
KMI/MOVE: Modelling and Verification

Lecturer: Petr Jančar

Katedra informatiky PřF UP

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 1 / 29

Literature, materials

The course is based on the book

Reactive Systems: Modelling, Specification and Verification

by Luca Aceto, Anna Ingólfsd ottir, Kim Guldstrand Larsen, Jǐŕı Srba
Cambridge University Press, August 2007

The authors maintain the web-page

http://rsbook.cs.aau.dk/

which contains a lot of useful material. (Including the slides kindly
provided by Jǐŕı Srba, which serve as a basis of presentations in our course.)

The web-page of our course is

http://phoenix.inf.upol.cz/~jancarp/MaV/mav.htm

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 2 / 29

Focus of the Course

Study of mathematical models for formal description and analysis of
systems (programs).

Study of formal languages for specification of (properties of) system
behaviour.

Particular focus on parallel and reactive systems.

Verification tools and implementation techniques underlying them.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 3 / 29

Overview of the Course

Transition systems and CCS.

Strong and weak bisimilarity, bisimulation games.

Hennessy-Milner logic and bisimulation.

Tarski’s fixed-point theorem.

Hennessy-Milner logic with recursively defined formulae.

Timed CCS.

Timed automata and their semantics.

Binary decision diagrams and their use in verification.

Two mini projects.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 4 / 29

Mini Projects

Verification of a communication protocol in CAAL
(http://caal.cs.aau.dk).

Verification of a real-time algorithm in UPPAAL.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 5 / 29

Lectures

Ask/answer questions. Be active!

Take your own notes.

Read the recommended literature as soon as possible after the lecture.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 6 / 29

Tutorials/Exercise Sessions

Supervised peer learning.

Work in groups of 2 (or 3) people.

Print out the exercise list, bring literature and your notes.

Feedback from teaching assistant on your request.

Star exercises (*) (part of the exam).

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 7 / 29

Exercise/Project-Credit (“zápočet”) and Exam

Exercise/Project-Credit (“zápočet”):

participating at the two miniprojects and elaborating a solid
respective report,

Exam:

Individual and oral (the questions will be specified later).

Preparation time (star exercises).

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 8 / 29

Aims of the Course

Present a general theory of reactive systems and its applications.

Design.

Specification.

Verification (possibly automatic and compositional).

1 Give the students practice in modelling parallel systems in a formal
framework.

2 Give the students skills in analyzing behaviours of reactive systems.

3 Introduce algorithms and tools based on the modelling formalisms.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 9 / 29

Classical View

Characterization of a Classical Program

Program transforms an input into an output.

Denotational semantics:
a meaning of a program is a partial function

states →֒ states

Nontermination is bad!

In case of termination, the result is unique.

Is this all we need?

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 10 / 29

Interlude: Verification of a computer program

{ x1, x2 are integers satisfying C1: x1 ≥ 0, x2 > 0 }

Program P

y1 := 0; y2 := x1;
{ x1 = y1x2 + y2 ∧ 0 ≤ y2 } ... INV

while y2 ≥ x2 do (y1 := y1 + 1; y2 := y2 − x2);
z1 := y1; z2 := y2

{ C2: x1 = z1x2 + z2 ∧ 0 ≤ z2 < x2 }

We want to verify: {C1}P{C2} ... (specification of P)

Generated verification conditions:

{C1} y1 := 0; y2 := x1 {INV}
{INV ∧ y2 ≥ x2} y1 := y1 + 1; y2 := y2 − x2 {INV}
{INV ∧ ¬(y2 ≥ x2)} z1 := y1; z2 := y2 {C2}

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 11 / 29

Reactive systems

What about:

Operating systems?

Communication protocols?

Control programs?

Mobile phones?

Vending machines?

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 12 / 29

Reactive systems

Characterization of Reactive Systems

Reactive System is a system that computes by reacting to stimuli from its
environment.

Key Issues:

communication and interaction

parallelism

Nontermination is good!

The result (if any) does not have to be unique.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 13 / 29

Analysis of Reactive Systems

Questions

How can we develop (design) a system that ”works”?

How do we analyze (verify) such a system?

Fact of Life

Even short parallel programs may be hard to analyze.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 14 / 29

Example: Peterson’s protocol

Concurrent, parallel, interactive, ‘nondeterministic’ systems,
with ongoing behaviour ...
No input-output characterization (specification) ...
Verification of ‘simple’ properties ...

Peterson’s protocol (to avoid critical section clash)

Process A :

** noncritical region **
flagA := true

turn := B

waitfor

(flagB = false ∨ turn = A)
** critical region **
flagA := false

** noncritical region **

Process B :

** noncritical region **
flagB := true

turn := A

waitfor

(flagA = false ∨ turn = B)
** critical region **
flagB := false

** noncritical region **

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 15 / 29

The Need for a Theory

Conclusion

We need formal/systematic methods (tools), otherwise ...

Intel’s Pentium-II bug in floating-point division unit

Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

Mars Pathfinder

...

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 16 / 29

Classical vs. Reactive Computing

Classical Reactive/Parallel

interaction no yes

nontermination undesirable often desirable

unique result yes no

semantics states →֒ states ?

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 17 / 29

How to Model Reactive Systems

Question

What is the most abstract view of a reactive system (process)?

Answer

A process performs an action and becomes another process.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 18 / 29

Labelled Transition System

Definition

A labelled transition system (LTS) is a triple (Proc ,Act, (
a

−→)a∈Act)
where

Proc is a set of states (or processes),

Act is a set of labels (or actions), and

for every a ∈ Act,
a

−→ ⊆ Proc × Proc is a binary relation on states
called the transition relation.

We will use the infix notation s
a

−→ s ′ meaning that (s, s ′) ∈
a

−→.

Sometimes we distinguish the initial (or start) state.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 19 / 29

Interlude: Binary Relations

Definition

A binary relation R on a set A is a subset of A× A.

R ⊆ A× A

Sometimes we write x R y instead of (x , y) ∈ R .

Some properties of relations

R is reflexive if (x , x) ∈ R for all x ∈ A

R is symmetric if (x , y) ∈ R implies that (y , x) ∈ R for all x , y ∈ A

R is transitive if (x , y) ∈ R and (y , z) ∈ R implies that (x , z) ∈ R for
all x , y , z ∈ A

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 20 / 29

Closures

Let R , R ′ and R ′′ be binary relations on a set A.

Reflexive Closure

R ′ is the reflexive closure of R if and only if

1 R ⊆ R ′,

2 R ′ is reflexive, and

3 R ′ is the smallest relation that satisfies the two conditions above,
which means the following:
for any relation R ′′, if R ⊆ R ′′ and R ′′ is reflexive then R ′ ⊆ R ′′.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 21 / 29

Closures

Let R , R ′ and R ′′ be binary relations on a set A.

Symmetric Closure

R ′ is the symmetric closure of R if and only if

1 R ⊆ R ′,

2 R ′ is symmetric, and

3 R ′ is the smallest relation that satisfies the two conditions above.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 22 / 29

Closures

Let R , R ′ and R ′′ be binary relations on a set A.

Transitive Closure

R ′ is the transitive closure of R if and only if

1 R ⊆ R ′,

2 R ′ is transitive, and

3 R ′ is the smallest relation that satisfies the two conditions above.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 23 / 29

Labelled Transition Systems – Notation

Let (Proc ,Act, (
a

−→)a∈Act) be an LTS.

we extend
a

−→ to the elements of Act∗

−→=
⋃

a∈Act

a
−→

−→∗ is the reflexive and transitive closure of −→

s
a

−→ and s 6
a

−→

reachable states

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 24 / 29

How to Describe LTS?

Syntax

unknown entity
−→ Semantics

known entity

programming language −→ what (denotational) or
how (operational) it computes

???
−→ Labelled Transition Systems

CCS

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 25 / 29

Calculus of Communicating Systems

CCS

Process algebra called “Calculus of Communicating Systems”.

Insight of Robin Milner (1989)

Concurrent (parallel) processes have an algebraic structure.

P1 op P2 ⇒ P1 op P2

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 26 / 29

Process Algebra

Basic Principle

1 Define a few atomic processes (modelling the simplest process
behaviour).

2 Define compositionally new operations (building more complex
process behaviour from simple ones).

Example

1 atomic instruction: assignment (e.g. x:=2 and x:=x+2)
2 new operators:

sequential composition (P1; P2)
parallel composition (P1 || P2)

Now e.g. (x:=1 || x:=2); x:=x+2; (x:=x-1 || x:=x+5) is a process.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 27 / 29

A CCS Process: Black-Box View

What is a CCS Process to its Environment?

A CCS process is a computing agent that may communicate with its
environment via its interface.
Interface = Collection of communication ports/channels, together with an
indication of whether used for input or output.

Example: A Computer Scientist

Process interface:

coffee (input port)

coin (output port)

pub (output port)

Question: How do we describe the behaviour of the “black-box”?

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 28 / 29

CCS Basics (Sequential Fragment)

Nil (or 0) process (the only atomic process)

action prefixing (a.P)

names and recursive definitions (
def
=)

nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be (up to isomorphism) described by using the
operations above.

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 29 / 29

	Organization of the Course
	Overview
	Lectures and Tutorials
	Exam and Literature

	Introduction
	Aims of the Course
	Reactive Systems
	Why Do We Need a Theory?

	Formal Models for Reactive Systems
	Motivation
	Labelled Transition System
	Binary Relations
	Notation

	Introduction to CCS
	Calculus of Communicating Systems
	Process Algebra
	CCS Intuitively

