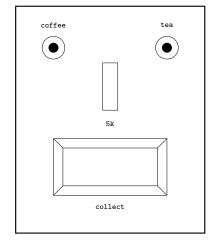
Lecture 2

- informal introduction to CCS
- syntax of CCS
- semantics of CCS

Vending machines

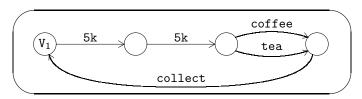
$$egin{aligned} {\tt V_1} \stackrel{
m def}{=} {\tt 5k.5k.(coffee.collect.V_1)} & + {\tt tea.collect.V_1)} \ & {\tt V_3} \stackrel{
m def}{=} {\tt 5k.5k.coffee.collect.V_3} \end{aligned}$$

+ 5k.5k.tea.collect.V₃

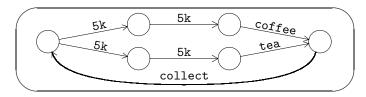


Vending machines - cont.

 $V_1 \stackrel{\text{def}}{=} 5 \text{k.5k.} (\text{ coffee.collect.} V_1 + \text{tea.collect.} V_1)$



 $\textbf{V}_2 \, \stackrel{\mathrm{def}}{=} \, \texttt{5k.5k.coffee.collect.V}_2 \, + \, \texttt{5k.5k.tea.collect.V}_2$



CCS Basics (Sequential Fragment)

- Nil (or 0) process (the only atomic process)
- action prefixing (a.P)
- ullet names and recursive definitions $(\stackrel{\mathrm{def}}{=})$
- nondeterministic choice (+)

This is Enough to Describe Sequential Processes

Any finite LTS can be described by using the operations above.

CCS Basics (Parallelism and Renaming)

- parallel composition (|)
 (synchronous communication between two components = handshake synchronization)
- restriction $(P \setminus L)$
- relabelling (P[f])

Definition of CCS (channels, actions, process names)

Let

- \bullet A be a set of channel names (e.g. tea, coffee are channel names)
- $\mathcal{L} = \mathcal{A} \cup \overline{\mathcal{A}}$ be a set of labels where
 - $\overline{A} = {\overline{a} \mid a \in A}$ (elements of A are called names, elements of \overline{A} are called co-names)
 - by convention $\overline{a} = a$
- $Act = \mathcal{L} \cup \{\tau\}$ is the set of actions where
 - τ is the internal or silent action (e.g. τ , tea, coffee are actions)
- K is a set of process names (constants) (e.g. CM).

Definition of CCS (expressions)

The set of all terms generated by the abstract syntax is called CCS process expressions (and denoted by \mathcal{P}).

Notation

$$P_1 + P_2 = \sum_{i \in \{1,2\}} P_i$$
 Nil = 0 = $\sum_{i \in \emptyset} P_i$

Precedence

Precedence

- restriction and relabelling (tightest binding)
- 2 action prefixing
- parallel composition
- summation

Example: $R + a.P|b.Q \setminus L$ means $R + ((a.P)|(b.(Q \setminus L)))$.

Definition of CCS (defining equations)

CCS program

A collection of defining equations of the form

$$K\stackrel{\mathrm{def}}{=} P$$

where $K \in \mathcal{K}$ is a process constant and $P \in \mathcal{P}$ is a CCS process expression.

- Only one defining equation per process constant.
- Recursion is allowed: e.g. $A \stackrel{\text{def}}{=} \overline{a}.A \mid A$.

Semantics of CCS

Syntax CCS (collection of defining equations) Semantics LTS (labelled transition systems)

HOW?

Structural Operational Semantics for CCS

Structural Operational Semantics (SOS) – G. Plotkin 1981

Small-step operational semantics where the behaviour of a system is inferred using syntax driven rules.

Given a collection of CCS defining equations, we define the following LTS $(Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$:

- Proc = P (the set of all CCS process expressions)
- $Act = \mathcal{L} \cup \{\tau\}$ (the set of all CCS actions including τ)
- transition relation is given by SOS rules of the form:

RULE
$$\frac{premises}{conclusion}$$
 conditions

SOS rules for CCS ($\alpha \in Act$, $a \in \mathcal{L}$)

$$\mathsf{RES} \ \ \frac{P \overset{\alpha}{\longrightarrow} P'}{P \smallsetminus L \overset{\alpha}{\longrightarrow} P' \smallsetminus L} \ \ \alpha, \overline{\alpha} \not\in L \qquad \qquad \mathsf{REL} \ \ \frac{P \overset{\alpha}{\longrightarrow} P'}{P[f] \overset{f(\alpha)}{\longrightarrow} P'[f]}$$

CON
$$\frac{P \xrightarrow{\alpha} P'}{K \xrightarrow{\alpha} P'} K \stackrel{\text{def}}{=} P$$

Deriving Transitions in CCS

Let
$$A \stackrel{\text{def}}{=} a.A$$
. Then

$$\left((A \,|\, \overline{a}.NiI) \,|\, b.NiI \right) [c/a] \stackrel{c}{\longrightarrow} \left((A \,|\, \overline{a}.NiI) \,|\, b.NiI \right) [c/a].$$

$$\mathsf{REL} \ \frac{\mathsf{ACT} \ \overline{a.A \xrightarrow{a} A} A \overset{\text{def}}{=} a.A}{\mathsf{COM1} \ \overline{A \mid \overline{a}.Nil \xrightarrow{a} A \mid \overline{a}.Nil}} A \overset{\text{def}}{=} a.A}{\mathsf{COM1} \ \overline{A \mid \overline{a}.Nil \xrightarrow{a} A \mid \overline{a}.Nil}} A \overset{\text{def}}{=} a.A}$$

$$(A \mid \overline{a}.Nil) \mid b.Nil \xrightarrow{a} (A \mid \overline{a}.Nil) \mid b.Nil \xrightarrow{a} (A \mid \overline{a}.Nil) \mid b.Nil) [c/a]}$$

LTS of the Process a.Nil | a.Nil

