- properties of strong bisimilarity
- weak bisimilarity and weak bisimulation games
- properties of weak bisimilarity
- example: a communication protocol and its modelling in CCS
- software tool CAAL http://caal.cs.aau.dk/

Strong Bisimilarity – Properties

Strong Bisimilarity is a Congruence for All CCS Operators

Let *P* and *Q* be CCS processes such that $P \sim Q$. Then

- α . $P \sim \alpha$.Q for each action $\alpha \in Act$
- $P + R \sim Q + R$ and $R + P \sim R + Q$ for each CCS process R
- $P \mid R \sim Q \mid R$ and $R \mid P \sim R \mid Q$ for each CCS process R
- $P[f] \sim Q[f]$ for each relabelling function f
- $P \setminus L \sim Q \setminus L$ for each set of labels L.

Following Properties Hold for any CCS Processes P, Q and R

- $P + Q \sim Q + P$
- $P \mid Q \sim Q \mid P$
- $P + Nil \sim P$

•
$$P \mid Nil \sim P$$

$$P(P+Q)+R\sim P+(Q+R)$$

•
$$(P \mid Q) \mid R \sim P \mid (Q \mid R)$$

Example – Buffer

Theorem

For all natural numbers n:

$$B_0^n \sim \underbrace{B_0^1 \mid B_0^1 \mid \cdots \mid B_0^1}_{n \text{ times}}$$

Proof.

Construct the following binary relation where $i_1, i_2, \ldots, i_n \in \{0, 1\}$.

$$R = \{ (B_i^n, B_{i_1}^1 | B_{i_2}^1 | \cdots | B_{i_n}^1) | \sum_{j=1}^n i_j = i \}$$

•
$$(B_0^n, B_0^1 | B_0^1 | \cdots | B_0^1) \in R$$

• R is strong bisimulation

Properties of \sim

- an equivalence relation
- the largest strong bisimulation
- a congruence
- enough to prove some natural rules like

•
$$P | Q \sim Q | P$$

• $P | Nil \sim P$
• $(P | Q) | R \sim Q | (P | R$
• ...

Question

Should we look any further???

Weak Transition Relation

Let $(Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$ be an LTS such that $\tau \in Act$.

Definition of Weak Transition Relation

$$\stackrel{a}{\Longrightarrow} = \begin{cases} (\stackrel{\tau}{\longrightarrow})^* \circ \stackrel{a}{\longrightarrow} \circ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a \neq \tau \\ (\stackrel{\tau}{\longrightarrow})^* & \text{if } a = \tau \end{cases}$$

What does $s \stackrel{a}{\Longrightarrow} t$ informally mean?

• If $a \neq \tau$ then $s \stackrel{a}{\Longrightarrow} t$ means that

from s we can get to t by doing zero or more τ actions, followed by the action a, followed by zero or more τ actions.

• If $a = \tau$ then $s \stackrel{\tau}{\Longrightarrow} t$ means that

from s we can get to t by doing zero or more τ actions.

Weak Bisimilarity

Let $(Proc, Act, \{\stackrel{a}{\longrightarrow} | a \in Act\})$ be an LTS such that $\tau \in Act$.

Weak Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a weak bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$ (including τ):

• if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\Longrightarrow} t'$ for some t' such that $(s', t') \in R$

• if
$$t \stackrel{a}{\longrightarrow} t'$$
 then $s \stackrel{a}{\Longrightarrow} s'$ for some s' such that $(s',t') \in R$.

Weak Bisimilarity

Two processes $p_1, p_2 \in Proc$ are weakly bisimilar $(p_1 \approx p_2)$ if and only if there exists a weak bisimulation R such that $(p_1, p_2) \in R$.

 $\approx = \cup \{ R \mid R \text{ is a weak bisimulation} \}$

Definition

All the same except that

• defender can now answer using $\stackrel{a}{\Longrightarrow}$ moves.

The attacker is still using only $\stackrel{a}{\longrightarrow}$ moves.

Theorem

- States *s* and *t* are weakly bisimilar if and only if the defender has a universal winning strategy starting from the configuration (*s*, *t*).
- States *s* and *t* are not weakly bisimilar if and only if the attacker has a universal winning strategy starting from the configuration (*s*, *t*).

Weak Bisimilarity – Properties

Properties of pprox

- an equivalence relation
- the largest weak bisimulation
- validates lots of natural laws, e.g.

•
$$a.\tau.P \approx a.P$$

•
$$P + \tau . P \approx \tau . P$$

•
$$a.(P+\tau.Q) \approx a.(P+\tau.Q) + a.Q$$

- $P + Q \approx Q + P$ $P \mid Q \approx Q \mid P$ $P + Nil \approx P$...
- strong bisimilarity is included in weak bisimilarity ($\sim\,\subseteq\,\,pprox)$
- abstracts from au loops

Case Study: Communication Protocol

Send	$\stackrel{\mathrm{def}}{=}$	acc.Sending	Rec	$\stackrel{\text{def}}{=}$	trans.Del
Sending	$\stackrel{\mathrm{def}}{=}$	send.Wait	Del	$\stackrel{\mathrm{def}}{=}$	del.Ack
Wait	$\stackrel{\mathrm{def}}{=}$	${\sf ack}.{\sf Send} + {\sf error}.{\sf Sending}$	Ack	$\stackrel{\mathrm{def}}{=}$	ack.Rec

$$\begin{array}{rcl} \mathsf{Med} & \stackrel{\mathrm{def}}{=} & \mathsf{send}.\mathsf{Med}' \\ \mathsf{Med}' & \stackrel{\mathrm{def}}{=} & \tau.\mathsf{Err} + \overline{\mathsf{trans}}.\mathsf{Med} \\ & \mathsf{Err} & \stackrel{\mathrm{def}}{=} & \overline{\mathsf{error}}.\mathsf{Med} \end{array}$$

$\mathsf{Impl} \stackrel{\mathrm{def}}{=} (\mathsf{Send} \mid \mathsf{Med} \mid \mathsf{Rec}) \smallsetminus \{\mathsf{send}, \mathsf{trans}, \mathsf{ack}, \mathsf{error}\}$

 $\mathsf{Spec} \stackrel{\mathrm{def}}{=} \mathsf{acc}.\overline{\mathsf{del}}.\mathsf{Spec}$

Draw the LTS of Impl and Spec and prove (by hand) the equivalence.
Use CAAL.

Is Weak Bisimilarity a Congruence for CCS?

Theorem

Let P and Q be CCS processes such that $P \approx Q$. Then

- α . $P \approx \alpha$.Q for each action $\alpha \in Act$
- $P \mid R \approx Q \mid R$ and $R \mid P \approx R \mid Q$ for each CCS process R
- $P[f] \approx Q[f]$ for each relabelling function f
- $P \setminus L \approx Q \setminus L$ for each set of labels L.

What about choice?

 τ .a.Nil \approx a.Nil but τ .a.Nil + b.Nil $\not\approx$ a.Nil + b.Nil

Conclusion

Weak bisimilarity is not a congruence for CCS.