Lecture 8

- labelled transition systems with time
- timed automata
- timed and untimed bisimilarity
- timed and untimed language equivalence
- networks of timed automata

Need for Introducing Time Features

• Timeout in Alternating Bit protocol:

- In CCS timeouts were modelled using nondeterminism.
- Enough to prove that the protocol is safe.
- But too abstract for certain questions (like "What is the average time to deliver the message?").

• Many real-life systems depend on timing:

- Real-time controllers (production lines, computers in cars, railway crossings).
- Embedded systems (mobile phones, remote controllers, digital watch).
- ...

Labelled Transition Systems with Time

Timed (labelled) transition system (TLTS)

TLTS is a tuple $(Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$ where

- Proc is a set of states (or processes),
- $Act = N \cup \mathbb{R}^{\geq 0}$ is a set of actions (consisting of labels and time-elapsing steps), and
- for every $a \in Act$, $\stackrel{a}{\longrightarrow} \subseteq Proc \times Proc$ is a binary relation on states called the transition relation.

We write

- $s \stackrel{a}{\longrightarrow} s'$ if $a \in N$ and $(s, s') \in \stackrel{a}{\longrightarrow}$, and
- $s \xrightarrow{d} s'$ if $d \in \mathbb{R}^{\geq 0}$ and $(s, s') \in \xrightarrow{d}$.

Natural requirements for TLTS

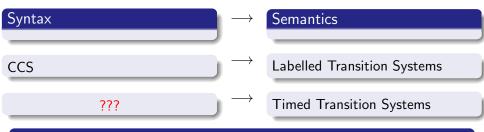
- Time additivity:
 - if $s \xrightarrow{d} s'$ and $0 \le d' \le d$ then $s \xrightarrow{d'} s'' \xrightarrow{d-d'} s'$ for some state s'';
- Zero delay:

$$s \xrightarrow{0} s$$
 for all states s;

• Time determinism:

if
$$s \xrightarrow{d} s'$$
 and $s \xrightarrow{d} s''$ then $s' = s''$.

How to Describe Timed Transition Systems?

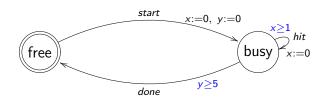


A possible answer

Timed Automata [Alur, Dill'90]

i.e., finite-state automata equipped with real-valued clocks.

Example: Hammer



Some important questions:

- How to model a real-time system?
- What guards should we allow?
- ...

Definition of TA: Clock Constraints

Let $C = \{x, y, \ldots\}$ be a finite set of clocks.

$\mathcal{B}(C)$... the set of clock constraints over C

 $\mathcal{B}(\mathcal{C})$ is defined by the following abstract syntax

$$g ::= x \sim n \mid g_1 \wedge g_2$$

where $x, y \in C$ are clocks, $n \in \mathbb{N}$ and $\sim \in \{\leq, <, =, >, \geq\}$.

Example: $x \le 3 \land y > 0$

Clock Valuation

Clock valuation

Clock valuation v is a function $v: C \to \mathbb{R}^{\geq 0}$.

Let v be a clock valuation. Then

ullet v+d is a clock valuation for any $d\in\mathbb{R}^{\geq 0}$ and it is defined by

$$(v+d)(x) = v(x) + d$$
 for all $x \in C$

• v[r] is a clock valuation for any $r \subseteq C$ and it is defined by

$$v[r](x)$$

$$\begin{cases} 0 & \text{if } x \in r \\ v(x) & \text{otherwise.} \end{cases}$$

Evaluation of Clock Constraints

Evaluation of clock constraints $(v \models g)$

```
v \models x < n iff v(x) < n

v \models x \le n iff v(x) \le n

v \models x = n iff v(x) = n

\vdots

v \models g_1 \land g_2 iff v \models g_1 and v \models g_2
```

Syntax of Timed Automata

Definition

A timed automaton over a set of clocks C and a set of labels N is a tuple

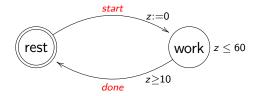
$$(L,\ell_0,E,I)$$

where

- L is a finite set of locations
- $\ell_0 \in L$ is the initial location
- $E \subseteq L \times \mathcal{B}(C) \times N \times 2^C \times L$ is the set of edges
- $I: L \to \mathcal{B}(C)$ assigns invariants to locations.

We usually write $\ell \xrightarrow{g,a,r} \ell'$ instead of (ℓ,g,a,r,ℓ') for the edges in E.

Example: A Worker



What does this mean?

Semantics of Timed Automata

Let $A = (L, \ell_0, E, I)$ be a timed automaton.

Timed transition system generated by A

$$T(A) = (Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$$
 where

- $Proc = L \times (C \to \mathbb{R}^{\geq 0})$, i.e. states are of the form (ℓ, v) where ℓ is a location and v a valuation such that $v \models I(\ell)$
- $Act = N \cup \mathbb{R}^{\geq 0}$
- \xrightarrow{a} and \xrightarrow{d} are defined as follows:

$$(\ell, v) \xrightarrow{a} (\ell', v')$$
 if there is $(\ell \xrightarrow{g,a,r} \ell') \in E$ s.t. $v \models g, v' = v[r], v' \models I(\ell')$

$$(\ell, v) \xrightarrow{d} (\ell, v + d)$$
 if $v + d' \models I(\ell)$ for each $d' \in [0, d]$.

Timed Bisimilarity

Let A_1 and A_2 be timed automata.

Timed Bisimilarity

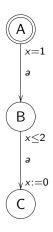
We say that A_1 and A_2 are timed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 are strongly bisimilar.

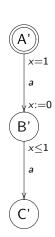
Remark: both

- \xrightarrow{a} for $a \in N$ and
- ullet for $d \in \mathbb{R}^{\geq 0}$

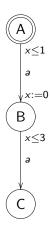
are considered as normal (visible) transitions.

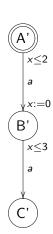
Example of Timed Bisimilar Automata





Example of Timed Non-Bisimilar Automata





Untimed Bisimilarity

Let A_1 and A_2 be timed automata. Let ϵ be a new (fresh) action.

Untimed Bisimilarity

We say that A_1 and A_2 are untimed bisimilar iff the transition systems $T(A_1)$ and $T(A_2)$ generated by A_1 and A_2 where every transition of the form $\stackrel{d}{\longrightarrow}$ for $d \in \mathbb{R}^{\geq 0}$ is replaced with $\stackrel{\epsilon}{\longrightarrow}$ are strongly bisimilar.

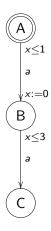
Remark:

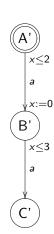
- $\stackrel{a}{\longrightarrow}$ for $a \in N$ is treated as a visible transition, while
- ullet for $d \in \mathbb{R}^{\geq 0}$ are all labelled by a single visible action $\stackrel{\epsilon}{\longrightarrow}$.

Corollary

Any two timed bisimilar automata are also untimed bisimilar.

Timed Non-Bisimilar but Untimed Bisimilar Automata





Decidability of Timed and Untimed Bisimilarity

Theorem [Cerans'92]

Timed bisimilarity for timed automata is in EXPTIME (decidable in deterministic exponential time).

Theorem [Larsen, Wang'93]

Untimed bisimilarity for timed automata is in EXPTIME.

Timed Traces

Let $A = (L, \ell_0, E, I)$ be a timed automaton over a set of clocks C and a set of labels N.

Timed Traces

A sequence $(t_1, a_1)(t_2, a_2)(t_3, a_3)...$ where $t_i \in \mathbb{R}^{\geq 0}$ and $a_i \in N$ is called a timed trace of A iff there is a transition sequence

$$(\ell_0, v_0) \xrightarrow{d_1} . \xrightarrow{a_1} . \xrightarrow{d_2} . \xrightarrow{a_2} . \xrightarrow{d_3} . \xrightarrow{a_3} \dots$$

in A such that $v_0(x) = 0$ for all $x \in C$ and

$$t_i = t_{i-1} + d_i$$
 where $t_0 = 0$.

Intuition: t_i is the absolute time (time-stamp) when a_i happened since the start of the automaton A.

Timed and Untimed Language Equivalence

The set of all timed traces of an automaton A is denoted by L(A) and called the timed language of A.

Theorem [Alur, Courcoubetis, Dill, Henzinger'94]

Timed language equivalence (the problem whether $L(A_1) = L(A_2)$ for given timed automata A_1 and A_2) is undecidable.

We say that $a_1a_2a_3...$ is an untimed trace of A iff there exist $t_1, t_2, t_3, ... \in \mathbb{R}^{\geq 0}$ such that $(t_1, a_1)(t_2, a_2)(t_3, a_3)...$ is a timed trace of A.

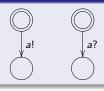
Theorem [Alur, Dill'94]

Untimed language equivalence for timed automata is decidable.

Networks of Timed Automata

Timed Automata in Parallel

Intuition in CCS



$$(\overline{a}.Nil \mid a.Nil) \setminus \{a\}$$

Let C be a set of clocks and Chan a set of channels.

We let $Act = N \cup \mathbb{R}^{\geq 0}$ where

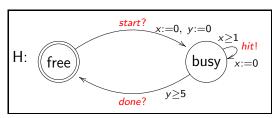
•
$$N = \{c! \mid c \in Chan\} \cup \{c? \mid c \in Chan\} \cup \{\tau\}.$$

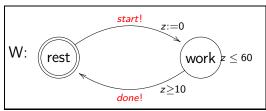
Let $A_i = (L_i, \ell_0^i, E_i, I_i)$ be timed automata for $1 \le i \le n$.

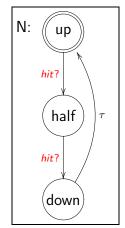
Networks of Timed Automata

We call $A = A_1 | A_2 | \cdots | A_n$ a network of timed automata.

Example: Hammer, Worker, Nail







Timed Transition System Generated by $A = A_1 | \cdots | A_n$

$$T(A) = (Proc, Act, (\stackrel{a}{\longrightarrow})_{a \in Act})$$
 where

- $Proc = (L_1 \times L_2 \times \cdots \times L_n) \times (C \to \mathbb{R}^{\geq 0})$, i.e. states are of the form $((\ell_1, \ell_2, \dots, \ell_n), v)$ where ℓ_i is a location in A_i , $v \models I_i(\ell_i)$
- $Act = \{\tau\} \cup \mathbb{R}^{\geq 0}$
- \xrightarrow{a} are defined as follows:

$$\frac{((\ell_1, \dots, \ell_i, \dots, \ell_n), v) \xrightarrow{\tau} ((\ell_1, \dots, \ell'_i, \dots, \ell_n), v') \text{ if there is } }{(\ell_i \xrightarrow{g, \tau, r} \ell'_i) \in E_i \text{ s.t. } v \models g \text{ and } v' = v[r] \text{ and } v' \models I_i(\ell'_i) \land \bigwedge_{k \neq i} I_k(\ell_k) }$$

$$((\ell_1,\ldots,\ell_n),v)\stackrel{d}{\longrightarrow} ((\ell_1,\ldots,\ell_n),v+d)$$
 for all $d\in\mathbb{R}^{\geq 0}$ s.t. $v\models\bigwedge_k I_k(\ell_k)$ and $v+d\models\bigwedge_k I_k(\ell_k)$

... synchronization step ...

$$\frac{((\ell_1,\ldots,\ell_i,\ldots,\ell_j,\ldots,\ell_n),v) \xrightarrow{\tau} ((\ell_1,\ldots,\ell'_i,\ldots,\ell'_j,\ldots,\ell_n),v') \text{ if } i \neq j }{\text{and there are } (\ell_i \xrightarrow{g_i,a!,r_i} \ell'_i) \in E_i \text{ and } (\ell_j \xrightarrow{g_j,a?,r_j} \ell'_j) \in E_j \text{ s.t. } v \models g_i \land g_j \text{ and } v' = v[r_i \cup r_j] \text{ and } v' \models I_i(\ell'_i) \land I_j(\ell'_j) \land \bigwedge_{l \neq i} I_k(\ell_k) }$$