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Abstract. We show that to every centred ternary relation 7" on a set A there can be assigned (in
a non-unique way) a ternary operation ¢ on A such that the identities satisfied by (A4;t) reflect
relational properties of T. We classify ternary operations assigned to centred ternary relations
and we show how the concepts of relational subsystems and homomorphisms are connected
with subalgebras and homomorphisms of the assigned algebra (A;¢). We show that for ternary
relations having a non-void median can be derived so-called median-like algebras (A4;7) which
become median algebras if the median M7 (a,b,c) is a singleton for all a,b,c € A. Finally, we
introduce certain algebras assigned to cyclically ordered sets.
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In [2] and [3], the first and the third author showed that to certain relational systems
A = (A; R), where A # @ and R is a binary relation on A, there can be assigned a
certain groupoid §(A) = (A; o) which captures the properties of R. Namely, we have
xoy = yifandonly if (x, y) € R. In these papers we worked with so-called directed
relational systems, i. e. for all x,y € A we have

Ur(x,y):={z € A|(x,2),(y.2) ER} # D.

We are inspired by the idea of assigning a groupoid (called directoid) to a directed
poset. This idea has its origin in the paper [0] by J. Jezek and R. Quackenbush. Then
some structural properties of the assigned groupoid §(A) can be used for introducing
certain structural properties of 4 = (A; R); in particular, we introduced congruences,
quotient relational systems and homomorphisms which are in accordance with the
corresponding concepts in §(A4).

Hence, there arises the natural question if a similar way can be used for ternary
relational systems and algebras with one ternary relation. In a particular case, such a
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correspondence exists. It is for the ternary relation “betweenness” and the so-called
median algebras, see e.g. [1,5] or [11].

However, there exist also other useful ternary relations for which a similar con-
struction is not already derived, in particular the so-called cyclic orders, see e.g.
[4,7,8] and [9].

Moreover, more general ternary relations were already investigated in [10] and
[11] and hence our problem can be extended to a more general case than betweenness.
However, to get a construction of a ternary operation, a certain restriction on the
ternary relation is necessary.

In the following let A denote a fixed arbitrary non-empty set.

1. TERNARY OPERATIONS ASSIGNED TO TERNARY RELATIONS
We introduce the following concepts:

Definition 1. Let 7" be a ternary relation on A and a,b € A. The set
Zr(a,b) :={xe Al|(a,x,b)e T}

is called the centre of (a,b) with respect to 7. The ternary relation 7" on A is called
centred if Z7(a,b) # @ for all elements a,b € A.

Definition 2. Let 7" be a ternary relation on A and a,b,c € A. The set
Mr(a,b,c):=Zr(a,b)NZy(b,c)NZr(c,a)
will be called the median of (a, b, ¢) with respect to 7.

The concept of a median was originally introduced in lattices and structures deri-
ved from lattices. In particular, two sorts of medians are usually considered:
m(x,y,2) = (XAY)V(y Az)V(zAx) and M(x,p,2) = (x VY) A (Y V) A2V X).

Now we show that to every centred ternary relation there can be assigned ternary
operations.

Definition 3. Let 7" be a centred ternary relation on A and ¢ a ternary operation
on A satisfying
=b if (a,b,c)eT
€ Zr(a,c) otherwise.
Such an operation ¢ is called assigned to 7.

t(a,b,c)

Remark 1. By definition, if T is a centred ternary relation on A and ¢ assigned to
T then (a,t(a,b,c),c) € T foralla,b,c € A.

Lemma 1. Let T be a centred ternary relation on A and t an assigned operation.
Leta,b,c € A. Then (a,b,c) € T if and only ift(a,b,c) = b.

Proof. By Definition 3, if (a,b,c) € T then t(a,b,c) = b. Conversely, assume
(a,b,c) ¢ T. Thent(a,b,c) € Zr(a,c). Now t(a,b,c) = b would imply (a,b,c) =
(a,t(a,b,c),c) € T contradicting (a,b,c) ¢ T. Hence t(a,b,c) # b. O
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To illuminate the role of the median, let us consider the following example:

Example 1. Let £ = (L;V, A) be a lattice. Define a ternary operation 7 on L as
follows:
(a,b,c)eT ifandonlyif anc<b<avc.
Put m(x,y,2) ;= (xAy)V(yAz2)V(zAX) and M(x,y,2) ;== (xVY)A(YVZ)A
(zvx).If pe Mr(a,b,c) then p € Z7(a,b), p e Zr(b,c) and p € Z1(c,a),i.e.
anb<p<avb,brc<p<bvcandcra<p <cVvawhencem(a,b,c)<p<
M(a,b,c). This yields

Mr(a,b,c) = [m(a,b,c),M(a,b,c)],

the interval in &£. It is well-known that m(x,y,z) = M(x,y,z) if and only if £ is
distributive. Hence, &£ is distributive if and only if |M7(a,b,c)| =1 for all a,b,c €
L.

The previous example was used in [5] for the definition of a median algebra. If £
is a distributive lattice then the algebra (L;m) is called the median algebra derived
from £. Of course, there exist median algebras which are not derived from a lattice,
see [1] for details, but in every median algebra there can be introduced a ternary
relation “between” by putting

(a,b,c) e T, ifandonlyif m(a,b,c)=0.

In what follows, we show how this construction can be generalized and we get a
characterization of some important properties of ternary relations by means of iden-
tities of their assigned operations.

Theorem 1. A ternary operation t on A is assigned to some centred ternary rela-
tion T on A if and only if it satisfies the identity

1(x,t(x,y,2),2) =t(x,y,2). (1.1

Proof. Leta,b,c € A.
Assume that T is a ternary relation on A and ¢ an assigned operation. If (a,b,c) €
T then t(a,b,c) = b and hence t(a,t(a,b,c),c) = t(a,b,c). If (a,b,c) ¢ T then
t(a,b,c) € Z7(a,c) and hence (a,t(a,b,c),c) € T which yields ¢ (a,t(a,b,c),c) =
t(a,b,c). Thus t satisfies identity (1.1).

Conversely, assume ¢ : A3 — A satisfies (1.1) and define T :=
{(x,y,z2) € A>|t(x,y,z2) =y}. If (a,b,c) € T thent(a,b,c) =b and, if (a,b,c) ¢ T
then (a,t(a,b,c),c) € T whence t(a,b,c) € Zt(a,c),i.e. t is assigned to T . O

We can consider a number of properties of ternary relations which are used in
[1-11] for “betweenness” and for “cyclic orders”.

Definition 4. Let T be a ternary relation on A. We call T’
—reflexive if |{a,b,c}| <2 implies (a,b,c) € T},
— symmetric if (a,b,c) € T implies (c,b,a) € T;
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— antisymmetric if (a,b,a) € T implies a = b;

—cyclic if (a,b,c) € T implies (b,c,a) € T;

— R-transitive if (a,b,c),(b,d,e) € T implies (a,d,e) € T;

— t1-transitive if (a,b,¢), (a,d,b) € T implies (d,b,c) € T,

— tp-transitive if (a,b,¢), (a,d,b) € T implies (a,d,c) € T;

— R-symmetric if (a,b,c) € T implies (b,a,c) € T,

— R-antisymmetric if (a,b,c), (b,a,c) € T implies a = b;
—non-sharp if (a,a,b) € T forall a,b € A;

— cyclically transitive if (a,b,c), (a,c,d) € T implies (a,b,d) € T.

Theorem 2. Let T be a centred ternary relation on A andt an assigned operation.
Then (i) — (xi) hold:
(i) T is reflexive if and only if t satisfies the identities
te,x,y)=t(y,x,x) =t(y,x,y) =Xx.
(ii) T is symmetric if and only if t satisfies the identity
1(z,t(x,y,2),x) =t(x,y,2).
(iii) T is antisymmetric if and only if t satisfies the identity
t(x,y,x)=x.
(iv) T is cyclic if and only if t satisfies the identity
t(t(x,y,2),2,x)=2z.
(v) T is R-transitive if and only if t satisfies the identity
t(x,t(t(x,y,2),u,v),v) =t(t(x,y,2),u,v).
(vi) T is t1-transitive if and only if t satisfies the identity
t(t(x,u,t(x,y,2)).1(x,,2).2) = t(x,,2).
(vii) T is tp-transitive if and only if t satisfies the identity
t(x,t(x,u,t(x,y,2)),2) =t(x,u,t(x,y,2)).
(viii) T is R-symmetric if and only if t satisfies the identity
t(t(x,y.2),x,2) = X.
(ix) If t satisfies the identity
t(t(x,y,2),x,2) =t(x,¥,2)

then T is R-antisymmetric.
(x) T is non-sharp if and only if t satisfies the identity

t(x,x,y)=x.
(xi) T is cyclically transitive if and only if t satisfies the identity
t(x,t(x,y,t(x,z,u)),u) =t(x,y,t(x,z,u)).
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Proof. Leta,b,c,d,e € A.
(1) is clear.
(ii) ¢ satisfies 1 (z,¢(x, y,2),x) = t(x,y,z) if and only if (z,(x,y,z),x) € T for all
x,y,z € A.
“=": (a,t(a,b,c),c) € T and hence (c,t(a,b,c),a) e T.
“<" If (a,b,c) € T then (c,b,a) = (c,t(a,b,c),a) € T.
(iii) “="": (a,t(a,b,a),a) € T and hence t(a,b,a) = a.

“<” If (a,b,a) € T thena =t(a,b,a) = b.

(iv) t satisfies 1 (¢(x,y,z),z,x) =z ifand only if (¢ (x,y,2),z,x) € T forall x,y,z €
A.

“=": (a,t(a,b,c),c) € T and hence (t(a,b,c),c,a) e T.

“<”: If (a,b,c) € T then (b,c,a) = (t(a,b,c),c,a) € T.

(v) t satisfies t(x,7(t(x,y,2),u,v),v) = t(t(x,y,2),u,v) if and only if
(x,t(t(x,y,2),u,v),v) € T forall x,y,z,u,v € A.

“=": (a,t(a,b,c),c),(t(a,b,c),t(t(a,b,c),d,e),e) € T and hence
(a,t(t(a,b,c),d,e),e)eT.

“&”: If (a,b,c),(b,d,e) € T then (a,d,e) = (a,t(t(a,b,c),d,e),e)eT.

(vi) ¢ satisfies ¢ (¢ (x,u,t(x,y,2)),t(x,y,2),z) =t(x,y,z) if and only if
(t(x,u,t(x,y,2)),t(x,y,2),z) € T forall x,y,z,u € A.

“=": (a,t(a,b,c),c),(a,t(a,d,t(a,b,c)),t(a,b,c)) € T and hence
(t(a,d,t(a,b,c)),t(a,b,c),c)eT.

“<”: If (a,b,c),(a,d,b) € T then (d,b,c) = (t(a,d,t(a,b,c)),t(a,b,c),c)eT.
(vii) ¢ satisfies ¢ (x,¢(x,u,t(x,y,2)),z) = t(x,u,t(x,y,z)) if and only if
(x,t(x,u,t(x,y,z2)),z) €T forall x,y,z,u € A.

“=": (a,t(a,b,c),c),(a,t(a,d,t(a,b,c)),t(a,b,c)) € T and hence
(a,t(a,d,t(a,b,c)),c)eT.

“&”: If (a,b,c),(a,d,b) € T then (a,d,c) = (a,t(a,d,t(a,b,c)),c) eT.

(viii) ¢ satisfies £ (¢ (x, y,z),x,z) = x ifand only if (¢(x, y,z),x,z) € T forall x,y,z €
A.

“=": (a,t(a,b,c),c) € T and hence (t(a,b,c),a,c) e T.

“<”: If (a,b,c) € T then (b,a,c) = (t(a,b,c),a,c)eT.

(ix) If (a,b,c),(b,a,c) € T thena =t(b,a,c) =t(t(a,b,c),a,c) =t(a,b,c) =b.
(x) This is clear.

(xi) t satisfies #(x,t(x,y,t(x,z,u)),u) =t(x,y,t(x,z,u)) if and only if
(x,t(x,y,t(x,z,u)),u) e T forall x,y,z,u € A.

“=": (a,t(a,b,t(a,c,d)),t(a,c,d)),(a,t(a,c,d),d) € T and hence
(a,t(a,b,t(a,c,d)),d)eT.

“<”. If (a,b,c),(a,c,d) € T then t(a,b,d) = t(a,t(a,b,t(a,c,d)).d)
=t(a,b,t(a,c,d))=b.

O
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Lemma 2. Let T be a ternary relation on A. Then

T|= > |Zr(a.b)|.

(a,b)e A2
Proof.

T= |J (a}xZr@.b)xib).
(a,b)eA?
0

Corollary 1. Let A be finite, |A| = n. If T is a centred ternary relation on A then
|T| > n2. Moreover, if T is centred then |T| = n? if and only if | Z7(x,y)| = 1 for
each x,y € A.

2. CONGRUENCES, HOMOMORPHISMS AND SUBSYSTEMS OF TERNARY
RELATIONAL SYSTEMS

By a ternary relational system is meant a couple 7 = (A; T) where T is a ternary
relation on A. T is called centred if 7 is centred. As shown in the previous section, to
every centred ternary relational system 7 = (A; T') there can be assigned an algebra
4(T) = (A;t) with one ternary operation ¢ : A3 — A such that ¢ is assigned to T.
Now, we can introduce an inverse construction. It means that to every algebra A =
(A;1) of type (3) there can be assigned a ternary relational system 7 (A) = (A; T¢)
where T is defined by

Ty :={(x,y.z) € A |t(x,y,2) = y}. @.1)

Of course, an assigned ternary relational system 7 (A) = (A; T;) need not be centred.
However, if 7 = (A;T) is a centred ternary relational system and A(7T) = (A;¢) an
assigned algebra then T is centred despite the fact that 7 is not determined uniquely.
In fact, we have (a,b,c) € Ty if and only if t (a,b,c) = b if and only if (a,b,c) € T.
Hence, we have proved the following

Lemma 3. Let T = (A;T) be a centred ternary relational system, A(T) = (A;t)
an assigned algebra and T (A(T)) = (A; Tt) the ternary relational system assigned
to A(T). Then T(A(T))=T.

The best known correspondence between centred ternary relational systems and
corresponding algebras of type (3) is the case of “betweenness”’-relations and median
algebras which was initiated by J. R. Isbell [5] and essentially developed by H.-J.
Bandelt and J. Hedlikova [1]. However, there are also some essential differences
between relational systems and the corresponding algebras. For binary relational
systems it was described by the first and the third author in [2]. In what follows, we
are going to handle it for the ternary case.
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If T = (A;T) is a ternary relational system and E an equivalence relation on
A then the quotient relational system 7 /FE is defined as the relational system
(A/E,T/E) where T/E = {([x]g,[ylE,[z]E) | (x,y,2) € T}. It is evident that
E need not be a congruence on the assigned algebra 4A(7) = (A;?) and hence cong-
ruences on I = (A;T), respectively on 4A(7") are different concepts.

Similarly, by a subsystem of 7~ = (A4;T) is meant a couple of the form (B, T|B)
with a non-empty subset B of A and T|B := T N B3. One can easily see that this
need not be a subalgebra of A(T) = (A4;1).

Finally, by a homomorphism of a ternary relational system 5 = (A4;7) into a
ternary relational system § = (B;.S) is meant a mapping & : A — B satisfying

(@bc)eT = (h(a).h(b).h(c))€S.

A homomorphism /% is called strong if for each triple (p,q,r) € S there exists
(a,b,c) € T such that (h(a),h(b),h(c)) = (p.q.1).
Now, we define the following concept.

Definition 5. A 7-homomorphism from a centred ternary relational system 7 =
(A4;T) to a ternary relational system § = (B;S) is a homomorphism from 7 to &
such that there exists an algebra (A;7) assigned to 7 such thata,b,c,a’,b’,¢’ € A and
(h(a),h(b),h(c)) = (h(a’),h(b"),h(c")) together imply h(t(a,b,c)) =h(t(d’,b’,c)).

Theorem 3. Let T = (A;T) and 8 = (B; S) be centred ternary relational systems
and A(T) = (A;t) and B(S) = (B;s) assigned algebras. Then every homomorp-
hism from A(T) to B(S) is a t-homomorphism from T to §.

Proof. Let a,b,c,a’,b’,c’ € A. If (a,b,c) € T then t(a,b,c) = b and hence
s(h(a),h(b),h(c)) = h(t(a,b,c)) = h(b) showing (h(a),h(b),h(c)) € S. Thus h
is a homomorphism from 7 to §.

Moreover, if (h(a),h(b),h(c)) = (h(a’),h(b’),h(c’)) then

h(t(a,b,c)) = s(h(a),h(b),h(c)) = s(h(a"),h(D"),h(c")) = h(t(a’,b',c")).
Hence % is a t-homomorphism from 7 to §. O

The theorem just proved says that every homomorphism of assigned algebras is a
t-homomorphism of the original relational systems. Now we can show under which
conditions the converse assertion becomes true.

Theorem 4. Let T = (A;T) and 8 = (B; S) be centred ternary relational sys-
tems. Then for every strong t-homomorphism h from T to 8 with assigned algebra
A(T) = (A;t) there exists an algebra B(S) = (B;s) assigned to 8 such that h is a
homomorphism from A(T) to B(S).

Proof. Let h be a strong t-homomorphism from 7 to §. By definition there exists
an algebra A(T) = (A;t) assigned to T such that for all a,b,c,a’,b’,c’ € A with



834 IVAN CHAJDA, MIROSLAV KOLARIK, AND HELMUT LANGER

(h(a),h(b),h(c)) = (h(a'),h(b'),h(c")) it holds h(t(a,b,c)) = h(t(a',b,c")). De-

fine a ternary operation s on B as follows:

s(h(x). h(y).h(z)) := h(t(x,y.2))
for all x,y,z € A. Since h is strong and a t-homomorphism, s is correctly defined.
For a,b,c € A, if (h(a),h(b),h(c)) € S then there exists (d,e, f) € T such that
(h(d).h(e).h(f)) = (h(a).h(b).h(c)). Now

s(h(a),h(b).h(c)) = h(t(a,b.c)) = h(t(d.e, [)) = h(e) = h(D).

If (h(a),h(b),h(c)) ¢ S then (a,b,c) ¢ T since h is a homomorphism from 7 to §
and hence t(a,b,c) € Zr(a,c),i.e. (a,t(a,b,c),c) € T. Thus
(h(a),h(t(a,b,c)),h(c)) € S,i.e.

(h(a),s(h(a),h(b),h(c)),h(c)) € S

whence s(h(a),h(b),h(c)) € Zs(h(a),h(c)). This shows that B(S) is an algebra
assigned to B. It is easy to see that /z is a homomorphism from A4(7) to 8(S). O

We are going to get connections between #-homomorphisms of relational systems
and congruences on the assigned algebras.

Theorem 5. Let T = (A;T), 8 = (B;S) be centred ternary relational systems.
Then the following hold:

(1) If h is a strong t-homomorphism from T to & then there exists an algebra
A(T) = (A;t) assigned to T such that kerh € ConA(T).

(i) If A(T) = (A;t) is an algebra assigned to T and 0 € ConA(T) then the
canonical mapping h : A — A/0 is a strong t-homomorphism from T onto
T/6.

Proof. (i) Let h be a strong f-homomorphism from 7 to §. By definition and
Theorem 4, there exist assigned algebras A(T) = (A;t), respectively B(S) = (B;s)
such that / is a homomorphism of A(7") to 8(S) and hence kerh € ConA(T).

(ii) Let A(T) = (A;t) be an algebra assigned to 7, 6 € ConA(T) and h: A —
A/0 denote the canonical mapping. By definition of 7/6, if (a,b,c) € T then
(h(a),h(b),h(c)) € T/0O and hence h is a homomorphism from T to 7 /6. If, more-
over,a,b,c,a’,b’,¢c’ € A and (h(a),h(b),h(c)) = (h(a’),h(b"),h(c’)) then

h(t(a,b,c)) =t(h(a),h(b),h(c)) =t(h(a’),h(d"),h(c")) = h(t(a’,b’,c")).
Therefore 4 is a t-homomorphism from 7 onto 7 /6. Obviously, / is strong. O

Definition 6. Let 7 = (A;7T) be a centred ternary relational system. An equ-
ivalence relation € on A is called a 7-congruence on 7 if there exists an algebra
A(T) = (A;t) assigned to T such that & € ConA(T). A subset B of A is called a

t-subsystem of 7 if there exists an algebra A (7)) = (A;t) assigned to 7 such that
(B;t) is a subalgebra of A(T).



ALGEBRAS ASSIGNED TO TERNARY RELATIONS 835

Example 2. Consider A = {a,b,c,d} and the ternary relation 7" on A defined as
follows: T := Ax{d}x A. Thend € Zr(x,y) for each x,y € A and hence T is
centred and its median is non-empty, in fact M7 (x,y,z) = {d} for all x,y,z € A.
For B = {a,b,c}, B = (B;T|B) is a subsystem of A = (A;T) but it is not a z-
subsystem. Namely, for every x,y,z € A t can be defined in the unique way as
follows: t(x,y,z) := d. Hence, ({a,b,c};t) is not a subalgebra of (A4;¢). On the
contrary, {a,b,d}, {a,c,d}, {b,c,d} are t-subsystems of .

Remark 2. Let A = (A;t), B = (B;s) be algebras of type 3) and h: A — B a
homomorphism from 4 to B. Put 7 (A) := (A;Ty) and 8(B) := (B;Ss) where T},
Sy are defined by (2.1). Then % need not be a r-homomorphism of 7 (4) to §(B),
see the following example.

Example 3. Let A={—1,0,1}, B={1,0} and t(x,y,2) =x-y,s(x,y,2) =Xx-),
where “-” is the multiplication of integers. Let & : A — B be defined by & (x) = |x]|.
Then 4 is clearly a homomorphism from 4 = (A4;¢) to 8 = (B;s) and

Ty = (Ax {0} x A)U ({1} x 4%).
There exists exactly one algebra (A;¢*) assigned to 7 (A), namely where
y ify=0o0rx=1
0 otherwise.

Now h(—1) = h(1) but h(t*(—1,—1,1)) = h(0) =0 # 1 = h(1) = h(t*(1,1,1)).
Thus 4 is not a t-homomorphism.

t*(x,y,2) =

We can prove the following:
Theorem 6. If A = (A;t) and B = (B;s) are algebras of type (3), A satisfies the
identity
t(x,1(x,y,2).2) =1(x,y,2)
and T (A) = (A;T;) and 8(B) = (B; Ss) denote the relational systems correspond-

ing to A and B, respectively, as defined by (2.1) then every homomorphism h from
A to B is a t-homomorphism from T (A) to 8(B).

Proof. Leta,b,c,d,e, f € A. If (a,b,c) € T(A) then t(a,b,c) = b and hence
s(h(a),h(b),h(c)) = h(t(a,b,c)) = h(b)

whence (h(a),h(b),h(b)) € 8(B). This shows that / is a homomorphism from 7 (A4)
to 8 (B). Obviously, ¢ is assigned to Ty. Finally, (h(a),h(b),h(c)) = (h(d),h(e),h(f))
implies

h(t(a.b.c)) = s(h(a),h(b).h(c)) = s(h(d).h(e),h(f)) = h(t(d e, f))

which shows that % is a z-homomorphism from 7 (A) to §(B). a
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3. DERIVED BINARY SYSTEMS

Let T be a ternary relation on A and p an arbitrary, but fixed element of A. Then

RT = {(X,y) GAzl(X,y,p) € T}

is called the binary relation p-derived from T. Moreover, put x oy :=¢(x, y, p) for
all x,y € Aif T is centred and ¢ is an assigned operation.

If T is reflexive then Rt is reflexive, too. If, moreover, T is centred then The-
orem 2 implies x ox = x, the idempotency of the operation o which is in accordance
with (i) of Theorem 8 in [3].

Similarly, if T is R-symmetric then R7 is symmetric. If, moreover, T is centred
then Theorem 2 implies (x o y) o x = x which is identity (ii) of Theorem 8 in [3]
characterizing symmetric binary relations (for directed relational systems).

If T is R-antisymmetric then R7 is antisymmetric. If, moreover, T is centred
then Theorem 2 yields that (x o y) o x = x o y which, if satisfied for all p € A4, is a
sufficient condition for the antisymmetry of R7. This condition is also a sufficient
condition for the antisymmetry of binary relations (see (v) of Theorem 8 in [3]).

If T is R-transitive then Rr is transitive. If, moreover, T is centred then The-
orem 2 implies x o ((x o y) ou) = (x o y) ou which is just identity (iii) of Theorem 8
in [3] characterizing transitivity of binary relations.

Let us recall from [3] that a binary relation R on A4 is (upward) directed if

Ur(a,b):={x € A|(a,x),(b,x) € R} # & forall a,b € A.

Although reflexivity, R-symmetry, R-antisymmetry and R-transitivity of a ternary
relation 7" on A yields the corresponding property of Ry, we are not able to show
that if 7" is centred then Ry is directed. However, our characterization of the corres-
ponding properties for binary relations by means of the induced binary operations in
[3] are possible for directed relations only.

Example 4. Put A .= {x,y,z} and

T:={(x,2,y)} U{a,y.b)l(a,b) € A\ {(x,)}}.

Then T is centred because Z7(x,y) = {z} and Z7(a,b) = {y} for (a,b) € A%\
{(x,y)}. Put p := y and consider the p-derived binary relation R7 on A. Then

xo(xoy)=1t(x,t(x,y,y),y) =1t(x,z,y) =z =1(x,y,y) =x0y,
but
yo(xoy)=1t(y,t(x,y,y),y) =t(y,z2,y) =y #z=1(x,y,y) =x0y.
Thus yo(xo0y) # (xoy). According to (ii) of Theorem 6 in [3], R7 is not directed.

Remark 3. Theorem 6 in [3] says that for a groupoid (G;o) the following are
equivalent:
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(i) There exists a directed relational system (G; R) with a reflexive relation R
such that (G ;o) corresponds to (G; R).
(ii) (G;o) satisfies the identities xox = x and xo(xoy) =yo(xoy)=xo0}.

We are going to show a sufficient condition for Rt to be directed.

Theorem 7. Let T be a reflexive ternary relation on A such that Zr(a,c) N
Zr(b,c) # @ for all a,b,c € A. Let p € A and Rt denote the binary relation
p-derived from T. Then Rt is directed.

Proof. Due to the assumption, T is centred and hence we can consider a ternary
operation f on A assigned to T such that#(a,b,c) € Zr(a,c)NZt(b,c)if (a,b,c) €
A3 \ T. Since T is reflexive, we have xox = #(x,x, p) = x.

First assume (x,y) € Ry. Then (x,y,p) € T. Thus t(x,y, p) = y and hence

xo(xoy)=1(x,t(x,y,p),p) =t(x,y,p) =xo0y.

Since T is reflexive, we obtain

yo(xoy)=t(y.t(x,y,p),p) =t(y.y.p) =y =t(x,y,p) =x0y.

Now suppose (x,y) ¢ R7. Then
xo(xoy)=1(x,t(x,y,p),p) =t(x,y,p) =xo0y.

Sincet(x,y,p)e Z7(x,p)NZ7r(y, p) wehavealsot(x, y, p) € Z7(y, p) and hence
yo(xoy)=1t(y,t(x,y,p),p) =t(x,y,p) =xo0y.

‘We have shown that o satisfies (ii) of Theorem 6 in [3]. Thus Ry is directed. Il

The converse assertion is also true. For a binary relation R on A and a fixed
element p € A we define

Tp(R) :={(x,y.p)[(x.y) € RFU{(x,x,y)[x,y € 4}. (3.1
Then we can prove

Proposition 1. Let R be a reflexive binary relation on A, p € A and T, (R) defined
by (3.1). Then T,(R) is a centred ternary relation on A and its p-derived binary
relation is just R.

Proof. It is evident that T),(R) is a ternary relation on A, its p-derived binary
relation is just R and Z7,(g)(x,y) 2{y} # D forall x,y € 4,i.e. Tp(R) is centred.
d

In what follows, we focus on the relation between ternary relations preserving a
given function and properties of assigned operations.
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Definition 7. Let T be a ternary relation and f* an m-ary operation on A. We say
that f preserves 7 if
(a1,b1,¢1),...,(@m,bm,cm) € T implies

(f(ar,....am), f(b1,....bm), f(c1,....cm)) €T.

It is worth noticing that the set of all operations on A preserving a given relation
T forms a so-called clone. This topic is intensively investigated in contemporary
algebra.

Definition 8. Let f be an m-ary and g an n-ary operation on A. We say that f
and g commute with each other if

f(g(xllv"'7xll’l)a'"7g(xm17"'7'xmn))
=g(f (X115 Xm1), oy [ (X1ns o Xmn))
forallx11,...,xln,...,xml,...,xmn € A.

We remark that also the set of all operations on A commuting with a given opera-
tion f forms a clone. Our next task is to compare both of these concepts.

Lemma 4. If T is a centred ternary relation, f an m-ary operation on A com-
muting with a ternary operation t assigned to T then f preserves T.

Proof. Lett be a ternary operation assigned to 7. Assume
(a1,b1,¢1),....(@m,bm,cm) € T. Let f commute with ¢. Then #(a;,b;,c;) = b; for
i =1,...,m and hence

t(flay,...,am), f(b1,....bm), f(c1,...,Cm))
= f(t(a1,b1,c1),....t(@m,bm,cm))
= f(b1,....bm)
showing (f(ai,....am), f(b1,....,bm), f(c1,...,cm)) € T. O

Clearly the sufficient condition used in the previous Lemma is not necessary. Such
a condition is as follows.

Theorem 8. If T is a centred ternary relation, f an m-ary operation on A and
t a ternary operation assigned to T then [ preserves T if and only if it satisfies the
following identity:
[(f(X1,. --,Xm)vf(t(xl,YI,Zl), ,t(xvamﬁzm))’ f(Zl’- --,Zm))

2
= f(t(x1,¥1,21)s-+ st (X, V> Zm))- (3.2)

Proof. Assume that f preserves 7. Since ¢ is assigned to 7" we have
(xi t(xi,yi,zi),zi) €T foralli =1,...,m. Hence

(fOxtaeesxm), f(x1.91.21) -t (X YmoZm))s f (21, Zm)) € T.



ALGEBRAS ASSIGNED TO TERNARY RELATIONS 839

Thus (3.2) holds.
Conversely, assume that f satisfies (3.2) and (a1,b1,¢1),...,(@m:bm,cm) € T.
Then
t(aj.bi,ci) =b;
fori =1,...,m, and hence

t(f(ar.....am), f(b1,....bm), f(c1.....Cm))

=t(f(ay...,am), f(t(ai,b1,c1),....t(@m,bm,cm)), f(c1,...,cm))
= f(t(a1,b1.c1).....t(Am.bm,Ccm))

= f(b1,....bm)

proving (f(ai,...,am), f(b1,...,bm), f(c1,...,cm)) € T. Hence, f preserves T.
O

4. MEDIAN-LIKE ALGEBRAS

The concept of a median algebra was introduced by J. R. Isbell (see [5]) as fol-
lows: An algebra A = (A;t) of type (3) is called a median algebra if it satisfies the
following identities:

(Ml) f(x»x»J’) =X,
M2) 1(x.y.2) =t(y,x.2) =1(y.2.X);
M3) t(t(x,y,2),v,w) =t(x,t(y,v,w),t(z,v,w)).

It is well-known (see e.g. [1], [5]) that the ternary relation 7y on A assigned to
t via (2.1) is centred and, moreover, |Mr,(a,b,c)| =1 for all a,b,c € A. In fact,
t(a,b,c) € Mt,(a,b,c). In particular, having a distributive lattice £ = (L;V,A)
then m(x,y,z) = M(x,y,z) and putting ¢ (x, y,z) := m(x,y,z), one obtains a me-
dian algebra. Conversely, every median algebra can be embedded into a distributive
lattice. Moreover, the assigned ternary relation 77} is the so-called “betweenness”, see
[10]and [11].

In what follows, we focus on the case when M7 (a,b,c) # @ for all a,b,c € A
and t(a,b,c) € Mt (a,b,c) also in case |M7(a,b,c)| > 1.

Definition 9. A median-like algebra is an algebra (A4;¢) of type (3) where ¢ sa-
tisfies (M1) and (M2) and where there exists a centred ternary relation 7 on A such
that #(x,y,z) € Mr(x,y,z) forall x,y,z € A.

Theorem 9. An algebra A = (A;t) of type (3) is median-like if t satisfies (M1),
(M2) and

1(x,1(x,y,2),y) =t(y,1(x,y,2),2) =1(z,1(x,y,2),x) =t(x,y,2). (4.1)

Proof. If T :={(x,y,z) € A3|t(x,y,z) = y} thent(x,y,z) € M7(x,y,z) for all
X,y,z € A. O

Lemma 5. Every median algebra is a median-like algebra.
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Proof. As shown in [5], identities (M1), (M2), (M3) are equivalent to the identity
t(x,1(x,z,w), 1(y,z,w)) = 1(x,2,w).
Putting w = y and using (M1) and (M2), we derive
1(x,0(x,2, ). y) =1(x,1(x,2,y).1(y.2.y)) =1(t(x,x,y).2,y) =1(x.2,y)

whence (4.1) follows since according to (M2) we have ¢ (u,v,w) = t(x, y, z) for any
permutation (u,v,w) of (x,y,z). OJ

The following examples show that a median-like algebra need not be a median
algebra.

Example 5. Put A := {1,2,3,4,5}, let ¢t denote the ternary operation on A de-
fined by #(x,x,y) =t(x,y,x) =t(y,x,x):=x forall x,y € A and ¢(x,y,z) :=
min(x,y,z) forall x,y,z € A withx # y #z # x and put 7 := {(x,x,y)|x,y €
AYUL(y.x,x) | x,y € AYU{(x,y.2) € A |y <x <z}U{(x,y,2) € 4> |y <z <x}.
Then ¢ satisfies (M1) and (M2) and #(x,y,z) € Mt (x,y,z) for all x,y,z € A. This
shows that (A4;¢) is median-like. However, this algebra is not a median algebra since

1(t(1,3,4),2,5) =1(1,2,5 =1#£2=1(1,2,2) =1(1,¢(3,2,5),t(4,2,5))
and hence (M3) is not satisfied.

Example 6. Consider the lattice M3 given in FIGURE 1 below.

FIGURE 1.

Then M3 is not distributive, m(a,b,c) = 0 and M(a,b,c) = 1. Define (x,y,z) € T
if and only if y € [x Az,x Vv z]. Let ¢ be an assigned operation defined as follows
t(x,y,z) :=m(x,y,2).

Then ¢(x,y,z) € M (x,y,z) for all triples of elements x, y,z and hence (M3;1)
is a median-like algebra. However, it is not a median algebra because identity (M3)
is violated:

t(t(a,b,c),a,1)=1t(0,a,1)=a #1=t(a,l1,1)=t(a,t(h,a,l),t(c,a,l)).

The previous example motivated us to state a general construction for lattices
which need not be neither distributive nor modular.
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Theorem 10. Let £ = (L;V,A) be a lattice. Define t1(x,y,z) := m(x,y,2),
ta(x,y,2) ;= M(x,y,z). Then A := (L;t1) and A, := (L;t2) are median-like
algebras. Moreover; the following conditions are equivalent

(a) A1 = Ay,
(b) Ay is a median algebra;
(c) £ is distributive.

Proof. Since both m(x,y,z) and M(x,y, z) satisfy (M1) and (M2) and
m(x,y,z),M(x,y,z) € [m(x,y,2), M(x,y,z2)] = M7 (x,y,z) for (x,y,z) € L3 and
T :={(x,y,2) € L}|x Az <y < xVz}, A1,y are median-like algebras. It is
well-known that m(x, y,z) = M(x,y,z) if and only if £ is distributive which proves
(a) < (c¢). The implication (c) = (b) is well-known (see e.g. [1], [5]). Finally, we
prove (b) = (c). Assume that (b) holds but (c) does not. Then &£ contains either
Mz = ({0,a,b,c,1};V,A) or N5 = ({0,a,b,c,1}; v, A) (witha < ¢) as a sublattice.
In the first case we have

t(t(a,b,c),a,1)=t0,a,1)=a #1=t(a,1,1)=1t(a,t(b,a,l),t(c,a,l))
whereas in the second case
tt(c,b,a),a,1)=t(a,a,1)=a#c=t(,1l,a)=t(c,t(b,al)t(a,a,l))

which shows that (M3) does not hold. This is a contradiction to (b). Hence (c¢)
holds. .

Comparing our definition with Theorem 2, we conclude:

Corollary 2. An algebra (A;t) of type (3) is median-like if t satisfies (M2) and if
it is assigned to a centred antisymmetric or non-sharp ternary relation on A.

Let us mention that median-like algebras form a variety because they are defined
by identities. Moreover, this variety is congruence distributive, i. e. Conds is distri-
butive for every median-like algebra +4, because the operation ¢ is a majority term,
i. e. it satisfies by (M1) and (M2)

tx,x,y)=t(x,y,x)=t(y,x,x) = Xx.

Theorem 11. let £ = (L;V,A) be a lattice and t a ternary operation on L satis-
fying (M1) and (M2) and t(x,y,z) € [m(x,y,2), M(x,y,2)] forall x,y,z € A. Then
A = (L;t) is a median-like algebra.

Proof. Put T := {(x,y,z) € L}|x Az <y <xVvz}. Then Mr(a,b,c)
= [m(a,b,c),M(a,b,c)] for all a,b,c € L. Hence t(a,b,c) € Mr(a,b,c) for all
a,b,c € L showing that 4 is a median-like algebra. O
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5. CYCLIC ALGEBRAS

Apart from the “betweenness” relation, another ternary relation plays an important
role in mathematics. It is the so-called cyclic order, see e.g. [4], [9] and references
there.

Definition 10. A ternary relation 7" on A is called asymmetric if
(a,b,c)eT fora#b+#c implies (c,b,a)¢T. (5.1)

A ternary relation C on A is called a cyclic order if it is cyclic, asymmetric, cyclically
transitive and satisfies (a,a,a) € C for each a € A.

Remark 4. Let C be a cyclic order on a set A. Then (a,b,a) ¢ C foralla,b € A
with a # b. Namely, if (a,b,a) € C then, by (5.1), (a,b,a) ¢ C, a contradiction.
Since C is cyclic, we have also (a,a,b), (b,a,a) ¢ C.

Applying (5.1), we derive immediately

Lemma 6. A centred ternary relation T on A is asymmetric if and only if any
assigned ternary operation t satisfies the implication:

(t(x,y,z2)=yandx #y#z) = 1(z,y,x)#)y. (5.2)

Similarly as for “betweenness” relations, we can derive an algebra of type (3) for
a centred cyclic order by means of its assigned operation.

Definition 11. A cyclic algebra is an algebra assigned to a cyclic relation.

Cyclic algebras can be characterized by certain identities and the implication (5.2)
as follows.

Theorem 12. An algebra A = (A;t) of type (3) is a cyclic algebra if and only if
it satisfies (5.2) and

1(x,1(x,y,2),2) =t(x,y,2),
t(t(x,y,2),2,x) =2,
t(x,t(x,y.t(x,z,u)),u) =t(x,y,t(x,z,u)),
t(x,x,x)=x.

Proof. Assume that A = (A;t) satisfies the above identities and (5.2). By The-
orem | and the first identity, ¢ is an assigned operation of a certain centred ternary
relation C on A. By Theorem 2 and the second and third identity, C is cyclic and
cyclically transitive. The fourth identity gets (x,x,x) € C for each x € A. Finally,
Lemma 6 yields that C is asymmetric and hence a cyclic order on A. Of course, ¢ is
an assigned operation of C and hence 4 = (A4;¢) is a cyclic algebra.

The converse follows directly by Definition 11. O
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‘\d irection

K

FIGURE 2.

Example 7. Let K be a circle in a plane with a given direction, see FIGURE 2.
Define a ternary relation C on K as follows:

(a,a,a) € C foreacha € K and
(a,b,c)eCifa—bandb — cfora #b #c.

It is an easy exercise to check that C is a cyclic order on K. If a,b € K then either
a =b and hence Z¢(a,a) = {a} ora # b thus Z¢ (a,b) equals the arc of K between
a and b, i. e. it contains a continuum of points. Hence C is centred. For any assigned
operation ¢, the algebra A(C) = (K;t) is a cyclic algebra.
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