- bisimulation as a fixed point
- Hennessy-Milner logic with recursively defined variables
- game semantics and temporal properties of reactive systems

Tarski's Fixed Point Theorem – Summary

Let (D, \sqsubseteq) be a complete lattice and let $f : D \to D$ be a monotonic function.

Tarski's Fixed Point Theorem

Then f has a unique greatest fixed point z_{max} and a unique least fixed point z_{min} given by:

$$z_{max} \stackrel{\text{def}}{=} \sqcup \{ x \in D \mid x \sqsubseteq f(x) \}$$

$$z_{min} \stackrel{\text{def}}{=} \sqcap \{ x \in D \mid f(x) \sqsubseteq x \}$$

Computing Fixed Points in Finite Lattices

If D is a finite set then there exist integers M, m > 0 such that

•
$$z_{max} = f^M(\top)$$

•
$$z_{min} = f^m(\perp)$$

(Recalling of) Definition of Strong Bisimulation

Let
$$(Proc, Act, (\xrightarrow{a})_{a \in Act})$$
 be an LTS.

Strong Bisimulation

A binary relation $R \subseteq Proc \times Proc$ is a strong bisimulation iff whenever $(s, t) \in R$ then for each $a \in Act$:

• if
$$s \xrightarrow{a} s'$$
 then $t \xrightarrow{a} t'$ for some t' such that $(s', t') \in R$

• if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in R$.

Two processes $p, q \in Proc$ are strongly bisimilar $(p \sim q)$ iff there exists a strong bisimulation R such that $(p, q) \in R$.

 $\sim = \bigcup \{ R \mid R \text{ is a strong bisimulation} \}$

Strong Bisimulation as a Greatest Fixed Point

Function
$$\mathcal{F}: 2^{(Proc \times Proc)} \rightarrow 2^{(Proc \times Proc)}$$

Let $X \subseteq Proc \times Proc$. Then we define $\mathcal{F}(X)$ as follows:

$$(s,t) \in \mathcal{F}(X)$$
 if and only if for each $a \in Act$:

- if $s \stackrel{a}{\longrightarrow} s'$ then $t \stackrel{a}{\longrightarrow} t'$ for some t' such that $(s', t') \in X$
- if $t \xrightarrow{a} t'$ then $s \xrightarrow{a} s'$ for some s' such that $(s', t') \in X$.

Observations

- \mathcal{F} is monotonic
- S is a strong bisimulation if and only if $S \subseteq \mathcal{F}(S)$

Strong Bisimilarity is the Greatest Fixed Point of $\mathcal F$

$$\sim = \bigcup \{ S \in 2^{(Proc \times Proc)} \mid S \subseteq \mathcal{F}(S) \}$$

Syntax of Formulae

Formulae are given by the following abstract syntax

$$F ::= X \mid tt \mid ff \mid F_1 \land F_2 \mid F_1 \lor F_2 \mid \langle a \rangle F \mid [a]F$$

where $a \in Act$ and X is a distinguished variable with a definition

• $X \stackrel{\min}{=} F_X$, or $X \stackrel{\max}{=} F_X$

such that F_X is a formula of the logic (which can contain X).

How to Define Semantics?

For every formula F we define a function $O_F: 2^{Proc} \rightarrow 2^{Proc}$ s.t.

- if S is the set of processes that satisfy X then
- $O_F(S)$ is the set of processes that satisfy F.

Definition of $O_F: 2^{Proc} \rightarrow 2^{Proc}$ (let $S \subseteq Proc$)

$$O_X(S) = S$$

$$O_{tt}(S) = Proc$$

$$O_{ff}(S) = \emptyset$$

$$O_{F_1 \land F_2}(S) = O_{F_1}(S) \cap O_{F_2}(S)$$

$$O_{F_1 \lor F_2}(S) = O_{F_1}(S) \cup O_{F_2}(S)$$

$$O_{\langle a \rangle F}(S) = \langle \cdot a \cdot \rangle O_F(S)$$

$$O_{[a]F}(S) = [\cdot a \cdot] O_F(S)$$

O_F is monotonic for every formula F

$$S_1 \subseteq S_2 \Rightarrow O_F(S_1) \subseteq O_F(S_2)$$

Proof: easy (structural induction on the structure of F).

Observation

 O_F is monotonic on $(2^{Proc}, \subseteq)$, so O_F has the (unique) greatest fixed point and the (unique) least fixed point.

Semantics of the Variable X

• If $X \stackrel{\text{max}}{=} F_X$ then $\llbracket X \rrbracket = \bigcup \{ S \subseteq Proc \mid S \subseteq O_{F_X}(S) \}.$ • If $X \stackrel{\text{min}}{=} F_X$ then $\llbracket X \rrbracket = \bigcap \{ S \subseteq Proc \mid O_{F_X}(S) \subseteq S \}.$ Intuition: the attacker claims $s \not\models F$, the defender claims $s \models F$.

Configurations of the game are of the form (s, F)

- (s, tt) and (s, ff) have no successors
- (s, X) has one successor (s, F_X)
- $(s, F_1 \land F_2)$ has two successors (s, F_1) and (s, F_2) (selected by the attacker)
- (s, F₁ ∨ F₂) has two successors (s, F₁) and (s, F₂) (selected by the defender)
- (s, [a]F) has successors (s', F) for every s' s.t. $s \xrightarrow{a} s'$ (selected by the attacker)
- (s, ⟨a⟩F) has successors (s', F) for every s' s.t. s → s' (selected by the defender)

Play is a maximal sequence of configurations formed according to the rules given on the previous slide.

Finite Play

- The attacker is the winner of a finite play if the defender gets stuck or the players reach a configuration (*s*, *f*).
- The defender is the winner of a finite play if the attacker gets stuck or the players reach a configuration (*s*, *tt*).

Infinite Play

- The attacker is the winner of an infinite play if X is defined as $X \stackrel{\text{min}}{=} F_X$.
- The defender is the winner of an infinite play if X is defined as $X \stackrel{\text{max}}{=} F_X$.

Theorem

- s ⊨ F if and only if the defender has a universal winning strategy from (s, F)
- s ⊭ F if and only if the attacker has a universal winning strategy from (s, F)

Selection of Temporal Properties

•
$$Inv(F)$$
: $X \stackrel{\text{max}}{=} F \land [Act]X$

• Pos(F): $X \stackrel{\min}{=} F \lor \langle Act \rangle X$

• Safe(F):
$$X \stackrel{\text{max}}{=} F \land ([Act]ff \lor \langle Act \rangle X)$$

• Even(F): $X \stackrel{\min}{=} F \lor (\langle Act \rangle tt \land [Act]X)$

•
$$F \mathcal{U}^w G$$
: $X \stackrel{\max}{=} G \lor (F \land [Act]X)$
• $F \mathcal{U}^s G$: $X \stackrel{\min}{=} G \lor (F \land \langle Act \rangle tt \land [Act]X)$

Using until we can express e.g. Inv(F) and Even(F):

$$Inv(F) \equiv F \ U^w \ ff \qquad Even(F) \equiv tt \ U^s \ F$$

Examples of More Advanced Recursive Formulae

Nested Definitions of Recursive Variables

 $X \stackrel{\min}{=} Y \lor \langle Act \rangle X \qquad \qquad Y \stackrel{\max}{=} \langle a \rangle tt \land \langle Act \rangle Y$

Solution: compute first $\llbracket Y \rrbracket$ and then $\llbracket X \rrbracket$.

Mutually Recursive Definitions

$$X \stackrel{\text{max}}{=} [a] Y \qquad \qquad Y \stackrel{\text{max}}{=} \langle a \rangle X$$

Solution: consider a complete lattice $(2^{Proc} \times 2^{Proc}, \sqsubseteq)$ where $(S_1, S_2) \sqsubseteq (S'_1, S'_2)$ iff $S_1 \subseteq S'_1$ and $S_2 \subseteq S'_2$.

Theorem (Characteristic Property for Finite-State Processes)

Let *s* be a process with finitely many reachable states. There exists a property X_s s.t. for all processes *t*: $s \sim t$ if and only if $t \in [X_s]$.