CLVCHN(CIVEL) - AN(CLVCL)N(C2VC) A+ -AN(CoVCL )N - AN(Crp VC) A+ - - AN(Cry VCY,),
neboli

(ANGVIANG = A @y,

1<i<m 1<5<n 1<i<m,1<j<n

It i R

Tento fakt, a dudlni fakt s prohozenymi konjunkcemi a disjunkcemi, lze odvodit napf. vyuzitim
“distributivnich zakonu”.

Vzpomente si na nase vyjadieni axiomu Booleovy algebry jako tautologii vyrokové logiky.
Méme mj. o1V (paAps) = (p1 V) A(p1Vips) ataké o1 A(paVes) = (1 Ap2) V(1 Aps).

Uvédomili jsme si tak mj., ze mame i jiné moznosti prevodu formule do KNF (¢i DNF) nez
pres tabulku. (Mj. se také uplatni de Morganovy zakony ...)
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Tyden 3

Véta o substituci a véta o ekvivalenci.

Jednoducha fakta o substitucich ve formulich se daji prezentovat nasledujicimi dvéma body
(kterym muzeme fikat véta o substituci a véta o ekvivalenci):

Tvrzeni 6

1. Kdyz ¢ je tautologie a @' vznikne z ¢ nahrazenim vsech viskyti vyrokového symbolu p
(jakoukoli) formuli 1, tak ¢’ je také tautologie.

2. Jestlize ¢’ vznikne z ¢ nahrazenim (jednoho) viskytu podformule ¢ ekvivalentni formuli
Y (mdme tedy o =)'), tak o = ¢’ (neboli p <> ¢’ je tautologie).

Ptred uvedenim dikazu si vSimnéme, ze tise predpokladdame, ze piislusSnym nahrazovanim
vznikaji zase formule. To lze samoziejmé snadno ukazat strukturdlni indukci, jak zadaji
nasledujici dvé cviceni.

Cviceni 14 Meéjme vyrokovy symbol p € VS a formule p,¢ € FML. UkaZte, Ze kdyz ve ¢
nahradime kazdy vyskyt symbolu p (pokud tam takovy je) formuli 1, tak vznikne formule; tuto
vyslednou formuli miZeme oznacit .

Reseni. Pokud se p ve ¢ nevyskytuje, je tvrzeni trividlni (a ¢’ = ). Predpoklddejme déle,
7e se p ve ¢ vyskytuje. Pfi provedeni strukturdlni indukece rozlisime 3 piipady (omezime
se na funkciondlné uplny systém logickych spojek {—, —}):

e  je atomickd; v nasem ptipadé tedy ¢ = p:
zde je oCividné ¢’ = 1;

* p=-¢:
podle indukéniho predpokladu, nahrazenim vsech vyskyta p ve formuli € formuli ¢
vznikne formule £’; nahradime-li tedy vsechny vyskyty p ve formuli —=¢ formulf ),
vznikne formule —¢’, coz je kyzena ¢';

* v =(p1 = p2):
podle indukéniho predpokladu, nahrazenim vsech vyskytu p ve formuli ¢; formuli ¢
vznikne formule ¢} a nahrazenim vsech vyskytu p ve formuli o formulf ¢ vznikne
formule ¢f; nahradime-li tedy vSechny vyskyty p ve formuli (p; — 2) formulf ¢,
vznikne formule (¢} — %), coz je kyzend ¢’.

Cviceni 15 Méjme formuli o, jeji podformuli 1 a formuli +)’'. Ukazte, Ze nahradime-li jeden
vyskyt 1 ve @ formuli +’, dostaneme formuli, kterou mizZeme oznacit ¢'.

Dukaz. (Tvrzeni 6)

1. Méjme ¢, p, 1, ¢’ jak je popséano v tvrzeni. Zvolme libovolné pravdivostni ohodnocen{
e; hodnotu [[¢]|. ozna¢me b (b € {0,1}). Je ziejmé (a strukturdlni indukei snadno demon-
strovatelné), ze hodnota ||¢’||. je stejnd jako ||¢|le, kde €/ (p) = b a €/(q) = e(q) pro kazdé
q € VS ~ {p}. Jelikoz ¢ je tautologie, mame ||| = 1, a tedy také ||¢'||. = 1. Jelikoz e bylo
zvoleno libovolné, dokézali jsme, ze ¢’ je tautologie.

2. Dtikaz je pfenechén ¢tenafi. O

11



Sémantické vyplyvani.

Rekneme, ze mnozina formuli T C FML je splnéna pravdivostnim ohodnocenim e, jestlize
llelle = 1 pro kazdou ¢ € T'. Mnozina T je splnitelnd, jestlize existuje pravdivostni ohodnoceni
e, které ji spliuje; v opacném pripadé je T mesplnitelnd.

Zavedli jsme znaceni T = ¢ (Cteme “p sémanticky vyplyva z T” nebo také “p je tautolo-
gickym dusledkem T7). T |= ¢ plati, jestlize pro kazdé pravdivostni ohodnoceni e spliujici T'
mame ||¢|le = 1.

Piseme také T, ¢ = ¢ misto T U {p} = 1, ddle 1, p2 = ¢ misto {¢1,p2} E ¥, apod. Také
piseme = ¢ misto ) = . Uvédomili jsme si, ze

E ¢ je vlastné vyjadreni faktu, ze ¢ je tautologie,
a také ze
kdyz T je nesplnitelnd, tak pro vSechny formule ¢ méme 7' = .

Cviceni 16 Vysvétlete, proé¢ plati p — q,q — r = p — r a pro¢ neplati p — q = —p — —r.
Zjistéte, zda plati T = ¢, kde T = {r — p,—~q = r} a p = =(p A 7q).

Uvédomili jsme si jednoduchy uzitecny fakt:
Tvrzeni 7 T |= ¢ prdvé tehdy, kdyz T U {—p} je nesplnitelnd.

Dukaz. Podle definice, T'U {—¢} je nesplnitelnd prave tehdy, kdyz neexistuje pravdivostn{
ohodnoceni e spliujici zaroven (viechny formule v) T' i —¢p, tedy pravé tehdy, kdyz kazdé
pravdivostni ohodnoceni e spliujici T nespliiuje —; pritom e nespliiuje —p pravé tehdy,
kdyz spliiuje . O

Sémanticka véta o dedukci.
Tvrzeni 8 T, ¢ |= ¢ prdvé tehdy, kdyz T = ¢ — 1.

Dukaz.

“=” (implikace zleva doprava):

Predpokladejme, ze pro kazdé pravdivostni ohodnoceni e plati: jestlize e spliiuje T a ¢, tak
spliiuje také ¢). Uvazme ted libovolné pravdivostni ohodnoceni e’ spliujici T'; ukdzeme, Ze €’
spliiuje formuli (o — ), éimz bude dukaz (implikace zleva doprava) hotov.

Pokud ||¢|le = 0, pak méme (¢ = ¢)|le = 1 (jelikoz f—(0,b) = 1 pro obé b € {0,1}).
Pokud ||¢||e = 1, pak podle ivodniho predpokladu plati ||1]|e = 1, a tedy |[(¢ — ¥)||e =1
(jelikoz f,(1,1) =1).

“<” (implikace zprava doleva): cviceni. O

Cviceni 17 Doplrite édst “=” v predchozim dukazu.

Uvedené tvrzeni se také nazyva sémanticka véta o dedukci; pozdéji uvedeme jeji syntaktickou
verzi.
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Véta o kompaktnosti vyrokové logiky.

Vsimnéme si, ze pii zavedeni T' = ¢ jsme nemluvili o piipadu, kdy je T' nekone¢nd, coz
je uzitetné v nékterych kontextech uvazovat. Dokdzeme ted nasledujici vétu, ze které napf.
plyne, ze kdyz vrcholy nekoneéného grafu G nelze obarvit k barvami (tak, aby zadné dva
vrcholy spojené hranou nemély stejnou barvu), tak takto nelze obarvit ani vrcholy néjakého
konecného podgrafu G’ grafu G.

Veéta 9 (o kompaktnosti). T C FML je splnitelnd prdvé tehdy, kdyz kazdd konecnd T C T je
splnitelnd. (Tedy kdyz T je nesplnitelnd, tak existuje konecnd T' C T, kterd je nesplnitelnd.)

Dukaz. Smér “=" je zfejmy (kdyZz je mnozina formuli splnitelnd, tak kazd4 jeji podmnozina
je splnitelnd).

Pro dukaz sméru “<” je klicové si uvédomit, ze kdyz kazdd konecnd 77 C T je splnitelnd
a pro néjaky vyrokovy symbol p plati, ze p ani —p nepatii do T' (obé formule p a —p do
T pochopitelné patfit nemohou), tak nutné bud plati, ze kazda koneénd T C T U {p} je
splnitelnd, nebo plati, ze kazdd koneénd T" C T U {—p} je splnitelnd. Kdyby totiz existovala
koneénd 77 C T U {p}, kterd je nesplnitelnd, a zdroven konecnd To C T U {—p}, kterd je
nesplnitelnd, tak (71 UT2) ~ {p, —p} je nesplnitelnd. (Proc¢?)

Pfipomefime si ted’, Ze mnozinu VS vyrokovych symbolti méme uspoiddénu a tato mnozina
je spocetnd. Pro tucely dukazu zde oznac¢me jeji prvky pg,p1,p2,.... VySe uvedenou uvahu
provedeme postupné pro pg, pak pro pi, atd., a zamyslime se, k ¢emu dojdeme po provedeni
tohoto nekoneéného procesu.

Vychazime z mnoziny T', o niz pfedpokladame, ze kazda jeji konetnd podmnozina je splni-
telnd. Mnozinu T postupné rozsifujeme tak, Ze nakonec dospéjeme k mnoziné T D T, pro niz
také plati, ze kazda jeji konecna podmnozina je splnitelnd, a navic pro kazdy vyrokovy symbol
p plati, Ze pravé jedna z formuli p a —p patif do 7. Pak ovsem pravdivostni ohodnoceni e
definované

1 ... jestlizepeT
e(p) = { o .
0 ... jestlize -peT

spliiuje véechny formule z T, a tedy i véechny formule z T'. Skuteéné: kdyby totiz existovala
© = o(p1,p2,---,pn) v T takova, ze ||p|le = 0, tak mnozina T = {p1,D2,---,Dn, ¢}, kde p;
jen ten prvek mnoziny {p;, —p;}, ktery patif do T, je nesplnitelnd (coz je spor, protoze T" je
kone¢nd podmnozina mnoziny 7). O

Diusledek 10 T | ¢ prdvé tehdy, kdyz existuje koneénd T' C T takovd, Ze T' |= ¢, tedy

pravé tehdy, kdyz = o1 — (p2 = (- on—1 = (on = ©)-++)) pro néjaké ¢1,92,...,on €T
(kde muze byt n = 0; v tom pripadé = ).

Cviceni 18 Dokazte, zZe kdyz T' = v a T = {p1,92,...,pn}, tak plati

Fe1 = (2= (o1 = (= 9) 1))
(PouZijte sémantickou vétu o dedukci.)
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Tyden 4

Nejprve ukdzeme jesté podrobnéjsi dikaz véty o kompaktnosti pro vyrokovou logiku nez
minule.

Véta (o kompaktnosti). T C FML je spinitelnd prdvé tehdy, kdyz kazdd konecnd T C T je
splnitelnd. (Tedy kdyZ T je nesplnitelnd, tak existuje konecnd T' C T, kterd je nesplnitelnd.)

Dikaz. Smér “="je ziejmy: Kdyz existuje pravdivostni ohodnoceni e, které spliiuje 7', tedy
takové, ze |lplle = 1 pro vSechny ¢ € T, tak pifmo toto e ukazuje, ze kazdd T' C T je
splnitelnd, tedy i kazd4 koneénd 7" C T je splniteln4.

Ukézeme smér “<”. Predpoklddame tedy, ze kazda koneénd T C T je splnitelnd, tedy pro
kazdou koneénou 77 C T existuje e takové, ze |||l = 1 pro véechny ¢ € T”. Neni ovSem hned
ziejmé, ze existuje jedno fixn{ €', které spliuje kazdou konetnou 7" C T'. (Takové €’ by pak
samoziejmeé spliovalo celou T'. Pro¢?) My ale takové e’ vybudujeme.

Pro jednoduchost prezna¢me vyrokové symboly tak, ze VS = {p;, py, D3, - - . }. VSimnéme si,
ze pro kazdé ¢ > 1 mame {p;, p,;} € T, jelikoz {p;, —p,;} je koneénd mnozina, ktera ocividné
neni splnitelna.

Polozime Ty = T a pro i = 1,2,... budeme definovat €'(p;) a mnozinu 7T; tak, ze T; =
Ti—1 U{p,;} kdyz €¢/(p;) = 1 a T; = T,_1 U{-p;} kdyz €¢/(p;) = 0. Budeme pfitom udrzovat
vlastnost, ze kazd4 konecénd T C Tj je splnitelnd néjakym ohodnocenim e, které se na mnoziné
{pP1,P2; - ,p;} shoduje s €. (Pro Ty to tedy jen tkd, ze kazda jeji koneénd podmnozina je
splniteln4.)

Proi=1,2,3,... postupujeme takto:

1. Pokud plati p; € T;—1, tak definujeme T; = T;_1 a €/(p;) = 1.

Ovérme, ze kazdd koneéna T' C T; je splnéna néjakym ohodnocenim e, které se na
{pP1,P2, - ,p;} shoduje s €’: Jelikoz T" U {p;} je koneénou podmnozinou T;_1, je tato
mnozina splnéna ohodnocenim e, které se na {py,ps, - ,p;_1} shoduje s ¢ (podle
indukéniho predpokladu); navic nutné plati i e(p;) = 1.

2. Pokud plati —p; € T;_1, tak definujeme T; = T;_1 a €'(p;) = 0.

Ovéreni, ze kazda konecnd T C T; je splnéna néjakym ohodnocenim e, které se na
{pP1,P2, - ,p;} shoduje s €, se provede podobné jako vyse.

3. Pokud mame p; &€ T;_; a —p; & T;_1, tak plati (alesponi) jedna z téchto podminek:

(a) kazdd koneénd T C T;_; je splnéna néjakym ohodnocenim e, které se na
{pP1,P2, - »P;j_1} shoduje s ¢ a navic plati e(p,) = 1,

(b) kazdd konetnd T' C T;—; je splnéna néjakym ohodnocenim e, které se na
{pP1,P2s " ,Pi_1} shoduje s €' a navic plati e(p;) = 0.

Kdyby totiz neplatilo ani (a) ani (b), tak by existovala koneénd T’ C T;_; takova, ze
pro kazdé e spliujici 7", které se na {p;,ps, - ,p;_1} shoduje s ¢/, plati e(p;) = 0, a
zaroven by existovala koneénd T"” C T;_q takova, zZe pro kazdé e spliiujici T”, které se na
{P1,P2, " ,Pi_1} shoduje s €, plati e(p,;) = 1. Pak ovSem koneéna 7" UT"” C T;_; neni
splnitelnd zddnym e, které se na {py, psy, -, p;_; } shoduje s €', coz je spor s udrzovanou
vlastnosti (kterd je zde sou¢dsti indukéniho predpokladu).
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V piifpadé (a) definujeme T; = T;_1 U {p;} a €/(p;) = 1; pokud (a) neplati (a tedy nutné
plati (b)), definujeme T; = T;_1 U {-p,} a €/(p;) = 0.

I zde pro T; tedy ocividné plati, ze kazda jeji kone¢nd mnozina je splnitelnd néjakym
ohodnocenim e, které se na mnoziné {py, p;,--- ,p;} shoduje s €.

Vidime, ze pro mnozinu T = Ui>o Ti plati, ze pro kazdé i > 1 je v T pravé jeden z literald p; a
—p,. Je pritom zfejmé, Ze e’ spliuje kazdou formuli v T' (tedy také spliuje mnozinu 7' = Tp).
Pro kazdou formuli ¢ € T existuje totiz j takové, ze vSechny vyrokové symboly ve ¢ jsou

obsazeny v mnoziné {p;,ps,...,p;}- Mdme tedy ¢ € T; a ¢ je proto splnéna ohodnocenim
e, které se na {p;,pa,- - ,pj} shoduje s €/, coz v tomto piipadé znamend, zZe ¢ je splnéna i
ohodnocenim ¢'. O

Axiomaticky systém vyrokové logiky.

Dosud jsme se zajimali o sémantiku vyrokové logiky (vyznam formuli, pojmy jako je splnitel-
nost, tautologie, sémantické vyplyvani ...). Ted se zajimdme o syntaktické aspekty. Pohovorili
jsme o vyznamu tzv. vyrokového kalkulu (vyrokového poctu) a pustili se do jeho budovani.

Omezili jsme se na funkciondlné uplny systém {—, —} stejné jako [1]. Formule pouzivajici
také nékterou ze spojek A, V (nebo <) zde tedy formélné povazujeme za zkratky formuli
v systému {—, —}. (Pfipomenme si, ze ¢ Vi) = —p = a p A = =(p — ).)

Uvedli jsme postupné ti schémata axiomi jako v [1]:

Loo— (¥ — o),
2. (p = (Y1 = 12) = (¢ = P1) = (p = ¥2)),
3. (7Y = =) = (¢ = ).

Dosazenim jakychkoli formuli (vyrokové logiky) za (metaproménné) ¢, 1, ... do vyse uve-
denych schémat dostaneme konkrétni azxiomy. Napt. dosazenim formule (—p — (q — —r)) za
¢ a formule (—r — p) za ¥ ve schématu 1 dostaneme axiom

(-p = (¢ = —r)) = ((-r = p) = (=p — (q — —1))).

Cviceni 19 Demonstrujte, Ze kazdy axiom (tedy kazdd formule, kterd je instanci uwvedenyjch
schémat) je tautologie.

Dale jsme uvedli dedukcni (odvozovact) pravidlo MP (Modus Ponens):

@, 0 =1
'l)b 7
které ¢teme “z formuli ¢ a ¢ — ¢ (nad ¢arou) lze odvodit formuli ¢ (pod ¢arou)”. Napf.

tedy z formuli (—-p — (q — —r)) a ((-p = (q — —r)) = (-r — p)) odvodime pravidlem MP
formuli (-r — p).

Cviceni 20 Demonstrugte, zZe kdyz ¢ a (¢ — ) jsou tatutologie, pak také i) je tautologie.
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Rekli jsme, co je to diikaz formule ¢ v teorii T (zde T je néjaka, tfeba i nekoneénd, mnozina
formuli, tedy podmnozina mnoziny FML) a definovali jsme znaceni

TkHop,

které znaci, ze formule ¢ je dokazatelnd z T, tedy ze existuje dukaz formule ¢ z T'; také
fikdme, ze ¢ je teorém teorie T.

Dikazem ¢ z T je jakdkoli posloupnost formuli o1, o, ..., ¢k, kde ¢ = ¢ a pro kazdé
i € {1,2,...,k} plati, Ze ; je bud axiom (tedy instance né&jakého axiomového schématu),
nebo prvek mnoziny 7', nebo se da odvodit pravidlem MP z formuli ¢;, a ¢;, pro néjaka
Ji,d2 € {1,2,...,i—1}.

Sestavme si ditkaz formule p — p z 0, tedy ukazme () - p — p, coz také piseme jako - p — p.
N4&s dukaz je posloupnost péti formuli @1, @2, ©3, @4, @5, kde:

1. ¢1je: p— ((p = p) — p) (instance ax. schématu 1 [¢ = p, ¥ = (p — p)]),

2. paje: (p—=>((p—=p)—p)— ((p—(p—p)— (p—p)) (instance ax. schématu 2),
3. w3 je: (p— (p—p)) — (p— p) (vznikne aplikaci MP na ¢; a ¢3),

4. ¢4 je: p — (p — p) (instance ax. schématu 1),

5. @5 je: p — p (vznikne aplikaci MP na ¢4 a @3).

Ukazme jesté, ze plati T+ ¢, kde T' = {r, (-q — —r)} a ¢ = q. To lze prokdzat napf. timto
dukazem: ((—q — —r) — (r — q)), (-q — —1), (r = q), 1, q.
Oveérili jsme korektnost axiomatického systému:

Véta 11 (o korektnosti). Jestlize T & ¢, pak T |= ¢.

Cviceni 21 Dokazte vétu o korektnosti indukci podle délky dikazu; konkrétné ukazte, Ze pro
kazdy dikaz p1,p9,...,0r 2z T plati, Ze @i je pravdivd pro kazZdé pravdivostni ohodnoceni
splriugici T'.

Opacna véta, véta o iplnosti (jestlize T' = ¢, pak T' - ¢) je obtiznéjsi; dokdzeme ji postupné.
Zacneme (syntaktickou) vétou o dedukci.

Nejprve pripomenime trivialni pozorovani:
Pozorovani 12 Jestlize T o a T CT', pak T' + .

Nyni jiz k oné (syntaktické) vété o dedukei:
Véta 13 (o dedukci). Pro kazdé T C FML a ¢,v € FML plati

T, F Y prdvé tehdy, kdyz T F ¢ — 1.

Dikaz. Implikace “<=” je jednoduché:
Jestlize plati T' ¢ — 1), tak samoziejmé také plati T', ¢ - ¢ — . Trividlné plati T, ¢ F ¢.
Pouzitim pravidla MP tedy vyvodime, ze T, ¢ F 1.
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Implikaci “=" dokézeme takto:

Predpokladame, ze plati T, ¢ F . Existuje tedy dukaz formule v z teorie T'U {p}, tj.
prislusnd posloupnost formuli 1, @, .. ., vk, kde i = 9. Ukdzeme indukci proi =1,2,...,k,
ze T ¢ — ;; z toho plyne, ze T+ ¢ — 1. Rozlisime pfitom tyto piipady:

1. ¢; je axiom,
2. p; € (T U{¢}); zde rozlisime podpiipady
(a) pi €T,
(b) wi =,
3. @i je vyvozena z ¢; a @, pomoci pravidla MP (pro néjaké j, ¢ mensi nez 7). ]

Cviéeni 22 Proved’te peclivé celyj dikaz. (V bodé 3 tedy predpokldddme, Ze napr. oy je tvaru
©; = @i, a z indukéniho predpokladu plyne, Ze Tk o — ¢; a TF o = (@; — ¢i).)

Vsimli jsme si, ze k dukazu stacila schémata axiomu (1) a (2), tedy ¢ — (¥ — ¢) a
(o = (Y1 = ¥2)) = ((p = 1) = (¢ = ¥)).

pokud plati T F @1 — @2 a T - o — 3, tak také plati T F o1 — 3.
Pak jsme se pustili do dukazu véty doplnujici zminénou vétu o korektnosti:
Véta 14 (o dplnosti). Jestlize T = ¢, pak T F .

Klicem bylo nésledujici Churchovo lemma, kde jsme pouzili tuto notaci (pro formuli ¢ a
ohodnoceni e):

o = v, jestlize ||¢lle = 1,
—p, jestlize ||¢|le = 0.
(Napt. pro ¢ = (p — (-g — r)) a e, kde e(p) = 1 a e(q) = e(r) = 0, vyraz ¢° oznacuje
formuli —(p — (—qg — r))).)

Lemma 15 Pro kaZdou ¢(p1,...,pn) a kaZdé e : VS — {0,1} plati pS,...,p5 F ¢°.

Diikaz. Pro ¢ = p je to trividlni, nebot plati p = p i —p = —p.
Pro ¢ = =), kde ¢ je o(p1,...,pn) a tedy také ¢ je ¥(p1,...,pn), postupujeme takto:

L lelle =1
Zde tedy ¢° = ¢ = =) a ¢® = —1). Podle indukéniho predpokladu pg,...,p§ - ¢, a
tedy pia s apz F _‘7,[1; JehkOZ —|’(7b =p= gpe, mame p?’ L ’p% - SDe‘
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2. ||90He =0
Zde tedy ¢° = —p = =9 a ¥° = 1. Podle indukéniho predpokladu pf,...,p§ = 9¢, a
tedy pS,...,p;, = 1. Kdybychom méli dokazano, ze

(1)

tak pravidlem MP odvodime p§,...,pS F ==, tedy pS,...,p5 F ¢° ((1) dokdzeme
pifste.)

Pro ¢ = (o1 — 2), kde ¢ je @(p1,...,pn) a tedy také 1 je ©1(p1,...,pn) a @2 je
©2(p1,- .., pn), postupujeme takto:

L lelle =1

(a) [le1lle = 0 (cviceni)
(b) [lp2lle = 1 (cviceni)

2. [lelle =0

Zde tedy ||¢1lle = 1 a ||p2|le = 0. Podle ind. piedp. p§,...,p5 F @1 a pf,...,ps5 F —pa.
Chceme ukdzat, ze pf,...,p5 F —(¢1 = p2). Kdybychom védéli, ze

F o1 = (2 = =(01 = 92)) | (2)

tak pravidlem MP odvodime. ((2) dokdzeme piisté.)

Cviceni 24 Dokoncete dukaz kompletné za predpokladu, Ze plati (1) a (2).
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Tyden 5

Piipomindme, ze jsme Churchovo lemma (Lemma 15) dokazali za predpokladu, ze plati (1)
a(2), tedy F ¢ — = ak o1 — (mp2 — —(p1 — ¢2)) (pro vsechny formule v, p1, p2).
Ukazme si ted platnost téchto nasich predpokladi.

Odvozeni platnosti .

Podle véty o dedukei chceme vlastné ukézat, ze plati ¢ = ——¢. P#i dikazu véty o dedukei
ndm stacila axiomovd schémata (1) a (2). Ted se ziejmé neobejdeme bez schématu (3). Diky
tomuto schématu by vlastné stacilo ukazat, ze plati - -—=—¢ — =, neboli =——p F —p.

Cviceni 25 Pro¢ z predpokladu - ———¢p — = plyne - o — ——p 2

Obecnéji by meélo platit (ma-li byt nas axiomaticky systém uplny) ——¢ F ¢ (pro vSechny
formule ¢, tedy specidlné pak plati i =——¢ - —p). Pofad ale neni jasné, jak to demonstrovat.
Mozn4 nas napadne, ze = F ¢ by plynulo z == = =@ — ——=—¢.

Cviceni 26 Pro¢ z predpokladu ——p F o — == plyne -~ —p F ¢ ¢
(Ndpovéda. Pouzijte axiomové schéma (3) a vétu o dedukci.)

Vsimnéme si, ze 7@ F —p — == plati pravé tehdy, kdyz —=—¢p, ~¢ F =—=—p. Ale pfece
obecné by mélo platit =, ¢ F ¢ (pro vSechny formule ¢, ); ze sporného piedpokladu
bychom totiz méli byt schopni dokazat jakykoli zavér. NapiSme si to ve dvou verzich
(verze si odpovidaji diky vété o dedukci):

neboli’l— - = (p = ) ‘

Platnost je jasnd diky tomu, ze plati F —¢ — (=1 — —¢) (instance axiom. schématu (1)),
F (=Y — =) = (¢ — 1) (instance axiom. schématu (3)) a diive dokdzané tvrzeni o
tranzitivité implikace.

Zvyraznéme, ze jsme také ukdzali

Fv 7]

Odvozeni platnosti

Fe—= (= (p =) | (3)

Diky pravidlu Modus Ponens a vété o dedukei mame ¢, ¢ — 9 = atedy o - (¢ — ) — .

Cviceni 27 Kdychom tedy méli k axiomovému schématu (3) jesté obménéné schéma ve formé
(o =) = (— — =), tak bychom byli s demonstraci platnosti (3) hotovi. Proé?

My ovSem ukazeme, ze opravdu plati

Flo—=¥) = (¢ = —p) |

Jelikoz plati - (=—¢ — @) a (¢ = ) F (p = ¥) a b (v — =), tak diky tvrzeni o

(=) — =) (diky axiom. schématu (3) a Modus Ponens).
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Ted jsme tedy kompletné dokonéili dikaz Lemmatu 15 a pokrac¢ujeme v dikazu véty o
uplnosti (Véty 14).

Nejprve si ukdzeme, ze pro kazdou tautologii ¢ (tedy = ¢) plati - ¢. Podle Churchova lem-
matu vime, ze pro tautologii ¢ = ¢(p1,p2,...,pn) plati p,...,pS F ¢ pro kazdé pravdivostni
ohodnoceni e (nebot ¢° = ¢ pro viechna e). Specidlné tedy pro kazdé e plati

pl)pg "'7p$7, = @Y a _'plapgv"' 7p$7, F ®.

Umime se tak zbavit p; v pfedpokladech a ukazat, ze plati p§,...,p5, = ¢ 7 Ano, obecnéji to
ukazuje dal§i tvrzeni, znamé jako véta o neutralni formuli:

Véta 16 (Véta o neutrdlni formuli) Jestlize T, o - a T, —¢ & 1, pak také T+ 4.
(Opacné je to trivialni: jestlize T =, pak Ty F 1 a T, —p F1.)

Dikaz. Nejprve si ukazme fakt, ktery specialné zduraznime:

[k (cp = 9) = 0 (4)

Kdyz totiz pouzijeme - ¢ — (=) — —(p — 1)), coz uz jsme ukazali jako (3), a dosadime zde
za o formuli —p a za 1 formuli ¢, dostaneme - —p — (- — = (= — ¢)). Nékolikandsobnym
pouzitim véty o dedukei dostaneme tedy - —p — —=(—¢p — ¢) (jak?), a diky axiom. schématu
(3) a pravidlu Modus Ponens dostaneme (4).

Ted tedy predpoklddejme, ze plati T, o -1 a T, =@ = 1), neboli T+ ¢ — 1 a T = —=p — 1.
Méme tedy také T'+ =) — ¢ a tudiz T F =) — ¢ (vyuzitim diive dokdzaného véetné tvrzeni
o tranzitivité implikace). Podle (4) plati b (=) — 1) — 1, z ¢ehoz ted vyvodime T . [

Cviceni 28 Dokoncete ted demonstraci toho, Ze kdyZ plati = ¢ (p je tautologie), tak také
plati = ¢ (¢ je dokazatelnd).

Véta o uplnosti (Véta 14) tvrdi obecné, ze kdyz plati T' = ¢, tak také plati T+ .

Pokud je T konecnd, tedy T' = {¢1,p2,...,¢k}, tak prosté pouzijeme véty o dedukci (v
sémantické a syntaktické verzi): z T' = ¢ plyne = 1 — (p2 = -+ (pr = ¢)--+), a tedy
podle uz dokazaného - ¢1 — (w2 — -+ (¢ — @) -+), a proto T F .

Cviceni 29 Pro pripad, kdy T = ¢ a T je nekonecnd, pouzijte vétu o kompaktnosti a ukazte,
ze T+ .

Dokondéili jsme tak kompletné dikaz véty o dplnosti. Pfipomeneme-li vétu o korektnosti,
vime tedy, ze plati

T | ¢ prave tehdy, kdyz T F .

Cviceni 30 Podivejte se na vétu o dukazu rozborem piipadi (Véta 2.36) v [1] a dokazte
Ji vyuzitim faktu, Ze T |= ¢ prdvé tehdy, kdyz T F .

Specidlné se jesté podivejme na vétu o dukazu sporem (2.35 v [1]):

T + ¢ prave tehdy, kdyz T, —¢ - —=(v» — ) (pro jakékoli T, p,1)).
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T E ¢ pravé tehdy, kdyz T'U {—¢} je nesplnitelnd

a z vét o korektnosti a tplnosti (tedy z faktu T+ ¢ <= T = ¢) jsme pak platnost véty o
diikazu sporem snadno vyvodili.

Cviceni 31 Jako cvident si proved’te primy dikaz véty o dikazu sporem, podobné jako v [1].
(Castecné jsme to jiz udélali v ramei dikazu véty o uplnosti.)

Véta o dukazu sporem se da také formulovat takto:
T + ¢ prave tehdy, kdyz T'U {—p} je sporna,

pricemz pojem sporné mnoziny je definovan nasledovné: mnozina formuli T je spornd, jestlize
z T lze dokdzat kazda formule. Nésledujici tvrzeni totiz ukazuje, ze T je spornd pravé tehdy,
kdyz z T lze dokazat néjakou kontradikci. Platnost tvrzeni zase plyne ihned z vét o korektnosti
a uplnosti (tedy z faktu T+ ¢ <= T | ¢).

Tvrzeni 17 Pro kaZdou mnozZinu T C FML plati:

T F ¢ pro néjakou kontradikci ¢ prdvé tehdy, kdyzZ T & o pro kaZdou formuli 1.

Zminili jsme i vétu o ekvivalenci (2.34 v [1]). Zdkladem je fakt, ze vznikne-li formule ¢’
z formule ¢ nahrazenim jednoho vyskytu podformule ¢ formuli ', pak 9 <> ' = ¢ < ¢/
(tedy z predpokladu, ze 1) a v’ jsou ekvivalentni lze dokdzat ekvivalenci ¢ a ¢'). Z faktu
“TF o <= T [ ¢’ lze zase odvodit snadno; pfipomeiite si v této souvislosti sématickou
verzi véty o ekvivalenci, tedy Tvrzeni 6(2).

Cviceni 32 Ewistuje ovsem i primy dukaz véty o ekvivalenci, muZete si na ném procvicit
strukturdlni indukcs.

Priklady analyzy pomoci logiky. Rozebrali jsme si jednoduchy “piiklad ze zivota” o
zvitatech putujicich do ¢eskych zoo, na coz nam stacilo modelovani v ramci vyrokové logiky.

Pak jsme se podivali na jednoduchy pocitacovy program provadéjici celociselné déleni a
zamysleli se nad dukazem jeho spravnosti. K formulaci invariantu cyklu (podminky, ktera
plati vzdy na zacdtku provadéni cyklu) i k formulaci dalsich vyroka uz nam vyrokova logika
nestacila. Uvédomili jsme si, ze potfebujeme vyroky strukturovat, nevysta¢ime s vyrokovymi
symboly. Pfi diukazu spravnosti jsme vyuzili tzv. predikatovou logiku (prvniho fadu); zatim
jsme se spolehli na jeji intuitivni pochopeni.

Také jsme predikatovou logiku intuitivné vyuzili pfi rozboru piikladu ze Smullyanovy
knizky; jednalo se o soubor dvou tvrzeni “J& nemdm bratra” a “Otec muze na obrézku je
synem mého otce”, z nichz mame zjistit, kdo je na obrazku.
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Tyden 6
Predikatova logika
Syntaxe predikatové logiky. (Rdmcové podle kap. 3.1. v [1].)
Uvedli jsme, co je konkrétni jazyk J predikatové logiky (prvniho fadu). Tedy, ze kromé

e obecné dané (nekonetné spocetné) mnoziny proménngch (také tzv. predmétovych
proménnych, ¢i individuovych proménnych), jejiz prvky jsou typicky znaceny
T,Y,2,T1,T2,... apod.,

e symbolu logickiyjch spojek —, A\, V,— (piipadné jesté <),
e fkvantifikdtoru ¥, 3
e a pomocnych symboli (zavorky a ¢arka),
je konkrétni jazyk urcen
e mnozinou funkénich symboli, obecné typicky znacenych f, g, h, f1, f2,... apod.,

e a mnozinou predikdtovych symboli (také nazyvanych relaéni symboly), obecné typicky
znacenych P,Q, R, P, P,,... apod.;

e kazdy funkéni symbol a predikatovy symbol musi mit pfifazenu svou drnost, téz
nazyvanou arita ¢i c¢etnost, coz je nezaporné celé ¢islo.

Funkénim symboltum s aritou 0 (tzv. nuldrnim funkénim symbolum) fikdme také konstanty a
typicky je oznac¢ujeme symbolem c s piipadnymi indexy apod.

Znovu jsme se vratili k prikladu “Kdo je na obrazku?” a navrhli jsme jej formalizovat v
jazyce, ktery mél unarni funkéni symbol otec, unarni predikatovy symbol Mwuz, binarni
predikdtové symboly Bratr a Syn, a dile konstanty mluvci a clovekZobrazku. (Pro
stru¢nost jsme tyto symboly psali zkrécené.)

Definovali jsme termy a formule (v daném jazyce); vyuzili jsme opét strukturdlni indukei.
Pro jazyk J = (F,R,AR) (AR : F UR — N) jsou termy definovany takto:

1. Kazda proménnd z je term.

2. Je-li f funkéni symbol arity n (f € F, AR(f) =n) a t1,te,...,t, jsou termy,
pak f(t1,to,...,t,) je term.

Formule v daném jazyce J jsou definovany takto:

1. Je-li P predikatovy symbol arity n (P € R, AR(P) = n) a t1,ta,...,t, jsou termy,
pak P(t1,ta,...,t,) je formule; je to tzv. atomickd formule.

2. Jsou-li ¢ a 1 formule, pak —¢, (¢ A1), (p V), (¢ — 1) jsou formule.

3. Je-li z proménnd a ¢ formule, pak (Vz)p a (3z)p jsou formule.
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Cviceni 33 Uvazujme napr. jazyk J = (F,R,AR), kde F = {0,1,+,-}, R = {=,<},
AR(0) = AR(1) = 0 a arita ostatnich symboli je 2. Sestavte nékolik termi a formuli v
daném jazyku. Napiste je jednak striktné podle definice (prikladem je term +(x,y)) a také si
pripomenite bézné uzivanou infizovou notaci (v niz napiseme napr. term +(x,y) jako (x+vy)).

Sémantika predikatové logiky. (Ramcové podle éésti 3.2. v [1].)

Uvédomili jsme si, ze k jazyku J uréenému trojici (F, R, AR), kde F je mnozina funkénich
symboli, R mnozina predikdtovych (neboli relaénich) symbolu, a AR : FUR — N je zobrazeni
urcujici aritu jednotlivych symboli, existuje nekoneé¢né mnoho moznych realizaci, nebo téz
interpretaci. Realizace jazyka J = (F, R, AR) je struktura

M = (UM, FM RM) kde

o UM je neprazdna mnozina zvand univerzum,

o FM — [fM | £ ¢ F} kde pro funkéni symbol f s aritou n je
M funkee typu (UM)? — UM,

e RM = [PM | P ¢ R}, kde pro predikdtovy symbol P s aritou n je PM n-drni predikét
(neboli relace) na UM, tedy PM C (UM)".

(Vyrazem (UM)" znacéime kartézsky soucin UM x UM x ... x UM s n vyskyty UM.)

Méme-li konkrétni strukturu M, ohodnocenim (valuaci) rozumime zobrazeni
v: VAR — UM,

kde VAR oznacuje mnozinu (pfedmétovych) proménnych. Definovali jsme si, co to je hodnota
termu ¢ pro dané M, v; je to jisty prvek UM ktery oznaéujeme ||t||n.. Hodnota ||¢||a,» pro
formuli ¢ je prvek mnoziny {0,1} (nebo téz prvek mnoziny {FALSE, TRUE}).

Cviceni 34 Definujte hodnoty ||t||pmo a ||| ae strukturding indukci.

Llustrugte pak napt. pro jazyk J = (F,R,AR), kde F = {0,1,+, -}, R = {=,<}, AR(0) =
AR(1) = 0 a arita ostatnich symboli je 2. Jako realizaci jazyka J vezméte strukturu M
s univerzem N = {0,1,2, ...} a standardné realizovanymi funkénimi a predikdtovgmi symboly.

Uvédomili jsme si terminologii, mj. vyznam nasledujicich pojmu:

e formule ¢ je pravdivd (nebo splnéna) ve strukture M pri ohodnocent v (tj. ||¢|lmp = 1),

e formule ¢ je pravdivd ve strukture M (¢imz se rozumi, ze je pravdivd v M pii kazdém
ohodnoceni v),

e formule ¢ je logicky platnd (neboli tautologie); tim se rozumi, ze je pravdivd v kazdé

struktuife M (realizujici pfislusny jazyk).

Ekvivalence formuli.
Predpokldddme ted, Ze jazyk J = (F,R,AR) je zafixovdn. Ekvivalenci =, kterou jsme
zavedli u vyrokové logiky, jsme v pripadé predikatové logiky pfirozené definovali takto:

23



polozime ¢ = 1, jestlize pro kazdou strukturu M a ohodnoceni v plati ||¢|m» = ||¥]M,0-

Tedy ¢ = ¢ plati pravé tehdy, kdyz formule ¢ <> 1 je logicky platnd (neboli tautologie).

Cviceni 35 Ukazte, zZe ke kazdé formuli ¢ lze sestrojit ekvivalentni formuli ©', v niz nejsou
Jiné logické spojky nez = a — a neni v ni kvantifikdtor 3. (Takové formule ¢’ jsou tedy omezeny
na logické spogky -, — a kvantifikdtor V.)

Volné a vazané vyskyty proménnych ve formuli. Pfipomenme, ze formuli chapeme
(také) jako koneény fetézec symbolu z piislusné (obecné nekonecné) abecedy. Pokud je v
daném Tetézci g, ktery je formuli, na pozici ¢ symbol, ktery je proménnou x, pficemz na pozici
i—1 nenf kvantifikator (V nebo 3), tak symbol x na pozici ¢ chdpeme jako (jeden konkrétni)
vyskyt promeénné x ve formuli ¢.

Napt. ve formuli (P(c) A (Vz)(P(f(z,y)) = (Fy)Q(g9(y,2),2))) jsou dva vyskyty
proménné z (nikoli 3); ddle jsou tam dva vyskyty proménné y a jeden vyskyt proménné
z. Jak bylo feceno difve, symbol ¢ pouzivame pro konstantu (tj. nuldrni funkéni symbol).

Vijskyt proménné x ve formuli ¢ je vazany, jestlize je soucasti podietézce (V)1 nebo (Iz)y
fetézce ¢, kde tetézec v je formuli; piislusny vyskyt je tedy soucdsti podietézce . Vyskyt
proménné x ve formuli ¢, ktery neni vazany, je volny.

Ve formuli (P(c) A (Vz)(P(f(x,y)) — 3y)Q(g9(y, 2),x))) jsou oba vyskyty proménné x
véazané; proménnd y ma v této formuli jeden volny vyskyt a jeden vézany vyskyt; vyskyt
proménné z v této formuli je volny.

Pokud je vyskyt proménné z ve formuli ¢ véazany a (Va)y nebo (3z) je nejkratsi podietézec
fetézce ¢, ktery obsahuje tento vyskyt x (a v je formuli), tak fikdme, Ze tento vyskyt z je
vdzdn piislusnym vgrazem (Yx) nebo (3x).

Napt. ve formuli (Vz) ((3z)P(x) — R(z,y)) jsou dva vyskyty proménné x, prvof je vézdn
vyrazem (3z) a druhy je vazdn vyrazem (Vz).

Rikdme také, ze proménnd x je volnd ve formuli ¢, jestlize z mé ve ¢ alespon jeden volny
vyskyt (pficemz tam muze mit i vdzané vyskyty).

Uvédomili jsme si, ze

formule (p — (Vz)1) a (Vx)(p — 1) jsou ekvivalentni, jestlize x neni volnd ve .
Déle napf.

formule ((Vz)e — ) a (3x)(¢ — ) jsou ekvivalentni, jestlize z neni volnd v .

Cviceni 36 Promyslete si dikladné a podrobné demonstrujte, proc jsou formule v uvedenyjch
dvojgicich opravdu ekvivalentni a proc¢ jsou uvedené podminky o mne-volnosti proménné x
duleZité.
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Substituovatelnost termu za proménnou. Zavedli jsme znaceni ¢(x/t) pro formuli
vzniklou z ¢ substituci termu ¢ za vSechny wolné vyskyty proménné z. Pfitom jsme defi-
novali, kdy plati, ze ve formuli @ je term t substituovatelny za proménnou x: zadny vyskyt
proménné y ve formuli p(x/t), ktery se v této formuli objevil diky nahrazeni konkrétniho
vyskytu = ve ¢ termem ¢, nesmi byt ve p(z/t) vazanym.

Napf. term z - « neni substituovatelny za y ve formuli y < z — (Iz)y + = = z.

Piikladem si také pripomindme béznou infixovou notaci pro bindrni funkce a predikéaty.
(Striktné dle definice bychom méli uvedenou formuli psat < (y, z) — (3x) = (+(y, ), 2).)

Cviceni 37 Ukazte, zZe formule (Vx)p — p(x/t) je tautologie (tedy logicky platnd), jestlize t
je term substituovatelny za x ve .
Je to obecné tautologie i bez uvedené podminky substituovatelnosti?

Na zavér jsme si uvédomili, ze v nasem piikladu s muzem na obrazku jsme z uvedenych
formalizovanych predpokladu vyvodili zavér Syn(clovekZobrazku, mluvci) (neboli “clovék
na obrazku je synem mluvéiho”) diky nasi znalosti zamyslené realizace pouzitého jazyka;
vSe jsme totiz interpretovali v piislusné struktuie LIDSTVO. Pak jsme si uvédomili, ze k
predpokladiim sta¢i dodat nékolik vybranych formuli naseho jazyka, které jsou pravdivé
ve struktufe LIDSTVO (pfi vSech konkrétnich ohodnocenich proménnych), a z nich lze pak
uz zaver Syn(clovekZobrazku, mluvci) vyvodit “syntakticky”, bez odvolavéani se na znalost
konkrétni struktury LIiDSTVO.

De facto jsme tak intuitivné ukézali, ze zavér je pravdivy v kazdé struktuie, v nichz jsou
pravdivé piislusné predpoklady a ony vybrané formule (tedy nejen ve struktufe LIDSTVO).
Navic je zavér dokazatelny syntakticky z pfislusné mnoziny formuli. V dalsich pfednaskach
postavime tuto intuici na rigorézni bazi.
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Tyden 7

Specialni role predikatu rovnosti.

Definici sémantiky predikatové logiky doplnime touto standardni umluvou: Pokud
uvazovany jazyk J = (F, R, AR) obsahuje (v R) mj. predikdtovy symbol rovnosti, tedy “=" s
aritou dva, fikame také, ze J je jazyk s rovnosti; v tom piipadé vyzadujeme u kazdé struktury
M realizujici jazyk J, ze realizace symbolu = (tedy bindrni relace =M) je identita na uni-
verzu UM. Tedy pravdivostn{ hodnota || = (t1,%2)||m., je 1 préavé tehdy, kdyz prvky univerza
UM reprezentované termy t1 a to, tj. [|t1]|me @ [[t2][m.0, jsou totozné. (Pochopitelné misto
= (t1,t2) piSeme vétsinou t; = ty.)

Sémantické vyplyvani; pojem T = .

Zavedli jsme pojem teorie; je to prosté mnozina formuli (muze byt i nekoneénd) v daném
jazyce predikdtové logiky (uréeném mnozinami funkénich a predikdtovych symboli); prvkum
takové mnoziny T se také tika aziomy teorie T

Definovali jsme, kdy je

struktura M (pro dany jazyk) modelem teorie T,
totiz tehdy, kdyz kazd4 formule ¢ € T je pravdiva v M.

Nekdy se pouzivé znaceni M = T pro fakt, ze M je modelem T'; to ale radéji nebudeme
pouzivat, at se ndm nemicha s niZe zavedenym T' = .

Definice. Vyraz T |= ¢ znamen4, ze formule ¢ je pravdivd v kazdém modelu teorie T'.
Cviceni 38 Ukazte, Ze plati | P(z) = P(y) |, ale neplati = P(z) — P(y), coZ také znacime
takto: ’ k= P(x) — P(y) ‘

Ukazte, Ze na druhé strané plati jak ’ (Vx)P(z) = P(y)

, tak || (Va)P(x) — P(y) |

Uvédomme si, ze to tedy neni tak, ze by T |= ¢ znamenalo, ze pro kazdou strukturu M
(realizujici pfislusny jazyk) a kazdé ohodnoceni v plati, ze kdyz ||¢|m,, = 1 pro kazdouy € T,
tak ||¢]m, = 1. (Specidlné napt. || P(z)|/m,» = 1 obecné neimplikuje |[|P(y)||m,» = 1, ackoliv
plati P(x) = P(y).)

Cviceni 39 Vzpomenme si na sémantickou vétu o dedukci pro vyrokovou logiku: T, ¢ = ¢
pravé tehdy, kdyz T = ¢ — 1. Plati tato véta bezpodminecéné i pro predikdtovou logiku?

Sémantickou vétu o dedukci pro predikatovou logiku formulujeme takto:

Véta 18 Pokud je ¢ uzaviend formule (tj. meobsahuje volnyg viyskyt Zddné proménné), pak
T, = ¢ prdvé tehdy, kdyz T = ¢ — 1.

Dikaz. “=7

Predpokladejme, ze T, ¢ = 1, kde ¢ je uzaviena formule. Uvazujme libovolné zvoleny model
M teorie T' a zkoumejme hodnotu || — 9|/, pro libovolné zvolené ohodnoceni v. Pokud
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ukdzeme, ze || — 9||an = 1, bude prokazano T' |= ¢ — v (jelikoz model M a ohodnoceni v
byly zvoleny libovolné).

Protoze ¢ je uzaviena, hodnota ||¢|| as,» je nezavisla na v a je tedy rovna hodnoté ||¢|| ps. Kdyz
llollar =0, tak || — ¥||amre = 1. Kdyz ||p|ar =1, tak M je modelem teorie T'U {¢} a podle
predpokladu tedy plati ||¢]|ar = 1, tedy [|9)]|arr = 1 pro vSechna v'. Tudiz || — ¢||ar0 = 1.

e
Predpokladejme, ze T' |= ¢ — 1 (zde ¢ ani nemusi byt uzaviend). Uvazujme libovolné zvoleny
model M teorie T'U {¢} a zkoumejme hodnotu ||¢||as, pro libovolné zvolené ohodnoceni
v; podle predpokladu je || — ¢|ar, = 1. Jelikoz pro M nutné plati [|¢|ar = 1, tedy i
llollare = 1, vyvodime, ze ||| a0 = 1. Plati tedy T, ¢ = 9. O

Priklad: teorie grup.
Pripomnéli jsme si mj. standardni axiomatizaci teorie grup G uzitim axiomu, které nejsou
vSechny uzaviené; konkrétné §lo o axiomy

(Va)(Fy)z -y =1

Jz-l=z||1-2=x]| (Vx)(ﬂy)y-le‘.

() =(x-y)-

i

Vsimli jsme si mj., ze neplati G |= z-y = y-x, ale plati napi. G = (y-z=1Az-2=1) - y = z.
(Pfipomnéli jsme piitom specidlni vlastnost predikétu rovnosti “=".)

Cviceni 40 Demonstrugte, pro¢ plati G = (y-x=1Az-2=1) >y = z.

(Hilbertovsky dikazovy) kalkulus pro predikatovou logiku.

Promysleli jsme si rozsifeni dukazového kalkulu pro vyrokovou logiku, které zahrnuje praci
s kvantifikdtory. Diskutovali jsme tak

axiomové schéma specializace (nebo téz konkretizace ¢i substituce)

(Vx)p — @(z/t), kde t je term substituovatelny za = ve .

Cviceni 41 Pripomerite si argumenty, pro¢ za dané podminky substituovatelnosti plati
E (Vz)p — ¢(x/t) a proc¢ je ta podminka pro tuto platnost duleZitd.

Dale jsme diskutovali axiomové schéma distribuce (kvantifikdtoru)
(Vz)(¢ = ¢) = (p — (Vx)1) za pfedpokladu, ze = neni volna ve ¢.

Cviceni 42 Pripomerite si, pro¢ za dané podminky plati = (Vx)(p — ¢) — (¢ — (Vz)¢)
a proc¢ je ta podminka pro tuto platnost dilezitd.

Pridali jsme dedukéni pravidlo generalizace:

z ¢ odvod (Vx)p, psdno také

@
(Vz)p

Cviceni 43 Argumentugte, pro¢ plati tato implikace: T |= ¢ implikuje T = (V).
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Tak jsme dostali pojem dokazatelnosti T F ¢ i pro predikdtovou logiku.
Cviceni 44 Definujte pojem T F ¢ analogicky jako v pripadé vyrokové logiky.
Diskutovali jsme pak vétu o korektnosti (pro predikatovou logiku):
Véta 19 T F ¢ implikuje T = .
Cviceni 45 Argumentujte detailné, pro¢ véta o korektnosti plati.

Nakonec jsme jen zformulovali tuto podstatnou vétu:

Véta 20 (Véta o tplnosti predikdtového poétu.)
Pro kazdou teorii T a kazdou formuli ¢ (v jazyce teorie T') plati: jestlize T |= ¢, pak T F .

Véta tedy tvrdi, ze nase (tj. hilbertovské) axiomy a dedukéni pravidla dostacuji k tomu, ze
kazdy sémanticky dusledek (totiz fakt, ze formule ¢ je pravdivd v kazdém modelu T', kterych
je obecné nekoneéné mnoho a mohou byt nekoneéné) muze byt demonstrovan syntakticky,
kone¢nou posloupnosti formuli, kterd predstavuje piislusny dukaz (ukazujici, ze ¢ je dokaza-
telnd z T, neboli Ze ¢ je teorémem teorie T').
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Tyden 8

Nagim tkolem je dokazat Vétu 20, tedy vétu o uplnosti pro predikdtovy pocet: pokud plati
T | ¢, pak také plati T'F .

Pokusili jsme se o ponékud netradiéni postup demonstrace platnosti véty o uplnosti, kdy
potfebnd pomocnd tvrzeni zjistujeme az v prubéhu (a odkazujeme se na jejich dukazy
v nésledujicim textu ¢ v [1]).

Timto postupem simulujeme situaci, kdy se v praxi pokousime néjaky problém fesit,
né&jaké tvrzeni (napft. o néjakém systému) dokazat, a pii tomto pokusu zjisfujeme pifslusné
(pod)problémy, které je tfeba dofesit. V uéebnich textech obvykle tento postup vytvafen{
dukazu neni zachycen a Ctendii je predlozen uz “vylestény dukaz”, v némz jsou pomocna
tvrzeni uvedend predem, ve chvili, kdy jejich role v celkovém dukazu nemusi byt jesté
ziejma.

Nejprve se budeme zabyvat teoriemi s jazyky bez rovnosti (tj. bez specidlniho bindrniho pre-
dikatu “="). Na piipad jazyku s rovnosti rozsifime dikaz az nasledné.

Predstavme si ted situaci, Ze mame konkrétni teorii T' a formuli ¢, kde plati T = p a Tt/ ¢
(coz oznacuje, ze neplati T ¢); postupné ukézeme, ze takova situace neni mozna. Nejprve
si uvédomme, ze formule ¢ nemusi byt uzaviend (tj. muze mit néjaké volné proménné); v
takovych ptipadech muze dojit k jistym problémum v deduktivnim uvazovani. Pro neuzaviené
formule napf. neplati tplné analogie véty o dedukei, kterou zname z vyrokového poctu.

Minule jsme si vSimli, ze ¢ |= 1) obecné neimplikuje = ¢ — . Kdyby tedy obecné platilo,
ze T, ¢ F 9 implikuje T F ¢ — @, byl by nds dukazovy systém nekorektni. Implikace
T, v =Tk ¢ — 1 oviem plati v piipadé, ze ¢ je uzaviena.

Podle definice sémantiky predikétové logiky méame T = ¢ prave, kdyz T = p, kde P je uzdvér
formule .

Ma-li ¢ volné proménné zq,zs,...,z,, pak g = (Va1)(Vasa)... (Va,)e; pokud je n = 0
(tedy ¢ je uzaviend), pak ® = . Pofadi proménnych zde neni dulezité (snadno
nahlédneme, ze plati = (Va)(Vy)Y < (Vy)(Vz)y pro libovolnou formuli ), ale néjaké
dohodnuté usporddani proménnych se hodi k tomu, ze uzavér formule lze definovat jed-
noznacné. Jind moznost je povolit vice uzavéra k dané formuli ¢; pak @ prosté oznacuje
jeden z nich.

Poznamenejme jesté, ze nékdy se také pouziva existenéni uzdver (Jz1)(Iza) ... (Fzn)w;
vyse definovany uzavér @ je také nazyvan univerzdlnim uzdvérem.

Sémanticky fakt “T" = ¢ prave tehdy, kdyz T' =7 je reflektovén i v nasem (syntaktickém)
kalkulu: je totiz T - ¢ praveé tehdy, kdyz T - .

Cviceni 46 Dokazte ndsledujici vétu.
Véta o uzavéru.
Pro kazdou teorii T a kaZdou formuli ¢ (v jazyce teorie T') plati:

T+ ¢ prdave tehdy, kdyz T F .

(Napovéda. Bude se hodit dedukéni pravidlo generalizace a axiom konkretizace.)
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V nasi predpokladané situaci T = ¢ a T If ¢ (kterou pozdéji piivedeme ke sporu) méame
tedy také T' =g a T I/ @. Z predpokladu T' I/ @ ovsem plyne, ze teorie TU{—p} je bezesporna.

Intuitivné je vidét, ze pokud z T nelze dokazat p, pak ¥ nebude dokazatelnd ani po
pridéni = k T'; jinymi slovy, T t/ @ implikuje T, —% ¥ @ (coZ znamend, ze z T U {—p}
nelze dokdzat vSechny formule, a tudiz T'U {—@} je bezespornd).

Obecné totiz plati - (-g — @) — P, podle jednoduché, ale velmi uzitecné,
véty o dosazeni do tautologie vyrokového poctu

(coz je Lemma 3.42 v [1]); formule (- — @) — % vznikne dosazenim do tautologie
(—=p — p) — p a proto je dokazatelnd (v kazdé teorii; dokonce je tzv. vyrokové dokazatelnd,
tj. je dokazatelnd vyhradné z axiomu vyrokového poc¢tu s vyuzitim dedukéniho pravidla
Modus Ponens).

Kdyby tedy platilo T, =@ - P, tak by podle véty o dedukei (viz Véta 3.44 v [1]) platilo
iTF —p — @ (jelikoz =% nemd volné proménné); pak ovsem diky F (=¢p — @) - @
pomoci pravidla Modus Ponens vyvodime T+ @ — coz je spor s predpokladem Tt/ $.
Lemma 3.56 v [1] ukazuje obecnéji, ze

T F ¢ prave tehdy, kdyz T U {—$} je sporna.

Cviceni 47 Promyslete si podrobnéji zminéné Lemma 3.42 a Vétu 3.44 v [1] s dukazy. (Vétu
o dedukci v nasem textu najdete jako Vétu 23.)

Predpokladejme ted', Ze ona bezesporna teorie TU{—%} mé néjaky model M; v ném je tedy
pravdiva kazda formule z T a také formule —p. Struktura M je tedy také modelem teorie T" a
proto je v ni pravdiva také formule ¥ (diky nasemu predpokladu 7' = ). Neni ovSem mozné,
aby v M byla pravdivd jak p tak —p. Takze bud T U {—=%} nem4 Zadny model nebo ptipad
T E=o, TP (atedy ani piipad T = ¢, T' I/ ¢) neexistuje. Nasledné ukdzeme vétu 21 (kazda
bezespornd teorie ma model), z ¢ehoz vyplyne, ze piipad T = ¢, T I/ ¢ neexistuje, a tedy
véta 20 (o uplnosti) skutecné plati.

Véta 21 KazZdd bezespornd teorie md model.

Dikaz. Uvazujme bezespornou teorii T'. O teorii T' tedy nic vic nevime, nez Ze je bezesporna,
tedy nelze z ni dokézat vsechny formule; specidlné pro zadnou formuli ¢ nemuze platit T ¢
a zaroven 1" F —p.

Spornost teorie je obvykle definovdna takto: teorie je spornd, jestlize z ni lze dokazat
vSechny formule. Jinad ekvivalentni definice tika, ze teorie T je spornd, jestlize z T lze
dokdzat néjakou kontradikei; specidlné jestlize T + —(¢ — ) pro néjakou formuli .
(Pfipomenme si, ze (¢ — ) je vlastné “prekladem” formule ¢ A —p.) Ta druhd defi-
nice spornosti je opravdu ekvivalentni té prvni: pro libovolné formule ¢, totiz mame
F=(p = ¢) = ¢ (jelikoz =(p — ¢) — 1 vznikne dosazenim do tautologie =(p — p) — q
vyrokového poctu); z toho plyne, ze T F —(p — ¢) implikuje T+ ¢ pro kazdou formuli v
(uzitim Modus Ponens).
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Dokazat, ze T' mé model, 1ze nejlépe jeho sestrojenim. K teorii 1" sice ptislusi néjaky jazyk
J = (F,R,ar), ale my o ném nic blizsiho nevime; jakou strukturu tedy mame zvolit k jeho
realizaci? Pfichazime k hlavni mySlence dikazu: uvazujeme tzv. kanonickou strukturu teorie
T, oznacenou My = (UM7 FMr RM7) kde jako univerzum UM7” vezmeme mnozinu véech
uzavienych termu jazyka J (teorie T'); uzavrenym termem chdpeme term neobsahujici zddnou
proménnou.

Procviéme si strukturdlni indukei: kazda konstanta (tedy nuldrni funkce jazyka J) je
prvkem UM7; je-li f € F funkéni symbol s aritou ar(f) = n > 0 a ty,to,...,t, jsou
prvky UM pak také fetézec f(t1,ta,...,t,) je prvkem UMT.

Neméame ov8em zaruceno, ze jazyk J néjakou konstantu obsahuje; kdyby neobsahoval, tak
mnozina UMT by byla prazdna a nespliiovala by tak podminku neprazdnosti, kterou klademe
na univerza. V takovém ptipadé prosté libovolnou konstantu c k jazyku teorie T' pfidame;
vzniklou teorii ozna¢me T,. Je ziejmé, ze T, je rovnéz bezesporna; pridani konstanty ¢, o niz nic
specidlniho nepiredpokldddme, nemuze vést ke sporu. V dalsim tedy rovnou predpoklddame,
ze T obsahuje alespon jednu konstantu.

Formélné muzeme fici, ze rozsifeni T, teorie T' je konzervativni. Pfesnéjsi a obecnéjsi
vyjddien{ tohoto faktu obsahuje véta o konstantdch, ktera je uvedena jako Véta 3.52 v [1].
My se k této problematice jesté vratime pozdéji.

Méme tedy definovino neprazdné univerzum UM7. Musime rozhodnout, jak budeme inter-
pretovat funkéni symboly, tedy jakou konkrétni funkci fM7 piifadime n-arnfmu funkénfmu
symbolu f. Pro kazdou n-tici (t1,ts, ..., t,) prvki univerza UMT tedy pro n-tici uzavienych
termi, musime uréit prvek univerza UM7T ktery je hodnotou fMr (ti,t2,...,ty). Jelikoz
fetézec f(t1,ta,. .., t,) je také uzavieny term (tedy prvek UMT), piirozené se nabizi ndsledujici
interpretace:

SMT (b1, tn) = ftita, .. ty).

Konstanta (nuldrni funkce) je specialni piipad uvedené definice: méme tedy Mr — ¢,
Jako piiklad muzeme vzit jazyk s bindrnim funkénim symbolem “f” a kon-

stantou  “1”. Piislusné univerzum je tedy nekoneénd mnozina Tetézcu v
W

abecedé obsahujici symboly “17, “f”, “(”, “” a “”, konkrétné mnoZina
{1§f(171)§f(17f(171))§f(f(171)71)§f(f(171)»f(171)) JLf(Lf ( )))7}7 v jejimz
zapisu je pouzit symbol “;” pro oddéleni jednotlivych prvki.

Mame-li misto f bindrni funkéni symbol “” a pouzijeme-li infixovou notaci, je piislusné
univerzum {1; (1-1); (1-(1-1)); ((1-1)-1); ((1-1)-(1-1)); (1-(1-(1-1))); ... }. Aplikujeme-li
funkei -M7 napi. na argumenty (1-1) a 1, dostaneme jako vysledek ((1-1)-1).

Dale musime rozhodnout, jak interpretovat predikatové symboly z R, konkrétné, kdy zafadime
n-tici (t1,ta,...,t,) uzavienych termi do mnoziny PM7 pro n-arni predikatovy symbol P
(tedy, kdy prohlasime PMT (t1,ts,...,t,) za pravdivy).

Videéli jsme, ze univerzum a interpretace funkénich symboli jsou plné uréeny jazykem teorie
T (¢i jejiho rozsiteni T¢), nejsou pritom dulezité axiomy teorie 7.
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Piipomenme, ze pojmem axiomy teorie T rozumime formule, které jsou prvky 7. (Rl’ké
se jim také mimologické aziomy, at se odlisi od obecné platnych logickych axiomt od-
povidajicich péti schématum hilbertovského kalkulu.) Pojmem teorémy teorie T rozumime
vSechny formule, které jsou dokazatelné z T' (tedy vSechny ¢, pro néz méame T'F ¢). Kazdy
axiom teorie T je tedy také teorémem teorie T' (ale ne nutné naopak).

Interpretace predikatovych symbolt uz ovsem na axiomech T zavisi. Chceme totiz, aby struk-
tura M byla modelem teorie T, tedy aby vSechny axiomy teorie T" byly v My pravdivé; pak
tam ovSem budou pravdivé i viechny teorémy teorie T' (podle véty o korektnosti). Definujeme
tedy n-arni PM7 tak, 7e pro kazdou n-tici uzavienych termi (¢y,ts,...,t,) mame

PMT (1 ty, ... t,) pravé tehdy, kdyz T P(t1,ta, ... tn).

Kdyz tedy plati T F P(ti,ta,...,t,), pak plati PM7(ty.ty,... t,); pokud T I/
P(ty,ta,...,tn), plati ~PMT(ty,t5, ..., t,). Zde pfipoustime moznost, ze z T nelze dokazat
ani P(ty,te,...,t,) ani =P (t1,ta,...,t,). Potieba tzv. Uplnosti teorie T vyvstane az za
chvili.

Pro demonstraci toho, ze struktura M je modelem teorie T', sta¢i ukazat, ze pro kazdy axiom
@ € T je jeho uzavér @ pravdivy v Mr.

Budeme postupovat strukturdlni indukeci. Jak tomu ovSem c¢asto byva, k tomu, abychom
dokazali pozadované, ukaze se potfebnym zesilit indukéni predpoklad. Zesilime ho nejdiive
tak, ze pro kazdou uzavienou formuli ¢ budeme chtit, aby z platnosti 7' ¢ plynulo ||¢|Mm, =
1 (neboli: kazdy uzavieny teorém teorie T' je pravdivy v Mrp).

Toto jisté plati pro uzaviené atomické formule P(¢i,...,t,), protoze v tom piipadé jsou
t1,...,ty, uzaviené termy a z T' = P(t1,...,t,) plyne ||P(t1,...,ty)||lM; = 1 pfimo z nasi
definice struktury Mr.

Zkusme ted uplatnit strukturdlni indukci na pifpad ¢ = —); jelikoz diskutujeme jen
uzaviené formule, je ¢ uzaviend, a tedy také v je uzaviend (tj. nemd volné proménné).

Pokud plati T F 9, tak podle indukéniho pfedpokladu mame ||1|nm, = 1; v tom piipadeé je
vie v poradku, protoze || =% ||m, = 0 a nemuze platit 7'+ =, protoze T' je bezespornd. Kdyz
tedy Tt 1, tak mame T I/ ¢ a [|¢|lm, = 0.

Pokud ovéem méame T 1, indukéni pfedpoklad ndm moc nepomuze. Musime ho jesté
zesilit takto: chceme docilit, aby pro kazdou uzavienou ¢ platilo, ze

T + ¢ pravé tehdy, kdyz ||¢|m, = 1. (5)

To ovSem pro nasi teorii 7' nemusi platit. Muzeme totiz mit 7' t/ P(t1,...,t,) a zaroven
T ¥/ =P(t1,...,t,); pak pro ¢ = =P(t1,...,t,) mame [|¢|m, = 1 ale T I/ . Jisté nds
napadne, ze v takovém piipadé lze do T pridat P(ty,...,t,) (nebo =P(ty,...,t,)); vznikne
tak sice nekonzervativn{ rozsiten{ T teorie T, ale je to bezesporné rozsifeni (jak jsme si jiz v
obecnéjsi formé vsimli difve); pochopitelné kazdy model teorie T (pokud néjaky existuje) je
i modelem teorie T

To nés vede k pojmu tplné teorie T' a k vété o zuplnéni bezesporné teorie, kterou se budeme
zabyvat pozdéji. Dale tedy budeme rovnou piedpokladat, ze nase T je wpind, tedy ze pro
kazdou uzavienou formuli ¢ plati pravé jedna z moznosti T F ¢ a T —p.
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Pojem tplnosti teorie je samoziejmeé jiny nez pojem uplnosti predikatového poctu. Teorie
je uplnd, jestlize je bezespornd a zaroven kazdou uzavienou formuli ¢ “rozhoduje”, tj.
dokéze bud’ ji samotnou nebo jeji negaci.

Pustme se ted do dikazu vztahu (5) pro uzaviené formule ¢ strukturalni indukei.

1. Piipad, kdy ¢ je atomicka.
Podle definice M7 mame T' = P(ty,...,t,) pravé tehdy, kdyz ||P(t1,...,tn)|[lMm; = 1
(pro uzaviené termy ti,...,tp).

2. Piipad ¢ = —).

e (Pod)ptipad T F v jsme uz vyftesili diive.

e Kdyz T / 4, tak z indukéniho predpokladu (5) aplikovaného na v (kterd je
uzaviend, protoze ¢ je uzaviend) plyne |[¢|m, = 0, a tedy |¢|m; = 1 (nebot
@ = —)); pritom z faktu T' I/ ¢ a z tplnosti T plyne T+ =), tj. T+ .

3. Piipad ¢ = (1 — 12).
Vyuzitim indukéniho predpokladu pro ¢ a 19 (obé jsou uzaviené, jelikoz ¢ je uzaviend)
rutinné provéiime, ze ve viech ¢tyfech moznostech ohledné (ne)dokazatelnosti ¥, 19 z
teorie T skutecné plati, ze T+ ¢ pravé tehdy, kdyz ||p|m, = 1.

Podivejme se alespon na piipad, kdy [|1]|m, = 0 a [|¥2]m, = 1; tedy ||@llmy = 1.
Podle indukéniho predpokladu plati T 11 a T F 19; diky tUplnosti teorie T mame
T+ —y. Jelikoz formule by — ()2 — (¥1 — t2)) vznikne dosazenim do tautologie
vyrokové logiky, vime, ze plati - —h1 — (12 — (11 — ¥2)). Dvojndsobnym pouzitim
Modus Ponens tedy odvodime, ze T'F (1 — 13), neboli T F .

4. Piipad ¢ = (Vx)1).
Vztah (5) dokazujeme pro uzaviené formule, uvazujeme tedy uzavienou ; to ovSem
nevylucuje, ze ¥ mé jednu volnou proménnou (oznacenou zde z). Nelze tedy pifmo
vyuzit platnost indukéniho predpokladu pro . MuZeme ho ovSem vyuzit pro kazdou
uzavienou instanci formule 9, tj. pro kazdou formuli ¢ (z/t), kde ¢ je uzavieny term
(tedy prvek univerza UM7). Cili podle indukéniho piedpokladu mame

pro kazdy term t € UMT plati T I ¢ (x/t) pravé tehdy, kdyz || (x/t)||m, = 1
a chceme vyvodit, ze
Tk (Vx)y prave tehdy, kdyz ||(Vz)y||m, = 1. (6)

Ptipomenme, ze podle definice sémantiky predikatové logiky je ||(Vz)y|m, = 1 préave
tehdy, kdyz pro kazdé ohodnoceni v piifazujici proménnym prvky univerza UM7T plati
lYllMpw = 1. Vime, Ze z ohodnoceni v je zde vyznamnd pouze hodnota v(x), coz je
néjaky uzavieny term t. Podle definice UMT pro uzavieny term ¢ plati |||/, = t (pro
libovolné v), takze |(Vx)y|m, = 1 pravé tehdy, kdyz pro kazdy uzavieny term ¢ je
/Dl = 1.
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e (Pod)piipad, kdy pro néjaky uzavieny term ¢ mame 7'V ¢ (x/t).
Podle indukéniho pfedpokladu zde mame |[¢(x/t)|m, = 0, z ¢ehoz také plyne
|(Vz)¢| M, = 0. Protoze T I/ ¢(x/t), méme také T t/ (V)i (nebot z T + (Va)y
by diky axiomu konkretizace (V)i — ¢ (x/t) plynulo T+ v (z/t)).
Mame zde tedy T t/ (Vz)y a ||(Vx)y|m, = 0, coz odpovidd dokazovanému
vztahu (6).

e (Pod)ptipad, kdy pro vSechny uzaviené termy ¢ méame T i (z/t).
Podle indukéntho piedpokladu zde méme ||1(x/t)||m, = 1 pro viechny ¢t € UM,
z ¢ehoz také plyne ||(Vz)y|m, = 1. K dikazu vztahu (6) potfebujeme, aby zde
platilo T'F (V).
Ale ouha! Obecné teorie (byt tieba tiplné) nemaji vlastnost, ze by T - (V) nutné
plynulo z toho, ze T'F ¢ (x/t) pro vSechny uzaviené termy t.

Mgjme napi. jazyk dany konstantou ¢ a undrnim predikdtovym symbolem P (jiné
funkéni a predikdtové symboly tedy jazyk nemd). Uvazujme teorii T obsahujicf
jedinou formuli, a sice P(c). Pro formuli ¢ = P(z) mdme ocividné T+ ¢(x/t) pro
vSechny uzaviené termy ¢; jedinym uzavienym termem v naSem jazyce je totiz
¢ a mame T F P(c). Nemdme ale T F (Vx)p, tj. nemdme T - (Vz)P(z); napf.
struktura M s univerzem {1,2}, v niz ¢™ = 1 a PM = {1}, je modelem teorie
T (protoze ||P(c)|lm = 1), v némz formule (Vz)P(z) neni pravdivé (protoze
|P(x)|lm» = 0, kdyz v(z) = 2). Neplati tedy T = (Vz)P(z) a podle véty o
korektnosti nemuze tedy platit ani 7'+ (Va) P(z).

V prubéhu dukazu jsme si postupné uvédomili potiebnost rozsifeni teorie 1" tak, aby méla
aspoii jednu konstantu a aby byla tplna; ted si uvédomujeme, Ze potiebujeme jesté dalsi
vlastnost. Tuto vlastnost nastésti opét muzeme ziskat vhodnym rozsifenim uvazované teorie.
Pujde o tzv. henkinovské rozsifeni puvodni teorie 7', které je konzervativni (a tak zachovava
bezespornost) a v némz bude pii jeho tplnosti skuteéné zaruceno T' + (Vz)i v piipadé, ze
plati T' = ¢(x/t) pro vSechny uzaviené termy t. Zbyva tedy definovat henkinovské teorie a
dokazat, ze kazda bezespornd teorie ma uplné henkinovské rozsiteni.

Ptipomenme si jeden z béznych postupt, kdyz chceme prokézat, ze vSechny prvky jisté
mnoziny A maji jistou vlastnost ¢, tedy chceme prokézat (Vo € A)p(x). Zvolime si novy
symbol, napt. ¢, a prohlasime, ze oznacuje libovolné zvoleny prvek mnoziny A. Kdyz
se ndm pak podaii prokdzat ¢(c), tedy, ze ¢ mé vlastnost ¢, tak vyvodime, ze plati
(Vz € A)p(z). Z toho lze vytusit, ze kdyz k teorii T piiddme novou konstantu ¢ a axiom
p(x/c) = (Vx)p(x) (neboli (Iz)—-p(x) — —p(x/c)), tak vznikne konzervativni rozsifeni
teorie T'.

Henkinovské teorie se standardné definuji s vyuzitim existené¢niho kvantifikatoru: teorie T je
henkinovskd, jestlize pro kazdou formuli ¢ s jednou volnou proménnou, oznacenou x, existuje
néjaka konstanta ¢ takové, ze T+ (Fz)p — p(x/c).

Pro tdplnou henkinovskou teorii 7' snadno odvodime, ze platnost 7' - 1 (z/t) pro vSechny
uzaviené termy t implikuje T+ (Va)y (kde z je jedind volnd proménnd formule 1)):

Predpoklddejme T I/ (Va)v; diky tplnosti teorie T mdme T F —(Va)y, tj. T + (3x)—p.
Diky henkinovosti existuje pro formuli —) konstanta ¢ takova, ze T+ (3z)— — —p(z/c).
Pak ovsem T + —)(z/c), a tedy T I/ (z/c) (nebot T je tiplnd, coz také zahrnuje, Ze nenf
spornd). Tedy neplati, ze T+ 1)(x/t) pro vSechny uzaviené termy t.
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Pozdéji ukézeme, ze kazdou bezespornou teorii T lze rozsifit na 77, kterd je tplnd (a tedy
bezespornd) a henkinovska.

Dukaz véty (ze kazda bezespornd teorie ma model) tim bude tedy ukonéen, zatim pro piipad
teorii v jazycich bez rovnosti. O
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Tyden 9

Vybrana tvrzeni (na jejichz uzite¢nost jsme narazili pfi dikazu véty o tplnosti).

Pfipomenme si, co je (univerzalni) uzavér @ formule ¢, a nasledujici vétu:

Véta 22 (Véta o uzdvéru.)
Pro kazdou teorii T a kaZdou formuli ¢ (v jazyce teorie T') plati: T & ¢ prdvé, kdyz T + .

Dikaz. Z T+ ¢ plyne T F @ (vicendsobnym) uzitim pravidla generalizace. Jelikoz (V) — ¢
je instance axiomu konkretizace (je totiz ¢ = p(x/x)), je fakt, ze z T + @ plyne T F ¢, také
ziejmy. ([l

Véta 23 (Véta o dedukei.)
Pro kazdou teorii T, kaZdou uzavienou formuli ¢ (tedy ¢ bez volnych proménnich) a kazdou
formuli ¢ plati:

T, 1 prdve tehdy, kdyz T F o — 1.

Cviceni 48 Pripomerite si dikaz véty pro vyrokovou logiku a ten rozsifte pro predikdtovou
logiku. Pripomenite si také, proc¢ je zde uzavienost ¢ dileZitd.

Regeni cviceni. Nejprve si véimnéme, ze z T F ¢ — 1 trividlné plyne T, ¢ F ¢ — 1;
protoze také trivialné plati T, ¢ F ¢, diky pravidlu Modus Ponens vyvodime T, p F 9.
Ted piedpoklddejme T, ¢ F 9. Existuje tedy piislusny dikaz, tedy posloupnost formuli
01,92, -+, Pk, kde pr =1 a ¢;, pro kazdé i € {1,2,...,k}, je bud axiom (tedy instance
jednoho z péti axiomovych schémat hilbertovského kalkulu), nebo prvek mnoziny TU{¢},
nebo plyne z predchozich formuli v dikazu podle pravidla Modus Ponens ¢i podle pravidla
Generalizace. Ukazme, ze plati T+ ¢ — ¢;, pro i = 1,2,..., k. Pokud ¢; je axiom, tak z
platnosti - ¢; a b ¢; = (¢ = ;) (instance axiomového schématu 1) vyvodime F ¢ — ¢;
(podle Modus Ponens), tedy také T F ¢ — ¢;. Pokud ¢; je prvek T, tak podobné z
ThE e alk @ — (¢ = ;) vyvodime T F ¢ — ¢;. Pokud ¢; = ¢, tak vyuzijeme, Ze plati
F ¢ — ¢ (napi. podle véty o dosazeni do tautologie vyrokového poctu); opét tedy mame
T+ ¢ — ;. Pokud ¢; plyne z ¢; a w; = (¢; = @) (pro j,¢ < i) podle Modus Ponens,
vyuzijeme, ze mame T F ¢ — ¢; a T F ¢ — (¢; = ¢;) podle indukéniho pfedpokladu:
protoze - (¢ = (¢; = ¢i)) = ((¢ = ;) = (¢ = ¢i)) (axiomové schéma 2), vyvodime
T F ¢ — ¢; dvojndsobnym pouzitim Modus Ponens. Pokud ¢; plyne z ¢; (j < i)
podle pravidla Generalizace, tedy ¢; = (Va)g; (pro néjakou proménnou ), vyuzijeme
indukéni predpoklad T F ¢ — ¢, z néhoz také plyne T + (Vx)(¢ — ;). Piipomeneme
si, ze (Vz)(¢ = ¢;) = (¢ = (Va)p;) je instanci axiomového schématu 5 (distribuce
kvantifikdtoru), pokud ovsem z nenf volnd ve . Tady vidime, pro¢ v podminkdch véty
o dedukci uvadime pfedpoklad, ze ¢ je uzaviend; v tom pfipadé tedy skutecné vyvodime
TEo— (Vx)p;, tj. T F @ — ;. Jelikoz ¢y, = 1, ukdzali jsme tak, ze T F ¢ — 1.

Ptipomenime, Ze teorie S je rozsirenim teorie T, jestlize jazyk Jg teorie S je rozsifenim
jazyka Jp teorie T' (tj. vSechny funkéni a predikatové symboly jazyka Jp jsou také piislusnymi
symboly, se stejnymi aritami, v jazyce Jg, pricemz jazyk Jg muze obsahovat i néjaké dalsi
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symboly) a kazdy teorém teorie T je teorémem teorie S (tedy T F ¢ implikuje S - ¢). Jedn4 se
o konzervativni rozsirent, jestlize navic kazdy teorém teorie S v jazyce Jr je rovnéz teorémem
teorie T' (v jazyce Jr tedy z teorie S lze dokazat presné ty formule, které jsou dokazatelné z
T).

Cviceni 49 Kdyz S je rozsirenim T, plati nutné, zZe T C S ¢ (Zduvodnéte, proé ne.)

Véta 24 (Véta o ziplnéni.)
Ke kazdé bezesporné teorii T existuje jeji rozsiveni T' se stejnym jazykem, které je tplnou
teorii (tedy pro kaZdou uzavienou ¢ plati prdvé jedna z moznosti T' = o, T' - —p).

Dukaz. Diskutovali jsme jiz, ze kdyz pro uzavienou formuli ¢ mame Tt/ ¢, tak T'U {—p} je
bezesporna. Jestlize tedy mame pro uzavienou ¢ jak Tt/ ¢ tak T't/ —¢p, tak teorie T'U {p} i
teorie T'U {—¢} jsou bezesporné.

V (pro nés standardnim) piipadé, ze formuli v jazyce teorie T' je (jen) spocetné mnoho,
lze vS8echny uzaviené formule uspotfadat do posloupnosti ¢g, @1, @2,... a definovat teorie
Ty, 11,5, ... nasledovné:

e Ty =T (tedy Tp je vychozi bezesporna teorie);
e Pokud T; t/ ¢; a T; I/ —;, pak polozime T;+1 = T; U {¢;}; jinak T;+1 = T;.

Je ziejmé, ze pro kazdé i = 0,1,2,... je T; bezespornd. Pak je ovSem bezespornd i 7" =
ToUTY UT, U---. (Kdyby v T” bylo mozné dokdzat n&jakou kontradikei, tak by prislusny
dukaz byl dukazem uz v T; pro néjaké i.)

Teorie T' tak m4 stejny jazyk jako T, plati T C T" a T” je tplnd (pro kazdé i € N plati
prave jeden ze vztahu T' F ¢; a T F —p;).

(Poznédmka (pro hloubavé ¢tendre). Kdyby bylo nespoc¢etné mnoho formuli v jazyce teorie
T, tj. jazyk teorie T by obsahoval nespocetné mnoho funkénich a predikatovych symbolua,
pouzili bychom néjaké dobré uspoiadani uzavienych formuli a transfinitni indukci pro de-
finici teorii Ty, kde X probiha piislusny pocatecéni tsek ordinalnich ¢isel, nejen piirozenych.

Pro limitn{ ordinal A pak definujeme T} jako |J, ., Tk.) O

Dalsi véta mj. ika, jak Ize udélat formuli uzavienou jinak nez doddnim kvantifikdtoru —
za volné proménné doddme nové konstanty (o nichz nic nepfedpoklddame).

Véta 25 (Véta o konstantach.)

Pridame-li k jazyku teorie T nové konstanty ci,co,...,cn, dostaneme rozsirent teorie T,
které muzeme oznacit Ty, ¢, ... ¢, Pro kaZdou formuli ¢ jazyka teorie T' a libovolné proménné
T1,%2,...,T, pak plati

T & ¢ pravé tehdy, kdyz T, cy,..c, - p(x1/C1,22/C, ..., Tn/Cn).

(Z toho rovnéz plyne, Ze T¢, c,... ., je konzervativnim rozsirenim teorie T'.)

Dikaz. Piipomnéli jsme nejprve dikaz pro n = 1:
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e Necht T+ ¢ ; vezméme né&jaky dukaz @1, 02, . . ., @ formule ¢ z T, tedy mj. plati o = .
Posloupnost ¢1, @2, ..., ¢r je tedy i dukazem v Ti,. Pfidame formuli pr11 = (Vx1)e
(pouzili jsme pravidlo generalizace na ¢y), pr+2 = (V1)@ — ¢(x1/c1) (instance axiomu
konkretizace) a pr13 = @(x1/c1) (pouzijeme Modus Ponens na ¢y19 a @g+1). Takto jsme
demonstrovali, ze T;, F p(z1/c1).

e Necht T,, - ¢(x1/c1) a posloupnost 1,1, ..., ¥y, je piislusnym dukazem (kde 1, =
o(x1/c1)). Zvolime-li proménnou y, kterd se v zadné formuli v dukazu nevyskytuje, a na-
hradime-li kazdy vyskyt konstanty c; v kazdé formuli 1; onou proménnou y, dostaneme
dukaz v teorii T' (jak lze snadno ovéfit postupné pro ¥, g, ..., Ym).

Z toho plyne T b ¢(z1/y), a tedy také T + (Vy)p(z1/y). Jelikoz (Vy)p(z1/y) —
(p(x1/y))(y/z1) je instance axiomu konkretizace (x; je substituovatelnd za y) a
(p(z1/y))(y/z1) = @, vyvodime, ze plati T+ .

Dokézali jsme tedy, Zze pro kazdou ¢ v jazyce teorie 1" plati T - ¢ pravé tehdy, kdyz 1;,
o(z1/c1). Tim jsme také dokazali, ze pro kazdou v v jazyce teorie Ty, plati T, - 1 prave
tehdy, kdyz T, ¢, F ¥(x2/c2). Pro kazdou & v jazyce teorie Tp, ., plati T, ¢, F & pravé tehdy,
kdyz T, cy,c5 = ¥ (23/c3), atd. Z toho jiz tvrzeni véty snadno vyvodime. O

Dalsi véta fiké, pro¢ je volba vdzanych proménnych v (pod)formulich nepodstatnd, pokud
nekoliduje s volnymi proménnymi.

Cviceni 50 Vysvétlete, proé napr. formule (Vx)(3y)P(x,y,z) je ekvivalentni s formuli
(V) (3 )P(z,y', 2), ale neni ekvivalentni s formuli (Vy)(3y)P(y,y,z) [kde y neni substitu-
ovatelnd za x v (Jy)P(x,y,2)] ¢i s formuli (Vz)(y)P(z,y, z) [kde sice z je substituovatelnd
za x v (Jy)P(x,y, z), ale z md volnyg vyskyt v (3y)P(z,y,2)]).

Véta 26 (Véta o variantéch.)
Necht y neni volnd v 1 a je substituovatelnd za x v 1. Pokud ¢’ vznikne z ¢ nahrazenim
(jednoho viyskytu) podformule (V) formuli (Vy)i(x/y), tak plati - @ < ¢'.

Dukaz. Ukazme nejprve, ze za uvedenych predpokladu plati - (Va)y < (Vy)u(x/y). (Obecna
forma je nechana jako cviceni.)

Nejprve ukazme F (Va )y — (Vy)v(x/y):
Diky axiomu substituce mame - (Vx)y — ¢ (x/y). Pouzitim pravidla generalizace pak od-
vodime F (Vy) ((Vz)y — ¥(x/y)). Axiomem distribuce a pravidlem modus ponens odvodime

= (Vo) = (Vy)(z/y).
Analogicky se ukaze - (Vy) (¢ (x/y)) — (Vx).

Méme = (Vy)y(z/y) = ¢ (jelikoz ¢(z/y)(y/z) = ¢) a k- (Vz) (Vy)¥(z/y) = ¢), a tedy
F(Vy)v(z/y) = (V)¢.

Staci tedy vyvodit, ze také plati - ((Vz)yp — (Vy)u(z/y)) A (Vy)y(z/y) — (Vx)).
Ovsem obecné plati = p1 — (p2 — (p1 A p2)), nebot se jednd o dosazeni do tautologie
vyrokového poctu ve formé p — (q — (p A q)). O

Cviceni 51 Promyslete si, jak dokoncit dikaz predchozi véty.
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Népovéda. Postupujeme strukturalni indukei.

Kdyz podformule (Vz)y je pifmo formuli ¢, je ¢’ rovno (Vy)iy(z/y) a demonstraci toho,
ze plati - ¢ <> ¢’ jsme jiz provedli.

Kdyz ¢ = =@, tak (Va)y je podformulf formule @ a podle indukéntho pfedpokladu vime, ze
F @ < ¢, kde ¢’ vznikne z @ nahrazenim podformule (V) formuli (Vy)i(x/y). Vyuzitim
véty o dosazeni do tautologie vyrokového poctu snadno odvodime, ze plati = =@ < =@’
(nebot (p <> q) — (—p <> —q) je tautologie), a tedy F ¢ <+ ¢'.

Postup pro pifpad ¢ = @1 — 2 je analogicky. (Proved'te jej!)

Kdyz ¢ = (V2)§ (a (V2)§ # (Va)y), tak ¢’ = (Vz)&, kde & vznikne z £ nahrazenim
podformule (V)i formuli (Vy)i(z/y). Podle indukéniho predpokladu mdme + & < &',
tedy H & — ¢ a b & — £ Z faktu F € — ¢ diky pravidlu generalizace odvodime, ze
F (V2)(€ — &). Nynf si sta¢i uvédomit, ze plati F ((Vz)(€ — &) = ((V2)€ — (V2)¢'), coz
ukézeme v dalsim cviceni. (Zde to predpoklddejte a dikaz dokoncete.)

Cviceni (neocislovano). Ukazte, ze plati F ((Vz)(p — ¢)) = ((Vz)p — (Vz)i).

Néapovéda. Vime, ze plati (Vz)(p — ) F ¢ — ¥ a (Vx)p F ¢ (proc?), tedy pouzitim
pravidla modus ponens odvodime, ze (Vz)(p — ), (Va)p F 1; pravidlem generalizace
tedy dostaneme (V)(¢ — v), (Vz)p F (Va)1. Vypada to, 7e ted staci dvakrat pouzit vétu
o dedukci a jsme hotovi. To ale lze za predpokladu, ze formule (Va)p a (Vz)(p — 1) jsou
uzaviené. Pokud nejsou, tak prosté jejich volné proménné nahradime novymi konstantami;
takto upravené formule jsou uzaviené a vétu o dedukci 1ze pro né pouzit. Kyzeny fakt pro
puvodni formule pak plyne z véty o konstantdch. (Promyslete si!)

Cviceni (neocislovano). Ukazte, ze véta o variantdch plati i pro existenéni kvantifikdtor
(misto univerzalniho).

Népovéda. Staci ukazat, ze kdyz y neni volnad v ¥ a je substituovatelnd za x v v, tak
platf F (3x)Y < (Fy)v(z/y), neboli F =(Vz)—p + =(Vy)—(z/y). Vime jiz, ze plati
F (Vo)=Y < (Vy)-(x/y), takze kyzené odvodime dosazenim do tautologie vyrokového
poctu (konkrétné do jiz difve pouzité (p +> q) = (—p < —q)).

Vsimnéme si, ze postupem ve vySe uvedeném dukazu také snadno odvodime i tuto vétu
(kterou lze pfirozené rozsitit na nahrazeni vice vyskytu jejich “ekvivalenty”):

Véta 27 (Véta o ekvivalenci.) Kdyz ¢ vznikne z ¢ nahrazenim (jednoho vijskytu) podformule
W formuli 2, tak plati <> ' = @ < .

Pripomernime si, jak je definovana henkinovska teorie; neformélné feceno, kazda existence je
potvrzena specidlni konstantou. Presnéji: teorie T je henkinovskd, jestlize pro kazdou formuli
© s jednou volnou proménnou, oznacenou x, existuje néjaka konstanta c takova, ze plati
T+ (3z)p — p(x/c). Ukdzeme ted vétu, kterd se ndm hodila pro dukaz véty o tplnosti pro
predikatovou logiku; jde o vétu 29, pfed niz predradime (pomocnou) vétu 28.

Véta 28 (Véta o henkinovské konstanteé.)

Je-li p(x) formule jazyka Jr teorie T a je-li S = TU{(3x)p — p(x/c,)}, kde c, je konstanta,
o niZ jsme jazyk Jr rozsirili, pak teorie S je konzervativnim rozsirenim teorie T'.
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Dikaz. Uvazujme T, ¢, c,,, S tak, jak je uvedeno v pfedpokladu véty; misto ¢, pisSme c. Podle
véty o konstantdch je teorie T, (kterd ma oproti T' jen jazyk rozsiteny o c¢) konzervativnim
rozsirenim teorie 7. Mame ovsem ukdzat, ze S = T U {(Jz)p — p(z/c)} je konzervativnim
rozsifenim T

Necht tedy plati S F 1 pro n&jakou (pevné zvolenou) formuli ¢ v jazyce teorie T'; méme
ukézat, ze plati i T F 1. Podle véty o dedukci mame

T. F (Gr)e = o(x/c)) = 1.

Pokud v prislusném dukazu v teorii T, nahradime kazdy vyskyt konstanty ¢ proménnou y,
kterd se v zadné formuli dukazu nevyskytuje, dostaneme dukaz v teorii T, jak lze snadno
ovérit. Ukazali jsme tak, ze

TH(@z)e = e(x/y) = .

Pouzitim generalizace a korektni distribuci kvantifikdtoru (o praci s kvantifikdtory jsme po-
jednali a jesté pojedndme zvlast) dostaneme postupné:

T+ (YY) (((3z)p = e(z/y)) = ),
T+ ((Fy)((Fz)e = e(z/y))) — b,
T+ ((Fz)p = Cy)e(z/y)) = .

Podle véty o variantdch (pro existenéni kvantifikdtor) mame F (3z)(¢) — (Jy)p(z/y), ne-
bot y se ve ¢ nevyskytuje. Uzitim Modus Ponens dostdvame T F 1. Takze S je skutec¢né
konzervativnim rozsitenim teorie 7. 0

Cviceni (neocislovano). Doplite dukaz predchozi véty, tedy ukazte, ze
1. F (Vz)(¢ = ¢¥) = ((3x)p — ), kdyz = neni volnd v 1;

2. F (3x)(¢ = ¥) = (¢ = (3z)v), kdyz  neni volna ve .

Népovéda.

1. Diky vété o okvivalenci sta¢i ukdzat, ze - (Vz)(—¢ = —p) = (- — =(3z)p) (proc?),
tedy ze b (Va)(—¢) — —p) = (= — (Vx)—¢); to je ovsem axiom distribuce.

2. Jelikoz  (Vz)—p — —p, mdme i b ¢ — (Jz)y. Dosazenim do tautologie vyrokového
poctu (p2 — p3) — ((p1 = p2) — (p1 — p3)) odvodime, ze plati

- (@ = @2)) = (9 = 1) = (9 — G2)), a tedy F (9 = 1) = (9 — (F2)) (witim
modus ponens). Generalizaci dostaneme + (Vz)((¢ — ¥) — (¢ — (32)v)), a pak aplikaci
faktu 1 a pravidla modus ponens dostdvame - (3z) (¢ — ) — (¢ — (3x)).

Véta 29 (Véta o henkinovském rozsifeni.)
Ke kazdé teorii existuje jeji konzervativni rozsirent, které je henkinovskou teorii.

Dikaz. Uvazujme (vychozi) teorii T, oznacenou také Ty. Ukdzali jsme (v predchozi vété), jak
zaridit “henkinovost” pro jednu formuli ¢(z). Nyni uvazujme proces, ktery to udéla naréz pro
vSechny piislusné formule s jednou volnou proménnou: pro kazdou formuli typu ¢(z) prida
jeji vyluénou novou “henkinovskou konstantu” ¢, a pifslusny henkinovsky axiom (Jz)p —
¢(x/c,). Tim vznikne teorie T1, ktera je konzervativnim rozsifenim 7p, jak lze snadno ovéfit
(uvazte piipad T3 F ¢ pro formuli ¢ v jazyce Jr, a ukazte, pro¢ plati i Ty F ).
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Ov8em 77 nemusi byt henkinovska, jeji jazyk byl oproti Ty rozsifen a muze tak obsahovat
nové formule s jednou volnou proménnou, v jazyce Jr,, které piislusné henkinovské konstanty
nemaji. Proto uvazujme stejny proces rozsiteni 11, ¢imz dostaneme 15, atd. Nakonec pro teorii
T = ToUT1UT,U- - - snadno ovéiime, ze je henkinovska a pfitom je konzervativnim rozsirenim
teorie T'. U
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Tyden 10
Zacneme jesté procvicenim préace s kvantifikatory.
Cviceni 52 Ukazte, Ze plati
= (V) (e = ) = (Vo)p = (Va)y),
= (Vo) (e = ) = ((Fz)e = (F2)y).
Jsou logicky platné i obrdcené implikace?
Cviceni 53 Ukazte, Ze
1. (Vz)(p = ¥) = ((Vx)p — (Yx)) je ekvivalentni s (Vz)(@ — ) A (Y)p) — (Vz)o;
2. Vz)(¢ = ) = ((Bx)p — (Fz)¢) je ekvivalentni s (Vx)(¢ — ) A (Fz)p) — (Fx).

(Ndpovéda. Vsimnéte si, Ze (p = (q = 1)) < ((p Aq) — 1) je tautologie vyrokové logiky.)

Jazyky s rovnosti (a véta o uplnosti).

Dokondili jsme jiz dikaz véty o uplnosti predikdtového poctu pro teorie s jazyky bez rovnosti.

Ted zkoumdame jazyky a teorie s rovnosti; pripomindme, ze u nich se (bindrn{) predikatovy
symbol “=" musi ve strukturach povinné realizovat identitou. To sice axiomy predikatového
poctu nevynuti, ale k dosavadnim axiomovym schématum se (alespon) dodaji tzv.

azriomy rovnosti:
1. z=ux;

2. (1131 = Y1 /\332 :y2/\/\mn :yn) — f(.fCl,SCQ,...,ﬂfn) = f(ylayQ)"'ayTL)a
pro kazdy n-arni funkéni symbol f v pfislusném jazyku;

3. (mi=mnAze=y2 A ANxp =1ypn) = (P(x1,22,...,20) = P(y1,92,...,Yn)),
pro kazdy n-arni predikatovy symbol v piislu§ném jazyku.

Tyto formule jsou o¢ividné pravdivé v kazdé strukture, kde je relacni (neboli predikatovy)
symbol “=" realizovén identitou. Véta o korektnosti (T F ¢ implikuje T |= ¢) tedy plati i
pro teorie s rovnosti.

Mluvili jsme také o zavislosti a nezavislosti v mnozinach axiomi. Mj. bychom mezi axiomy
rovnosti mohli také ocekdvat formule typu “x = y — y = 2”7 (symetrie relace rovnosti) a
“(r=yANy=2z2) - x=2" (tranzitivita). Uvédomili jsme si ale, ze ty se daji odvodit (v
nasem hilbertovském predikdtovém kalkulu) diky axiomum rovnosti 1 a 3.

Cviceni 54 Ukazte, Ze v hilbertovském kalkulu s axiomy rovnosti plati - x =y — y = x.

Resend. Jednou z instanci axiomu rovnosti 3 je (z = y Az = x) — (P(z,z) — P(y,z))
pro jakykoli binarni predikdtovy symbol P v piislusném jazyku. Kdyz za P vezmeme
predikdt “=", dostdvdme instanci (x = yAx = z) = (z = — y = x). VyuZzitim toho, ze
predchozi formule vznikne dosazenim do formule (p A ¢) — (¢ — ) vyrokové logiky a ze
((pANg)— (g— 1)) = (¢ = (p— 1)) je tautologie vyrokového poctu, odvodime, ze plati
Fx=2— (x =y — y=ux). Protoze x = x je axiom, odvodime -z =y — y = x.
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Cviceni 55 Zkuste podobné ukdzat, Ze plati - (x =y ANy =2) > x = z.

Kdyz nepozadujeme od realizace rela¢niho symbolu “=” nic vic, nez splnéni uvedenych
axiomu rovnosti, pak v modelu M teorie T' muze byt “=" realizovdn né&jakou kongruenci
vzhledem k realizacim vSech funkénich a predikatovych symbolu ptislusného jazyka.

Pfipomerime, ze relace p na mnoziné U je ekvivalence, jestlize je bindrni (p C U x U),
reflexivni (xpx), symetrickd (xpy implikuje ypzx) a tranzitivni (xpy a ypz implikuje zpz).
Ekvivalence p je kongruenct vzhledem k funkci (neboli operaci) f : U™ — U, jestlize z
T1PY1, T2PY2, - - -, TnpPYn Dlyne f(z1,xa,...,xn) p f(Y1,92,-..,Yn). Relaci p chdpeme jako
kongruenci vzhledem k predikdatu P C U™, jestlize z x1py1, T2pYyo,- - ., TnpPYn Plyne, ze
(z1,...,2,) € P prave tehdy, kdyz (y1,...,yn) € P.

Z veéty 21 (kazdd bezespornd teorie mé model) plyne, ze i kazdd bezesporna teorie s rov-
nost{ ma model, pokud dovolime realizovat symbol “=
rovnosti; takovd relace je pak nutné kongruence vuci realizacim v8ech piislusnych funkénich
a predikatovych symboli. Musime ale dokazat, ze v tom piipadé existuje i model, v némz je
symbol “=" realizovan identitou. K tomu sta¢i prislusnou strukturu faktorizovat podle oné
kongruence:

)

" jakoukoli relaci spliiujici axiomy

Méme-li strukturu M = (U, F, R), ve které je néjaka relace = kongruenci vzhledem ke vSem
f € F a P € R, pak definujeme strukturu M/ = (faktorizace M podle kongruence =) jako
trojici (U', F',R') sestrojenou takto:

e jako univerzum U’ vezmeme mnozinu vsech tfid ekvivalence =, tedy
U ={[alz |a €U}, kde [a]lz={be U |b=a};
e ke kazdé n-arnf funkci f € F zafadime do F' n-arni funkci f/ splnujici

f,([al]Ev R [an]E) = [f(ah oo )an)]

)

e pro kazdy n-arni predikdt P € R zafadime do R’ n-arni predikat P’, pro néjz plati
P'([ai]=, - .., |an]=) pravé tehdy, kdyz P(aq,...,an).

Diky tomu, ze = je kongruence, je uvedena definice korektni (tedy opravdu jednoznacéné
definuje funkce f’ a predikdty P’, jak lze snadno ovéfit). Zaroven je ziejmé, ze kdyz M je
modelem teorie T', tak také struktura M/ = je modelem této teorie. Navic pro relaci = v M
je jeji protéjsek =" ve strukture M/ = identitou.

Méme totiz [a]= =’ [b]= praveé tehdy, kdyz a = b, tedy pravé tehdy, kdyz tiidy ekvivalence
[a]= a [b]= jsou si rovny.

Kdyz tedy M je modelem teorie T, ve kterém relace = realizuje symbol “=", pak M/ = je
modelem teorie T', ve kterém je symbol “=" realizovan identitou.

Faktorizaci podle kongruence jsme si také pfipomnéli na zndmé struktuie (Z, {+, -}, {=s})
mnoziny celych ¢isel s operacemi s¢itdni a ndsoben{ a s kongruenci “modulo 5” (kde a =5 b,
jestlize hodnoty (a mod 5) a (b mod 5) jsou si rovny; napt. 17 =5 2 =5 —8).
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Tim jsme dokonéili dikaz véty o dplnosti (T = ¢ implikuje T+ ) i pro teorie s rovnosti.

Véta o kompaktnosti.

Vsimnéme si zobecnéni véty o kompaktnosti, kterou jsme diskutovali u vyrokové logiky;
uvedeme ji ve dvou verzich:

Véta 30 (Véta o kompaktnosti (pro predikatovou logiku).)
1. Teorie T md model prdvé tehdy, kdyz kazdd konecénd T' C T md model.
2. T = ¢ prdvé tehdy, kdyz existuje koneénd T' C T, pro niZ plati T' = .

Vsimnéme si, Ze je to tvrzeni o sémantice. V piipadé vyrokové logiky jsme piislusné tvrzeni
dokézali pfimo a pak jsme jej pouzili k demonstraci tplnosti (syntaktického) axiomatického
systému vyrokového poc¢tu. U predikatové logiky toto tvrzeni naopak elegantné dokazeme
vyuzitim véty o uplnosti:

Diikaz. 1. Model teorie T' je pochopitelné modelem i kazdé T" C T. Piedpoklddejme ted,
ze T nemd model; je tedy spornd (protoze kazda bezespornd mé model). V T tedy existuje
dikaz sporu, tedy dikaz néjaké kontradikce. Tento dukaz je ovsem konecnou posloupnosti
formuli, takze je to dukaz i v n&jaké konecné T" C T'; tedy existuje i konecnd T" C T, kterd
je sporna a tudiz nemd model.

2. Implikace “<” plyne snadno z definice |=. Pro dukaz “=" predpoklddejme T' = ¢. Podle
véty o uplnosti mame i T+ ¢. Piislusny dukaz je dukazem i v néjaké koneéné 7" C T, tedy
T'+ ¢, a podle véty o korektnosti mame 7" |= . O

Uvedme alespoii jednu aplikaci véty o kompaktnosti; ukazuje, Ze v predikitové logice
prvniho fadu (kterou se zabyvame) nelze zachytit pojem kone¢nosti struktur:

Tvrzeni 31
Kdyz ma teorie T koneéné modely neomezengjch velikosti, tak md i nekonecny model.

Dukaz. Uvazujme teorii T', pro niz pro libovolné n € N existuje model, jehoz univerzum je
konecéné a m4 vice nez n prvki. Definujme mnozinu formuli aq, as, as, ..., kde

a; je formule (Vap)(Vaa) - (Vo) (Fy) (1 Ay Aaxes ZFyA--- ANz £ y).

(Zapis x # y je pochopitelné zkratka za —(x = y).)

Snadno odvodime, ze kazdd kone¢nd podmnozina mnoziny 7'U {aq, ag, g, ... } ma model.
(Odvod'te.)

Podle véty 30(1) m4 tedy i mnozina T'U {1, a9, a3, ...} model. V ném jsou pravdivé mj.
v8echny formule «;, z ¢ehoz vyvodime, ze onen model nemuze byt koneény. O

Prenexni forma formuli. Na varianté pfikladu 3.74 z [1] jsme si pFiblizili pfevod formule
¢ na ekvivalentni{ formuli ¢ v prenexni formé (neboli v prenexnim tvaru).

Formule ¢ je v prenexni formé, jestlize je ve tvaru (Qiz1)(Qaz2)---(Qnxn)y, kde
x1,%2,...,T, jsou navzajem ruzné proménné, @Q; € {3,V} pro kazdé i = 1,2,...,n, a ¢
neobsahuje zadné kvantifikdtory (formuli ¢ se 1ka otevrené jadro, nebo téz matrice ¢i matice,
dané formule ¢ v prenexni formé, pficemz sekvenci (Q121)(Q2x2) - - - (Qnxy) se tikd prefiz).
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K prevodu se specidlné hodi si pripomenout ekvivalence zachycené napi. ve vété 3.47
v [1], umoznujici korektné “prohazovat implikace s kvantifikdtory”. (Probirali jsme pii
prednéskédch a mj. diskutovali chybu v posledni ekvivalenci, (24), v 3.47 v [1].)

Pozndmka. Prevod formule do prenexni formy zada mj. jeden piiklad z druhé zapoctové
pisemky. Napft.: k formuli

(Vz) (=(Vy)~R(z,y, 2) = ~(V2)R(y, z, 2))
sestrojte ekvivalentni formuli v prenexni formé. Pievedeni do ekvivalentniho tvaru

(VSL’) ((ay)R(l‘? Y, Z) - (EZ)ﬁR(y, x, Z))

je jasné. Pokud ale ted chceme “vytdhnout” (Jy) z predpokladu implikace uvniti zdvorky
pred zavorku, musime nejen otoc¢it kvantifikdtor (3 zménit na V), ale dat také pozor na to,
ze v zavéru implikace, tedy ve formuli (32)-R(y,x, z) se y vyskytuje volné! Abychom za-
mezili svazdni volné proménné, nemuzeme ovSem zménit onen volny vyskyt y na (napf.) v’
— vyslednd formule by nebyla ekvivalentni puvodni formuli! (Je to jasné?) Pouzijeme tedy
variantu (pod)formule (Jy)R(z,y,z), konkrétné napi. (Iy')R(z,v,z) (pouzitim “Cerstvé”
proménné ', kterd se dosud v celé formuli nevyskytuje). Ve formuli

(V2)((3y)R(2,y', 2) = (32)=R(y, v, 2))
uz prislusnym vytazenim pied zavorku zadny volny vyskyt nesvazujeme, takze formule
(Vo)(vy') (R(z,y', 2) = (32)~R(y, 2, 2))

je opravdu ekvivalentni vychozi formuli.

Pii vytazeni (3z) ze zédvéru implikace uvniti zédvorky pred zdvorku se kvantifikdtor nemeént,
ale opét to nelze pifimo udélat kvuli svdzani volného vyskytu proménné z v piedpokladu
implikace. Proto zavér (3z)-R(y, z, z) nahradime ekvivalentni variantou (3z')-R(y,z,2') a
pak provedeme “vytazeni”; dostavame tedy formuli

(V2) () (3) (R(@,y, 2) = ~R(y,z, ")),

ktera je ekvivalentni vychozi formuli a je uz v prenexni formé.

Cviéeni 56 Vyzkousejte si prevod formuli do prenexniho tvaru na dal§ich prikladech, af jste
st jisti, Ze rozumite vSem nuancim.
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Tyden 11

Seznamili jsme se s ndsledujicimi dulezitymi fakty z logiky. (Jde ndm ted o pochopeni
vysledku, byt jejich dukazy nejsou soucésti naseho kurzu.)

Nejprve jsme si pfipomnéli zakladni pojmy teorie vycislitelnosti, specidlné pojem rozhodnu-
telné mnoziny (neboli rekurzivni mnoziny) a édstecné rozhodnutelné mnoziny (neboli rekur-
zivné spocetné mnoziny), a obecné algoritmicky (édstecné) rozhodnutelného problému; pritom
jsme piipomnéli i pojem Turinguv stroj.

Otazky rozhodnutelnosti mnozin Taut;, Sat;, Prov;, Proofsy, ...

Polozili jsme si otdzku, zda pro kazdy konkrétni jazyk J = (F,R,ar), feknéme s koneénymi
mnozinami F a R, je mnozina tautologii (neboli logicky platnych formuli) v jazyce J, tedy
mnozina

TauT; = {¢ | ¢ je formule v jazyce J, pro niz plati | ¢},
rozhodnutelna. Jelikoz diky vété o uplnosti mame TAUT; = PROV, kde
Prov; = {¢ | ¢ je formule v jazyce J, pro niz plati F ¢}
(PROV ze slova “provable”), tak jsme odvodili, ze
mnozina TAUT; je ¢dsteéné rozhodnutelna:

jelikoz mnozina dukazi PROOFS; (tj. mnozina posloupnosti ¢1,p9,..., @, spliujicich
piislusné podminky) je o¢ividné rozhodnutelnd, tak algoritmu, ktery ma mit kone¢ny vypocet
pro zadanou formuli ¢ pravé tehdy, kdyz ¢ je tautologie, staci systematicky postupné gene-
rovat vSechny dukazy a zastavit se, pokud nagel dukaz pro ¢.

Zda je TAUT; rozhodnutelnd (nejen ¢édstecné rozhodnutelnd), zdvisi na konkrétnim J =
_»

(F,R,ar). Napt. kdyz F je prazdnd mnozina a R obsahuje pouze predikat rovnosti “=", tak
TAUT je rozhodnutelna.

Pfipomenme, Ze ¢ je tautologie préavé tehdy, kdyz —p je nesplnitelnd (tj. nemd model). D4
se snadno odvodit, ze formule ¢(x1,x2,...,2m) v jazyce s pouhym predikdtem rovnosti
mé model pravé tehdy, kdyz mé model, jehoz univerzum mé maximélné m prvku. Z toho
snadno plyne rozhodnutelnost mnoziny TAUT; pro zminény “chudy” jazyk J.

Pripomnéli jsem si nerozhodnutelny problém zastaveni:

Halting Problem (HP)
Instance: Turinguv stroj M a jeho vstup w.
Otéazka: Je vypocet M na w konetny?

a intuitivné jsme nahlédli, Ze pro vhodny (maly) jazyk J lze navrhnout formuli ppz,, v jazyce
J, kterd ma model préaveé tehdy, kdyz M, w je pozitivni instanci problému HP. V tom piipadé

tedy mame algoritmickou redukci problému HP na problém pfislusnosti k mnoziné

SAT; = {¢ | ¢ je formule v jazyce J, kterd ma model}
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(SAT ze slova “satisfiable”), z ¢ehoz plyne, ze SAT; je nerozhodnutelnd. Jelikoz pro kazdou
formuli ¢ v jazyce J médme ¢ € TAUT; <= —p € SAT;, vyvodime také, ze

TAUT je nerozhodnutelna.

Dokonce sta¢i pouzit jediny binarni predikatovy symbol kromé predikatového symbolu
rovnosti a vyse uvedena redukce z HP se da realizovat. Demonstrace tohoto faktu vyzaduje
ovSem jesté dalsi technickou praci.

Diskutovali jsme i relativizace vySe uvedenych mnozin vzhledem k dané teorii 7', tedy
mnozinu formuli “pravdivych v 77 (tj. sémantickych dusledkt mnoziny 7T')

ConseEQ(T) = {¢ | T = ¢},

ktera je podle véty o uplnosti (predikdtového poc¢tu) rovna mnoziné teorému teorie 7'
TaMm(T) ={p | T+ ¢}

Uvédomili jsme si, ze zde ma smysl diskutovat otazky rozhodnutelnosti jen za predpokladu, ze
samotnd mnozina T je rozhodnutelnd (coz implikuje, ze THM(T') je ¢astecné rozhodnutelnd).

Otazky rozhodnutelnosti mnozin Th(N, Plus) a Th(N, Plus, Mult)

Uvazme konkrétni strukturu (N, PLUS), s univerzem N = {0, 1,2,...} a ternarni relaci PLUS,
kde PrLus(zx,y, z) plati pravé pro trojice ¢isel x,y, z spliujici podminku = + y = z.

Mnozinu Th(N, PLus), teorii struktury (N, PLUS), definujeme jako mnozinu téch uzavienych
formuli jazyka s jedinym predikdtovym symbolem PLUS (s aritou 3), které jsou v uvedené
struktufe pravdivé. Vsimnéme si, Ze tato teorie je bezesporna (mé model) a tplnd (pro kazdou
uzavienou formuli ¢ je bud ¢ nebo —¢ dokazatelnd, dokonce pifmo prvkem oné teorie).

Cviceni 57 A¢ zde uwvazujeme jen jazyk s jedingm predikdtovgm symbolem, konkrétné s
terndrnim symbolem PLUS, ekvivalentné jsme mohli pouzit bindrni funkéni symbol “+7 a
predikdt rovnosti “=" a pripadné doplnit napr. konstanty ‘0”7 a “1”7 a bindrni predikdtovy
symbol “<7”, se standardni interpretaci ve struktuie prirozenych cisel. Napt. formuli x <y
muzeme chdpat jako zkratku za formuli (3z)PLUS(x, z,y). Promyslete si, jak lze pomoci PLUS

vyjadrit napr. =0 ¢ x = 1.

Neni ovsem zfejmé, zda Th(N,PLuS) je rozhodnutelnd. Tuto otdzku vyfesil pozitivné
Presburger na konci dvacatych let dvacateho stoleti:

Véta 32 Mnozina Th(N, PLUS) (také zvand Presburgerova aritmetika) je rozhodnutelnd.

Dukaz se (dnes) d& elegantné provést vyuzitim teorie koneénych automatu (neprovedli jsme).

V rédmci tzv. Hilbertova programu bylo potieba mj. ukdzat, ze také Th(N, PLus, MULT) je
rozhodnutelnd; zde MULT je dalsi terndrni predikét kde MuLT(z,y, 2) plati pravé pro trojice
¢isel x,y, z splnujici podminku x -y = z.
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Presnéji bychom méli fici, ze §lo o nalezeni tuplné rozhodnutelné teorie T', pro niz je
(N, Prus, MuLT) modelem. Diky rozhodnutelnosti 7' by mnozina THM(T) byla ¢dstecné
rozhodnutelnd a diky uplnosti pak i rozhodnutelnd (pro kazdou ¢ staci soubézné hledat
dikaz pro @ a -, kde P je (univerzdlni) uzévér formule ).

Nasledujici dulezity (Godeluv) vysledek z tficatych let dvacatého stoleti byl prekvapivy:
Véta 33 Mnozina Th(N, PLus, MULT) nend rozhodnutelnd.

Néam uz je podstata dikazu nerozhodnutelnosti jasnd: ke kazdému Turingovu stroji M a
jeho vstupu w lze algoritmicky sestrojit formuli ®ys,,(2) v jazyce s PLUS a MULT (v niz je
x jedind volnd proménnd) tak, ze M se zastavi na w pravé tehdy, kdyz (uzaviend) formule
(F2)® 1,0 je pravdiva (ve standardnim modelu N, tj. je prvkem Th(N, PLus, MuLT)). Formule
@)1 () je konstruovana tak, ze de facto fiké: ¢islo = je kédem vypoctu stroje M na w, ktery
skonéi v koncové konfiguraci. (Cislo = tedy kéduje pifslusnou posloupnost konfiguraci stroje
M; podminka, ze posloupnost odpovida instrukcim stroje M se da vyjadrit pomoci séitani a
nasobeni, coz vyzaduje kus technické prace.)

Godelovy véty o netiplnosti.

Pruni Gddelova véta o neidplnosti.
Podstatu této véty jsme jiz vidéli vyse, zformulujme ji ted vice standardné:

Véta 34 KazZdd aziomatizace struktury (N, PLus,MuLT), tj. teorie T (predikdtové logiky
proniho Tadu) s prislusngm jazykem, kterd je korektni (tj. vSechny jeji uzaviené dokazatalné
formule patri do Th(N,PLus, MULT)) a rozhodnutelnd (tj. existuje algoritmus, ktery rozho-
duje, zda dand formule je prvkem T neboli aziomem), je neuplnd, coZ znamend, Ze existuje
formule v Th(N, PLus, MULT), kterd neni v T dokazatelnd (neboli existuje formule, kterd
je pravdivd ve strukture prirozenych cisel, ale neni dokazatelnd ve viychozim axiomatickém
systému,).

Véta 34 sice plyne z véty 33, ale navic vede k otdzce, zda lze pro konkrétni korektni a
rozhodnutelnou axiomatizaci T' struktury (N, PLus, MULT) sestrojit konkrétni formuli, ktera
je pravdiva (tim myslime je prvkem Th(N, PLus, MULT)), ale neni dokazatelna (tedy neni v
THM(T)). To Godel ukazal; neformélné feceno, ukazal zpusob, jak zkonstruovat aritmetickou
formuli @, kterd de facto ika “ja jsem v T nedokazatelnd”. (Detailnéji, ¢ tika “pro formuli s
ur¢itym pofadovym ¢&islem neexistuje posloupnost, kterd by byla jejim diukazem v T”, ovSem
to poradové ¢islo je ve skutecnosti ¢islem formule ¢.) Takova ¢ je jisté pravdivd, protoze jinak
by se jednalo o nepravdivou formuli, ktera je dokazatelnd v T', a T by tedy nebyla korektni.

Ve zbytku této Casti nacrtneme urcity “programatorsky” postup mozného dukazu.

Vyuzijeme vySe zminénou formuli ® /., (x) a vétu o rekurzi (zminénou nize), a déle o¢ividny
fakt, ze pro kazdou rozhodnutelnou axiomatizaci T existuje enumerétor (Turinguv stroj) Er,
ktery generuje vSechny uzaviené formule dokazatelné v T'.

Véta o rekurzi je dulezity vysledek teorie vycislitelnosti; dé se formulovat tak, ze fika, ze
piikaz “ziskej svuj vlastni k6d” 1ze chépat jako korektni instrukei programu (Turingova stroje)
— d& se totiz implementovat standardnimi instrukcemi.
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Véta o rekurzi. Mé&jme Turinguv stroj M realizujici (¢dstecnou) funkei fas : ¥* x 3* —
¥*. (Muzeme si stroj M piedstavit jako dvoupdskovy s tim, Ze jeho vstup mé dvé ¢dsti,
prvni napsanou na prvni pdsce a druhou na druhé péasce.) Pak existuje (lze algoritmicky
sestrojit) stroj R realizujici funkci fr : ¥* — ¥* takovou, Zze pro vSechna w € X* plati
fr(w) = fu(w,(R)), kde (R) je kédem stroje R.

Idea dukazu. Pfipomenme si néjaké standardni kédovani Turingovych stroju fetézci v
pevné abecedé; staci abeceda {0, 1}, pficemz budeme ptredpoklddat, ze {0,1} C ¥ pro
abecedu ¥ z predpokladu véty. Kéd stroje S oznaéme (S); jestlize fetézec u je kédem
stroje, tak M, oznacuje piislusny stroj.

Snadno si uvédomime, ze pro kazdy fetézec u € X* lze algoritmicky zkonstruovat Turinguv
stroj P,, ktery pocita se dvéma paskami a po spusténi jen zapiSe Fetézec u na druhou
pasku (feknéme, ze pifpadny puvodni obsah druhé pdsky prepise, pficemz prvn{ pasku
ignoruje). Navrhnéme ted stroj B, ktery po spusténi pracuje také jen na druhé pésce, jejiz
obsah v okamziku spusténi B ozna¢me u: B nejdiive zkontroluje, zda fetézec u je kédem
néjakého Turingova stroje, tedy stroje M,; v kladném piipadé pfepiSe druhou péasku
kédem (P,; M,) (znak “;” znamend sekvenéni kompozici, po ukonéeni préace prvniho stroje
je iniciovan druhy stroj). Nyni definujme stroj A jako Pp;ry, a stroj R jako A; B; M.
Stroj R si tedy predstavujeme jako dvoupdskovy s tim, ze jeho vstup w € ¥* je napsan
na prvnf pdsce (a druhd péska je na zac¢dtku prdzdnd). Nejdiive se tedy spusti A, ktery na
druhou péasku zapise kéd stroje B; M. Pak se spusti B, ktery fetézec (B; M) na druhé pésce
piepise fetézcem (Pp;nry; B; M), coz je podle definice (A; B; M) a tedy (R). Pak se spusti
M, ktery m& na prvni pdsce onen puvodn{ vstup w a na druhé pasce (R). Pokud je jeho
vypocet koneény, vydd nakonec fus(w, (R)); takze opravdu mame fr(w) = far(w, (R)).

Konkrétné muzeme sestrojit Turinguv stroj .S, ktery se pro kazdy vstup chova nasledovné:

Ziskej svuj kéd (S) a sestav formuli —(3z)®go (kterd fika “Stroj S se nezastavi na vstup
0”). Spust enumerdtor &; pokud ten nékdy vygeneruje onu formuli ~(3z)Pg g, zastav se.

Je zFejmé, ze program S se na vstup 0 nemuze zastavit (jinak bychom dostali spor s korekt-
nosti axiomatizace). Formule —~(3z)®g je tedy pravdiva (patif do Th(N, PLus, MULT)), ale
neni v dané axiomatizaci dokazatelnd. (Kdyz ji pridame jako dalsi axiom, enumerator £ a tim
i stroj S se prislusné zmeéni a dostaneme opét pravdivou nedokazatelnou formuli —(3z)®g o,
kde S’ je onen “zménény S”.)

Druhd Gédelova véta o netplnosti.

Prvni Godelova véta o netiplnosti se obecnéji formuluje tak, ze jakykoli konzistentni formalni
systém F' obsahujici zakladni aritmetiku neni tplny — existuje tedy uzaviena formule ¢, pro
niz systém F nedokéze ani ¢ ani —. (V systému F' se automaticky predpokladd algoritmicka
rozhodnutelnost axiomu.)

Druhéd Goédelova véta o neuplnosti fikd, ze zminény systém F nedokéze svou vlastni be-
zespornost (neni v ném dokazatelnd formule Cons(F'), kterd napf. vyjadiuje, ze v F' neni
dokazatelna néjakd zvolend kontradikce).

Dtikaz druhé véty je zalozen na formalizaci dikazu prvni véty v ramci F.
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Logické programovani (Prolog), rezoluéni metoda

Zde se jen letmo dotkneme teoretickych zakladu, vice se doctete v [1] a jinde.

Rezoluce ve vyrokové logice. Princip rezolucéni metody se u vijrokové logiky dé zachytit
nésledovné:

(PVe),(mpVY) Ee VY. (7)
Pokud ¢ a v jsou “prazdné formule” (tedy ve vyrazu chybi), dostavame
b,™p ): Da

kde OO oznacuje tzv. prdzdnou klauzuli, kterou chapeme jako oznaceni kontradikce.

Nabizi se tedy moznost nésledujiciho ptistupu k automatizovanému dokazovini T |= ¢
(rezoluéni metodou):

Pfipomenme, ze T = ¢ pravé tehdy, kdyz je T'U {—¢} nesplnitelnd, tedy vlastné pravée
tehdy, kdyz plati T, —¢ = 0.

Kazdou formuli z T'U {—¢} muzeme pfevést do konjunktivni normdlni formy a ziskame tak
souhrnné mnozinu klauzuli, jejiz nesplnitelnost mame prokazat. (Pfipomenme, ze klauzule je
disjunkce literdla, kde literél je bud vyrokovy symbol nebo jeho negace.) Pokud dvé klauzule
v této mnoziné obsahuji komplementarni par literala, tedy jedna obsahuje p a druha —p,
muzeme vytvorit dalsi klauzuli, tzv. rezolventu, podle rezolu¢niho pravidla (7). Postupné se
tak snazime vyvodit kontradikci, tedy prazdnou klauzuli [J.

Napt. chceme ukazat, ze plati p — q,q > r Ep — r:
V klauzularni formeé je zde T'U {—¢} mnozinou klauzuli

(=pVq), (mqVr), p,—r

(posledni dvé klauzule vzniknou z =(—pV r)). Aplikaci rezolu¢niho pravidla napf. na klauzule
(=pV q) a (nq V r) vyvodime rezolventu (—p V r) (vyuzivdme komutativity V) a mnozinu
klauzuli tak rozsifime na

(=pVq), (=qVr), p, =r, (-pVr).

Diky (—pV r) a p vyvodime r a mdme mnozinu klauzuli
(=pVq), (=qVr), p, —r, (pVr), 7.

Nyni uzitim r a —r rozsifime mnozinu o rezolventu [J a mame tedy mnozinu klauzuli
(=pVq), (mqVr), p, —r, (~pVr), 7, 0O,

ktera je oc¢ividné nesplnitelnd. Nutné tedy i vychozi mnozina je nesplnitelnd, a tedy
p — q,q — r = p — r skuteéné plati.

Cviceni 58 Zformalizujte tyto poznatky

Karel jel autobusem nebo vlakem.
Jel-li Karel autobusem nebo svym vozem, pak prisel pozdé na schuzku.

Karel neprisel pozdé na schizku.
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ve vyrokové logice a pak rezolucni metodou dokazte, Ze Karel jel viakem.

Je ziejmé, ze kdyz z mnoziny klauzuli C opakovanym pouzitim rezolu¢niho pravidla vy-
vodime [, tak mnozina C je nesplnitelnd. Opacny smér ziejmy neni, tak nacrtneme dikaz.
Staci ukazat, ze z kazdé kone¢né nesplnitelné mnoziny klauzuli lze odvodit O, protoze podle
véty o kompaktnosti je nekoneénd mnozina nesplnitelnd prave tehdy, kdyz existuje jeji kone¢na
podmnozina, kterd je nesplnitelna.

Pro konecné mnoziny C ukazeme tvrzeni indukci podle poc¢tu m vyrokovych symbola ob-
jevujicich se v klauzulich v C. V kazdé klauzuli ovSem nedovolujeme vice nez jeden vyskyt
kazdého literdlu, jinak bychom napf. z nesplnitelné mnoziny {(p V p), (=p V —p)} kyzenou O
neodvodili.

Kdyz médme nesplnitelnou C s jedinym vyrokovym symbolem p, tak v C nutné musi byt
klauzule p i klauzule —p, takze [0 odvodime. Necht tvrzeni plati pro vSechny nesplnitelné
mnoziny klauzuli s nejvys m vyrokovymi symboly a uvazujme nesplnitelnou C s m+1 symboly;
necht jeden z nich je p.

Soustiedme se nejprve na ta pravdivostni ohodnoceni e, pro néz je e(p) = 1. Vypustme
z C vsechny klauzule obsahujici p a v kazdé zbylé klauzuli vypustme literdl —p, pokud se
v ni vyskytuje. Vznikne mnozina klauzuli C’ s nanejvys m vyrokovymi symboly, kterd je
nesplnitelnd (proc?). Z C’ podle indukéntho predpokladu odvodime . Kdyz piesné totéz
odvozeni (aplikuj pravidlo rezoluce na tyto klauzule podle tohoto vyrokového symbolu, pak na
tyto klauzule podle tohoto symbolu, atd.) provedeme v puvodni C, tak pokud jsme nevyvodili
O, tak vyvodime —p (pro¢?). Kdyz pak provedeme analogické tivahy pro piipad e(p) = 0,
dospéjeme k odvozeni p. OvSem z odvozenych klauzuli p a —p odvodime 0.
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Tyden 12

Herbrandova véta (vCetné skolemizace). Ilustrovali jsme na konkrétnim piikladu.
Uvazili jsme teorii obsahujici tyto formule 1, @2, ©3, p4:

(Vz)(Jy) Py, z), P(z,y) = D(y,z), (P(x,y) A D(z,2)) = D(y, 2), D(z,y) = =(z =y)

(napf. lze chapat P(x,y) jako “z je rodicem y” a D(z,y) jako “x je potomkem y”).
Usoudili jsme, ze plati

{1, 02,3, 04} = 5, kde 5 je formule (32)(Iy)(P(z,y) A =(x = y)).

Demonstrujeme to prokdzanim, ze mnozina {1, p2,¥s3, ¥4, @5} je nesplnitelna (kde @ je
univerzalni uzavér formule ¢; v nasem piipadé oviem P; = p5). Vime, ze vSechny formule
muzeme univerzalné uzaviit (v nasem piipadé napt. P(z,y) — D(y,x) je nahrazena formuli
(Vx)(Vy)(P(x,y) — D(y,z))) a prevést do prenexni formy. V nasem piipadé jen prepiSeme
—ps5 jako (V) (Vy)(~P(z,y) V z = y).

Existen¢nich kvantifikatora se zbavime tzv. skolemizaci. V nasem piipadé se 3 objevuje jen
ve formuli (Vz)(3y)P(y, z). Zavedeme novy funkéni symbol f; a misto oné formule napiseme
(Vx)P(f1(z),x). Tato formule sice neni ekvivalentni puvodni formuli, ale puvodni mnozina
formuli je nesplnitelnd pravé tehdy, kdyz novd mnozina je nesplnitelnd; promyslete si proc.
Také zformulujte, jak byste se postupné zbavili vSech dalSich pfipadnych existen¢nich kvan-
tifikdtoru (zavadénim stéle novych funkénich symbolu).

Méme tedy prokédzat nesplnitelnost jisté mnoziny formuli v prenexni formé bez existencnich
kvantifikatoru. Kdyz zapiSeme jejich oteviend jadra (matrice) v konjunktivni norméalni formé,
dostaneme mnozinu {1, 92, 13, ¥4, 15}, konkrétné

Y1 ... P(fi(x),z),

¢2 _‘P(.%,y) \/D(y,.%'),

Y3 ... "P(z,y)V -D(z,2) V D(y, z),
Yy ... 2D(2,y)) V —(z =y),

¢5 ﬂP(:c,y)

Rezoluéni metodou vyvodime préazdnou klauzuli [J, kdyz pouzijeme vhodné instance for-
muli 11, 19, 13,14, 105 vzniklé substitucemi uzavienych termu (prvku tzv. Herbrandova uni-
verza, které jiz zndme) za proménné; budeme ovSem potfebovat i instance axiomu rovnosti.
Zavedeme konstantu ¢ (dostaneme tedy Herbrandovo univerzum {c, fi(c), fi(fi(c)),...})
a z instanci P(/1(c): 0) (y]z/c]) a [(2PU1(c).0) V D(c, () (ofz/fi(c),y/c]) vyvodime
klauzuli [P(¢,f1(6)) 7 této klauzule a z instance TD(c. f1(c)))V =(c = fi(c)) vyvodime
=(c=/fi(c). 7 instanci axiomi rovnosti vyvodime (file) = ¢ = ¢ = fi(c) a tedy)
H(file)=c)Ve=h (C)‘; dalsim pouzitim rezolu¢niho pravidla pak dostaneme C(fila =)
Pouzitim 0P (f1(c),c) V filc) =4 (instance 15) vyvodime ~P(fi(c).c) Aplikujeme pak re-
zoluéni pravidlo na klauzule IP(f1(c). )] a 2 P(f1(c), €) a dostévame kyZzenou .

Jedna z variant prezentace Herbrandovy véty je tato:

Véta 35 (Herbrandova) Pro uzavienou formuli ¢ v prenexnim tvaru plati = ¢ prdvé
tehdy, kdyz existuje konecnd vyrokové spornd teorie, kterd obsahuje pouze instance formule
(=)9% a instance aziomi rovnosti. (Virazem ()% oznacujeme otevienou skolemovskou
variantu formule ).
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Rezoluce v logickém programovani. Logické programovani je zaloZzeno na automati-
zovaném rezoluénim dokazovani v predikatové logice, coz vyzaduje i tzv. unifikaci termu.
Budeme to ilustrovat na jednoduchém piikladu programu v Prologu.

(Nézev “ProLog” je de facto zkratka za “Programming in Logic”.)

parent (adam,peter). % adam is a parent of peter
parent (eve,peter) .
parent (adam,paul) .
parent (mary,paul) .
parent (paul, john) .

descendent (D,A) : -parent (A,D).
descendent (D,A) : -parent (P,D) ,descendent (P,A).

Pozndmka. Jedna se o standardni piiklad pfi uvodu do jazyka Prolog (¢i obecné pii tivodu
do logického programovani); viz napi. webovou stranku R. Bartdka na MFF UK Praha:

http://ktiml.mff.cuni.cz/ bartak/prolog/contents.html.

Z Internetu si néjakou implementaci Prologu snadno muzete nainstalovat a vyzkouSet (coz
vam samoziejmé velmi doporucuji).
Pokud programu vyse (napf. v souboru facts.pl) zaddme (consult(’facts.pl’). a pak) dotaz

7- descendent (X,adam) ,parent (mary,Y) .

odpovi nam (postupné, napf. novy fadek vypiSe vzdy po zadani stiedniku)

X = peter, Y = paul ;
X=Y, Y = paul ;

X john, Y = paul ;
false.

Diskutovali jsme vztah uvedeného piikladu prologovského programu k predikatové logice.
Pfirozené jsme navrhli tento jazyk odpovidajici nasemu programu:

e vyrazy adam, john, mary, peter, paul chdpeme jako konstanty (tedy funkéni sym-
boly arity 0);

e vyrazy parent, zkracené P, a descendent, zkrdcené D, chdpeme jako predikdtové (ne-
boli relaéni) symboly arity 2;

e vyraz descendent (D,A) : -parent (A,D) chédpeme jako formuli P(y,z) — D(x,y) (sym-
boly D, A chédpeme jako proménné a nahradili jsme je tak radéji nasimi zavedenymi
symboly z,y pro proménné), kterd je ekvivalentni formuli D(z,y) V = P(y, z);

e vyraz descendent(D,A):-parent(P,D),descendent(P,A) chdpeme jako formuli
(P(z,2) N D(z,y)) — D(x,y), kterd je ekvivalentni formuli D(x, y)V—-P(z,z)V-D(z,y).

Prologovsky program pak chdpeme jako “teorii”, tedy mnozinu formuli, resp. klauzuli (po
prevodu formuli do klauzuldrni formy). V nasem piikladu ji oznaé¢ime PROG; je to mnozina
téchto klauzuli:
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1. P(adam, peter)

2. P(eve, peter)

- w
T T

(
(
(adam, paul)
(mary, paul)
(

5. P(paul, john)

6. D(x,y)V—P(y, )

(
7. D(z,y) vV ~P(z,2) V-D(z,y)
Dotaz (polozeny prologovskému programu)

?7- descendent (X,adam), parent(mary,Y)

lze chépat jako formuli (3x1)(3y1) (D(x1,adam) A P(mary,y1)), oznacme ji jako DOTAZ, a
polozeni dotazu lze chapat tak, Ze zjistujeme, zda plati

Proc = Dotaz.

To ovSem plati pravé tehdy, kdyz mnozina PROG U {=DOTAZ} je nesplnitelnd, tedy nem4
zadny model, neboli kdyz

Prog, -Dotaz = O,

kde [0 oznacuje (néjakou) kontradikci. V nasem konkrétnim piipadé to znamend, ze kdyz k
uvedenym formulim 1 — 7 pfidame formuli

8. =D(x1,adam) V —~P(mary,yi),

tak z formuli 1 — 8 plyne kontradikce. Podle véty o uplnosti je tedy teorie 1 — 8 sporna, je
v ni dokazatelnd kazda formule (k cemuz staci, ze je v ni dokazatelnd néjakd kontradikce).
Implementace Prologu ovsem nejsou zalozeny na hledani dikazu v hilbertovském kalkulu, ale
na tzv. rezoluéni metode.

V nasem piikladu z predikatové logiky muzeme zkusit uplatnit rezoluci na formule 6 a
8, oznacme je g a g, ale potfebujeme uplatnit tzv. unifikaci pomoci (vhodné) substituce.
Substituce o je zobrazeni ptifazujici proménnym termy. V nasem piikladé pouzijme substituci
o1 = (x1/z,y/adam), ¢imz znazornujeme zobrazeni, které pfifazuje proménné z; term x,
proménné y term adam a na ostatnich proménnych je identitou. Formule pgoy (tj. formule
¢ na niz aplikujeme substituci o) je tedy

D(z,adam) V =P(adam, )

a pgo1 je
—D(x,adam) vV =P(mary, y1).

Rezoluénim pravidlem vyvodime g:

9. =P(adam,x)V =P(mary,y1)
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Aplikaci substituce o9 = (z/peter) na ¢1 a @9 vyvodime
10. =P(mary,y1)

a aplikaci substituce o3 = (y1/paul) na ¢4 a @19 vyvodime (0. Ted uz vidime, jak Prolog
pfiSel na svou prvni odpovéd X = peter,Y = paul. (Jak?)

Struc¢né jsme diskutovali i dalsi souvislosti (véetné prologovského prohledavani do hloubky),
specialné z pohledu nasich znalosti predikatové logiky. Mluvili jsme mj. o

e rezolucni metodé, vyuzivajici mj. unifikaci termu a formuli,

e hornovskych klauzulich (ty obsahuji nejvys jeden pozitivni literdl), které mohou byt
definitni (pravé jeden pozitivni literdl), neboli fakty a pravidla [z nichz je tvofen prolo-
govsky program]|, nebo cilové [odpovidajici dotazum v Prologul).

Potencial uziteénosti programovani v Prologu jsme si jeSté naznacili na piikladu obarveni
grafu (reprezentujictho mapu stétu stfedni Evropy); diskutovali jsme program

color(red).
color(green).
color(blue).

diffcol(X,Y) :- color(X), color(Y), X\=Y.

colmideur(CZ,SK,PL,GE,AU,HG) :-

diffcol(CZ, SK), diffcol(CZ, PL), diffcol(CZ, GE), diffcol(CZ, AU),
diffcol(SK, PL), diffcol(SK, AU), diffcol(SK, HG),

diffcol(PL, GE),

diffcol(GE, AU),

diffcol (AU, HG).

a dotaz

?- colmideur(CZ,SK,PL,GE,AU,HG) .
Neékteré dalsi typy logik.

Fuzzy logika. Jen stru¢né jsme si nastinili, pro¢ je nékdy vyhodné rozsifit mnozinu prav-
divostnich hodnot {1,0} (neboli {true, false}), napf. v piipadé prace s neurcitosti. Veéts
podrobnosti lze nalézt v [1] a jinde.

Specialné jsme zauvazovali nad piipadem vyrokové logiky, v némz pravdivostni ohodnoceni
nepfifazuje vyrokovym symbolum hodnoty 0 a 1, ale podmnoziny jisté mnoziny £ (predstavme
si pod &€ napf. mnozinu expertu). Tedy ohodnoceni e je zde typu VS — P(E).

P(€) oznacuje potenéni mnozinu mnoziny &, tedy mnozinu {X | X C £}. Tato mnozina
se také nékdy oznacuje 2¢; je to de facto mnozina zobrazeni z £ do mnoziny {0, 1}.

Jisté vidime pfirozené rozsifeni e na zobrazeni typu FML — P(£) (kde FML je mnozina
formuli vyrokové logiky s mnozinou vyrokovych symbolu VS). Specidlné pro toto rozsirené
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e napt. plati o A ¢ll. = [l 0 [0l a také lp — Bl = (l¢lle) U [lle, kde * je operace
dopliku, tedy X' = (£ \ X). Zde “plnou pravdu”, tedy 1, reprezentuje celd mnozina &, a
“plnou nepravdu”, tedy 0, reprezentuje prazdnd mnozina ().

Jinou pfirozenou moznosti je uvazovat pravdivostni ohodnoceni e jako zobrazeni typu
VS — [0, 1]; oborem (pravdivostnich) hodnot je tedy interval redlnych ¢isel od 0 do 1. Zde
se ovSem naskyta vice rozumnych moznosti, jak definovat napf. || Al a ||[¢ — ¥||e; jednou
z moznosti jsou Godelovy operace: pro konjunkei definujeme || A ¥|le = min(||@]le, [|2]|e) a
pro implikaci bude hodnota ||¢ — || rovna 1 v pfipadé ||¢|le < ||¢||e a rovna ||?)]| v pFipadé
lelle > llefle-

Tyto a jiné moznosti struktur pravdivostnich hodnot jsou zobecnény pojmem wuping reziduo-
vany svaz. (Opét muzeme odkézat k [1] a dalsim snadno dostupnym zdrojum pro podrobnosti
a dalsi souvisejici informace.)

Modalni logika, temporalni logika.
Ptipomnéli jsme si nasledujici protokol, ktery ma zamezit dvéma soubéznym procestim
soucasny piistup do kritické zény (napf. nemohou zaroven tisknout na sdilené tiskérné).

Petersonuv protokol (zamezeni situace s dvéma procesy v kritické sekci)

Process A: Process B':

** noncritical region ** ** noncritical region **
flaga := true flagp = true

turn := B turn := A

waitfor waitfor

(flagp = false \V turn = A) (flaga = false V turn = B)
** critical region ** ** critical region **

flaga = false flagp := false

** noncritical region ** ** noncritical region **

Napf. pro automatickou verifikaci ptislusnych vlastnosti se k vyjadieni téchto vlastnosti (typu
“nikdy nenastane piipad, ze oba procesy se sou¢asné ocitnou v kritické sekci”) ptirozené hodi
modalni logika, ¢i specidlné temporalni logika (interpretovand na tzv. Kripkeho struktufe,
tedy struktufe moznych svéti, v nasem piipadé stavu programu [kde stav zahrnuje aktudlni
hodnoty programovych proménnych a aktudlni pozice v provddéni jednotlivych procest)).
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Tyden 13

Seznam otazek k ustni zkousSce.

A) Otézky dikazové (VL (vyrokovd logika): 1.-6., PL (predikatova logika): 7.-12.)

Ll O

© %N ;

10.
11.
12.

Véta o dedukei (syntaktickd verze).

Véta o dukazu sporem (7' ¢ praveé tehdy, kdyz T, —¢ = —=(¢ — 1)).
Véta o korektnosti.

Churchovo lemma: pro libovolnou formuli ¢, kterd neobsahuje jiné vyrokové symboly
nez pi,...,pn, plati pf, ..., ps F ¢°.

Véta o kompaktnosti.

Véta o tplnosti (kde lze predpoklddat platnost véty o kompaktnosti).
Véta o konstantach.

Véta o henkinovské konstanteé.

Véta o henkinovském rozsifendi.

Véta o zaplinovani teorii.

Véta o tplnosti.

Véta o prenexnim tvaru.

B) Otézky pojmové a prehledové

1. Co a k ¢emu je logika? (vymezeni pojmu logika, trocha historie, logické paradoxy).

2. Zékladni syntaktické a sémantické pojmy VL (jazyk, formule, pravdivostni ohodnocent,

© 0 No oW

10.
11.
12.

sémantické vyplyvani).

Normaélni formy, tabulkovd metoda.

Axiomaticky systém VL (axiomy, pravidlo MP, pojem dukazu).

Korektnost a tplnost VL.

Zakladni syntaktické pojmy PL (jazyk, termy, formule).

Struktury pro PL, ohodnoceni, ohodnoceni termu a formuli.

Tautologie, splnitelné formule, sémantické vyplyvani, teorie a model teorie v PL.
Axiomaticky systém PL (axiomy, pravidla MP a G, pojem dukazu).

Korektnost a dplnost PL.

Godelovy véty o netplnosti.

Logické programovani (Prolog), specidlné teoretické zéklady (hornovské klauzule, sub-
stituce, unifikace, rezolu¢ni pravidlo).

Poznamky k pribéhu zkousky: bez splnéného zapoctu nelze jit na zkousku;
prihlasovani na terminy vypsané v IS STAG (pokud neni dohodnuto jinak napf. emailem);
zkouSeni bude probihat do konce zkouskového obdobi zimniho semestru, pri problémech v
individuélnich ptipadech budu vstficny domluvé o piipadném pozdéjsim terminu;

zkouSka bude ustni, s pisemnou piipravou: student si ndhodné vytahne otdzku z okruhu A;
pokud bude v rozsahu 1-6 (7-12), vytédhne si druhou otdzku z okruhu B z rozsahu 6-12 (1-5);
¢as na pisemnou piipravu: 30 minut (bez moznosti nahlizeni do pfinesenych materidlu a
pozndmek); ¢as na ustni zkouseni: zhruba 30 minut.
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