
Lecture 6

Hennessy-Milner logic and temporal properties

Tarski’s fixed point theorem

computing fixed points on finite lattices
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Verifying Correctness of Reactive Systems

Equivalence Checking Approach

Impl ≡ Spec

where ≡ is e.g. strong or weak bisimilarity.

Model Checking Approach

Impl |= F

where F is a formula from e.g. Hennessy-Milner logic.

F ,G ::= tt | ff | F ∧ G | F ∨ G | 〈a〉F | [a]F

Theorem (for Image-Finite LTS)

It holds that p ∼ q if and only if p and q satisfy exactly the same
Hennessy-Milner formulae.
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Is Hennessy-Milner Logic Powerful Enough?

Modal depth (nesting degree) for Hennessy-Milner formulae:

md(tt) = md(ff ) = 0

md(F ∧ G ) = md(F ∨ G ) = max{md(F ),md(G )}

md([a]F ) = md(〈a〉F ) = md(F ) + 1

Idea: a formula F can “see” only upto depth md(F ).

Theorem (let F be a HM formula and k = md(F ))

If the defender has a defending strategy in the strong bisimulation game
from s and t upto k rounds then s |= F if and only if t |= F .

Corollary

E.g., there is no Hennessy-Milner formula F that expresses reachability of
deadlock.
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Temporal Properties not Expressible in HM Logic

s |= Inv(F ) iff all states reachable from s satisfy F

s |= Pos(F ) iff there is a reachable state which satisfies F

Fact

Properties Inv(F ) and Pos(F ) are not expressible in HM logic.

Let Act = {a1, a2, . . . , an} be a finite set of actions. We define

〈Act〉F
def
= 〈a1〉F ∨ 〈a2〉F ∨ . . . ∨ 〈an〉F

[Act]F
def
= [a1]F ∧ [a2]F ∧ . . . ∧ [an]F

Inv(F ) . . . F ∧ [Act]F ∧ [Act][Act]F ∧ [Act][Act][Act]F ∧ . . .

Pos(F ) . . . F ∨ 〈Act〉F ∨ 〈Act〉〈Act〉F ∨ 〈Act〉〈Act〉〈Act〉F ∨ . . .
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Infinite Conjunctions and Disjunctions vs. Recursion

Problems

infinite formulae are not allowed in HM logic

infinite formulae are difficult to handle

What about to use recursion?

Inv(F ) expressed by X
def
= F ∧ [Act]X

Pos(F ) expressed by X
def
= F ∨ 〈Act〉X

Question: How to define the semantics of such equations?
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Solving Equations is Tricky

Equations over Natural Numbers (n ∈ N)

n = 2 ∗ n one solution n = 0
n = n+ 1 no solution
n = 1 ∗ n many solutions (every n ∈ N is a solution)

Equations over Sets of Integers (M ∈ 2N)

M = ({7} ∩M) ∪ {7} one solution M = {7}
M = NrM no solution
M = {3} ∪M many solutions (every M ⊇ {3})

What about Equations over Processes?

X
def
= [a]ff ∨ 〈a〉X ⇒ find Z ⊆ 2Proc s.t. Z = [·a·]∅ ∪ 〈·a·〉Z
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General Approach – Lattice Theory

Problem

For a set D and a function f : D → D, for which elements x ∈ D we have

x = f (x) ?

Such x ’s are called fixed points.

Partially Ordered Set

Partially ordered set (or simply a partial order) is a pair (D,⊑) s.t.

D is a set

⊑ ⊆ D × D is a binary relation on D which is

reflexive: ∀d ∈ D. d ⊑ d

antisymmetric: ∀d , e ∈ D. d ⊑ e ∧ e ⊑ d ⇒ d = e

transitive: ∀d , e, f ∈ D. d ⊑ e ∧ e ⊑ f ⇒ d ⊑ f
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Supremum and Infimum

Upper/Lower Bounds (Let X ⊆ D)

d ∈ D is an upper bound for X (written X ⊑ d)
iff x ⊑ d for all x ∈ X

d ∈ D is a lower bound for X (written d ⊑ X )
iff d ⊑ x for all x ∈ X

Least Upper Bound and Greatest Lower Bound (Let X ⊆ D)

d ∈ D is the least upper bound (supremum) for X (⊔X ) iff
1 X ⊑ d
2 ∀d ′ ∈ D. X ⊑ d ′ ⇒ d ⊑ d ′

d ∈ D is the greatest lower bound (infimum) for X (⊓X ) iff
1 d ⊑ X
2 ∀d ′ ∈ D. d ′ ⊑ X ⇒ d ′ ⊑ d

Lecturer: Petr Jančar (Informatika PřF UP) Modelling and Verification 8 / 11



Complete Lattices and Monotonic Functions

Complete Lattice

A partially ordered set (D,⊑) is called complete lattice iff ⊔X and ⊓X
exist for any X ⊆ D.

We define the top and bottom by ⊤
def
= ⊔D and ⊥

def
= ⊓D.

Monotonic Function and Fixed Points

A function f : D → D is called monotonic iff

d ⊑ e ⇒ f (d) ⊑ f (e)

for all d , e ∈ D.

Element d ∈ D is called fixed point iff d = f (d).
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Tarski’s Fixed Point Theorem

Theorem (Tarski)

Let (D,⊑) be a complete lattice and let f : D → D be a monotonic
function.

Then f has a unique greatest fixed point zmax and a unique least fixed
point zmin given by:

zmax

def
= ⊔{x ∈ D | x ⊑ f (x)}

zmin

def
= ⊓{x ∈ D | f (x) ⊑ x}
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Computing Min and Max Fixed Points on Finite Lattices

Let (D,⊑) be a complete lattice and f : D → D monotonic.

Let f 1(x)
def
= f (x) and f n(x)

def
= f (f n−1(x)) for n > 1, i.e.,

f n(x) = f (f (. . . f
︸ ︷︷ ︸

n times

(x) . . .)).

Theorem

If D is a finite set then there exist integers M,m > 0 such that

zmax = f M(⊤)

zmin = f m(⊥)

Idea (for zmin): The following sequence stabilizes for any finite D

⊥ ⊑ f (⊥) ⊑ f (f (⊥)) ⊑ f (f (f (⊥))) ⊑ · · ·
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