Lecture 5

- Hennessy-Milner logic
- syntax and semantics
- correspondence with strong bisimilarity

Verifying Correctness of Reactive Systems

Let *Impl* be an implementation of a system (e.g. in CCS syntax).

Equivalence Checking Approach

$Impl \equiv Spec$

- ullet \equiv is an abstract equivalence, e.g. \sim or pprox
- Spec is often expressed in the same language as Impl
- Spec provides the full specification of the intended behaviour

Model Checking Approach

$Impl \models Property$

- Property is a particular feature, often expressed via a logic
- Property is a partial specification of the intended behaviour

Model Checking of Reactive Systems

Our Aim

Develop a logic in which we can express interesting properties of reactive systems.

Logical Properties of Reactive Systems

Modal Properties – what can happen now (possibility, necessity)

- drink a coffee (can drink a coffee now)
- does not drink tea
- drinks both tea and coffee
- drinks tea after coffee

Temporal Properties – behaviour in time

- never drinks any alcohol (safety property: nothing bad can happen)
- eventually will have a glass of wine (liveness property: something good will happen)

Can these properties be expressed using equivalence checking?

Hennessy-Milner Logic – Syntax

Syntax of the Formulae $(a \in Act)$

$$F,G ::= tt \mid ff \mid F \wedge G \mid F \vee G \mid \langle a \rangle F \mid [a]F$$

Intuition:

- tt all processes satisfy this property
- ff no process satisfies this property
- \land , \lor usual logical AND and OR
- $\langle a \rangle F$ there is at least one a-successor that satisfies F
- [a]F all a-successors have to satisfy F

Remark

Temporal properties like <u>always/never in the future</u> or <u>eventually</u> are not included.

Hennessy-Milner Logic – Semantics

Let $(Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$ be an LTS.

Validity of the logical triple $p \models F \ (p \in Proc, F \text{ a HM formula})$

```
p \models tt for each p \in Proc

p \models ff for no p (we also write p \not\models ff)

p \models F \land G iff p \models F and p \models G

p \models F \lor G iff p \models F or p \models G

p \models \langle a \rangle F iff p \stackrel{a}{\longrightarrow} p' for some p' \in Proc such that p' \models F

p \models [a]F iff p' \models F, for all p' \in Proc such that p \stackrel{a}{\longrightarrow} p'
```

We write $p \not\models F$ whenever p does not satisfy F.

What about Negation?

For every formula F we define the formula F^c as follows:

- $tt^c = ff$
- $f^c = tt$
- $(F \wedge G)^c = F^c \vee G^c$
- $(F \vee G)^c = F^c \wedge G^c$
- $(\langle a \rangle F)^c = [a]F^c$
- $([a]F)^c = \langle a \rangle F^c$

Theorem (F^c) is equivalent to the negation of F)

For any $p \in Proc$ and any HM formula F

- $p \not\models F \Longrightarrow p \models F^c$

Hennessy-Milner Logic – Denotational Semantics

For a formula F let $\llbracket F \rrbracket \subseteq Proc$ contain all states that satisfy F.

Denotational Semantics: $\llbracket _ \rrbracket$: Formulae $\rightarrow 2^{Proc}$

- [[tt]] = *Proc*
- $[\![f\!]] = \emptyset$
- $[F \lor G] = [F] \cup [G]$
- $[F \land G] = [F] \cap [G]$
- $[\![\langle a \rangle F]\!] = \langle \cdot a \cdot \rangle [\![F]\!]$
- $[[a]F] = [\cdot a \cdot][F]$

where $\langle \cdot a \cdot \rangle, [\cdot a \cdot] : 2^{(Proc)} \to 2^{(Proc)}$ are defined by

$$\langle \cdot a \cdot \rangle S = \{ p \in \operatorname{\textit{Proc}} \mid \exists p'. \ p \overset{\text{\textit{a}}}{\longrightarrow} p' \ \text{and} \ p' \in S \}$$

$$[\cdot a \cdot] S = \{ p \in Proc \mid \forall p'. \ p \xrightarrow{a} p' \implies p' \in S \}.$$

The Correspondence Theorem

Theorem

Let $(Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$ be an LTS, $p \in Proc$ and F a formula of Hennessy-Milner logic. Then

$$p \models F$$
 if and only if $p \in \llbracket F \rrbracket$.

Proof: by structural induction on the structure of the formula F.

Image-Finite Labelled Transition System

Image-Finite System

Let $(Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$ be an LTS. We call it image-finite if for every $p \in Proc$ and every $a \in Act$ the set

$$\{p' \in \mathit{Proc} \mid p \stackrel{a}{\longrightarrow} p'\}$$

is finite.

Relationship between HM Logic and Strong Bisimilarity

Theorem (Hennessy-Milner)

Let $(Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$ be an image-finite LTS and $p, q \in Proc$. Then

$$p \sim q$$

if and only if

for every HM formula $F: (p \models F \iff q \models F)$.