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Skew effect algebras were already introduced as a non-associative mod-
ification of the so-called effect algebras which serve as an algebraic
axiomatization of the propositional logic of quantum mechanics. Since
skew effect algebras have a partial binary operation, we search for an
algebra with a total binary operation which extends a given skew effect
algebra and such that the underlying posets coincide. It turns out that
the suitable candidate is a skew basic algebra introduced here. Alge-
braic properties of skew basic algebras are described and they are com-
pared with the so-called pseudo basic algebras introduced by the authors
recently.
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Effect algebras were introduced by D.J. Foulis and M.K. Bennett [11] as a
tool for axiomatization of propositional logic of quantum mechanics. Their
non-associative modification was defined by the first author and H. Lénger [7]
under the name skew effect algebras. It turns out that this modification is
successful and can be represented e.g. by means of the so-called condition-
ally skew residuated structures in the same manner as it was done for effect
algebras by means of conditionally residuated structures by R. Hala§ and
the first author. It was shown in [7] that every skew effect algebra is in fact
an ordered set with sectional switching involutions and an antitone global
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involution. This motivates us to describe this structure by a total al gebra (with
everywhere defined operations) similarly as it was done for effect algebras
in [5]. However, a similar total algebra has been introduced recently by the
authors and J. Kriidvek [6] under the name pseudo basic algebra. In this paper
we compare these algebras and yield several results describing ordered sets
underlying these algebras.

1 PRELIMINARIES

Recall from [7] that by a skew effect algebra is meant a partial algebra S =
(S;+,",0, 1) of type (2, 1,0, 0) satisfying the following axioms:

(S1) ifx + yisdefined thensoisy +xandx +y =y +x

(S2) x+y=1ifandonlyify=x’'

(S3) if x + 1 is defined then x =0

(S4) ifx+y=zthenx'=2'+y

(S5) ifx’+ (x + ) is defined then y =0

(S6) if (x + y) + z is defined then there exists an element u € S such that
x+y+z=x+u.

The element x’ is called a supplement of x.

It was shown in [7] that every effect algebra is a skew effect algebra and,
moreover, a skew effect algebra is an effect algebra if and only if the partial
operation + is associative.

If S =(S;+,,0,1) is a skew effect algebra and a binary relation < is
defined by

x < yifthereexistsz € Swithy =x +z

then < is a partial order on S and O is the least and 1 the greatest ele-
ment. Tt will be called an induced order of S. A skew effect algebra Sis
called a lattice skew effect algebra if the induced ordered set (S; <)is a
lattice. Moreover, the mapping x > x’ is an antitone involution on S (.e.
x" = x and x < y yields y < x"). Defining for a € S a mapping x > x¢
on the interval (called section) [a, 1] by x = x" +a, it is the so-called sec-
tional switching involution, i.e. for every x € [a, 1] we have x% = x and
a® = 1, 14 = q. Since this sectional involution is defined for every element
a € S, we define the so-called induced poset with sectional switching invo-
lutions (S; <, (“)aes, 0, 1), where x9 = x’ is the so-called global antitone

=3

involution.
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It was proved in [7] that also conversely, if (S; <, (“)4es, 0, 1) is such a
poset and we define x + y = (y°)* for x < y° then we get an induced skew
elffect algebra A(S). Moreover, these assignments of induced poset with sec-
tional switching involutions and of a skew effect algebra A(S) are one-to-one
correspondences.

2 SKEW BASIC ALGEBRAS

Qur aim is to define an algebra (with everywhere defined operations) whose
induced ordered set would have the same properties as that of a skew effect
algebra. For this, we borrow the name from basic algebras which play a sim-
ilar role for effect algebras, see [5].

l.)eﬁn.ition 1. Analgebra A = (A;®, —,0) is called a skew basic algebra if
it satisfies the following axioms:

(Al) x®p0=x

(A2) ~(-x®y)BY)DYy=xBYy

(A3) x®(—(—~—~xDY)BY)DP2)Dz)=1,wherel =—0
(Ad) =(—x@y)By=—(yDdx)Dx

(AS) ~x@ey)oy)dx=1

(A6) x®y=yD-(—(x®y)DYy).

The following lemma gets several important properties of skew basic
algebras.

Lemma 1. Every skew basic algebra satisfies the following:
(i) —x®dx=1

(ii) ——x=x

(iii) x®(ydx)=1

(iv) x®—-x=1

v) 1dx=1=x@1

(vi) 0bx=x.

Proof.

(i)  Putting y = 0 in (A5) and applying (A1) twice, we obtain 1 = (—(x ®
0)P0)Bx=—xDx.

(i) Puty =0in(A2). Weget——x = —(—=(x @0)D0)DO=x D0 =x
using (A1) four times.
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(iii) If we substitute —x instead of x and y & x instead of y in (A2) and use
(A4), (A2) and (i), we compute

By ®x) = “(xdQ@AX)NSYDX)DODX)
(== ®x)Dx)Dx) D (y D x)
—(y®dx)d (Y dx)=1.

Il

(iv) follows directly from (i) by substitution —x instead of x and applying
(i1).

(v) By (iii) we have ~—x @ (x & —x) = 1. Applying (ii) and (iv) we get
x @ 1 = 1. Further, (iii) yields 1 & (x @ 0) = 1 which gets 1 & x = 1
by (Al).

(vi) Putting y =0 in (A4) and applying (A1) and (ii), we obtain x =
(00 x)Px=—(1Ex)Bx=—1dx =0 @ x using (v).

For the next, let us recall that an algebra D = (D; L) of type (2) is called
a commutative directoid (see e.g. [8]) if it satisfies the axioms

Dl) xux=x
D2) xuy=yux
D3) xu(xuy)uz)=xuUyuz.

If D = (D;L) is a commutative directoid and < is a binary relation on D
given as follows

x <y ifandonlyif xuy=y

then (D; <) is an ordered set which is directed, i.e. the set of upper bounds,
so-called upper cone U(a, b) = {x € D;a < x and b<x})#@foralla,b e
D. Also conversely, if (D; <) is a directed ordered set and we define a binary
operation LI as follows

e ifx <ythenxuuy=y=yUx
e if neither x < y nor y < x then x Uy = yux € U(x, y) is an arbitrary
element from the upper cone U (x, y)

then (D; L)) is a commutative directoid. Let us note that every ordered set with
a greatest element 1 is directed since 1 € U(x, y) forallx,y € D.
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Lemma 2. Let (A; @, —, 0) be a skew basic algebra. Define x < y for x,y €
Aif-x @y = 1.Then (A; <,0, 1) is an ordered set with the greatest element

—»

1 and the least element 0.

Proof. By (i) of Lemma [, < is reflexive. Assume x < y and y < x. Then
x@®y=1land —y@®x =1.Theseyieldx =0x =-1dx =—(-y P
XNOx=="(xBy)P®y=—10y=06¢y =y by (vi) of Lemma 1 and
the axiom (A4). Supposenow x < yandy < z.Then—x @y = land =y @
z = 1. We compute by (A3)

Il

XDz XPO0P)="xB(—~(—yDz)D2)
Xx@B (0D y)D2)D2)

(@)D S B = 1.

Il

Hence, x < z thus < is reflexive, antisymmetric and transitive relation on A,
i.e. (A;<) is an ordered set. By (v) of Lemma 1 we conclude —x @ 1 =1
thus x <1 for each x € A. Further, -0 ® x = 1 @ x =1 yields 0 < x for
eachx € A.

The order < defined on a skew basic algebra A = (A4; @, —, 0) by
x <y ifandonlyif —-x&@y=1
will be called an induced order of A.

Lemma 3. Ler (A;®, —,0) be a skew basic algebra, < its induced order.
Then ~(—x ®y) Dy € U(x,y) forallx,y € A.

Proof. By (iii) of Lemma 1 we have y < =(—x ® y) & y. Due to (A4) we
obtainx < =(-y @ x) B x = —(—x B y) ® y thus =(—x @ y) ® y is a com-
mon upper bound of x, y.

Theorem 1. The axioms (Al)—(A6) are independent.

Proof.

(a) Define =0 = 1, =1 = 0 and the constant operation x @& y = 1 for every
x,y € {0, 1}. Then ({0, 1};®, —, 0) satisfies (A2)—(A6) but not (A1)
because 0 0 =1 # 0.

(b) Define -0==-1=1 and 00=0, 001 =100=1p1=1.
Then ({0, 1}; &, —, 0) satisfies (A1), (A3)—(A6) but not (A2) because
(=090 0)d0=1£0=060.



58 IVAN CHAJDA AND MIROSLAV KOLARIK

(c) Define @ and — by the following tables

®|0 a b ¢ d 1
0|l0 a b ¢ d 1
ala 1 b 1 b 1 x |0 a b ¢ d 1
b|b a 1 1 11 —‘xllcdabO
cle 1 1 a d 1
dld b 1 ¢ ¢ 1
1({1 1 1 1 1 1

Then ({0, a, b, ¢, d, 1};®, —, 0) satisfies (A1), (A2) and (A4)—(A6) but
not (A3) because

a®—(—(—ada)da)®b)®b)y=b#-0=1

(d) Define -0=1,-1=0and 000=161=0, 190=01=1.
Then A = ({0, 1}; ®, —, 0) satisfies (A1)~(A3), (AS) and (A6) but not
(A4) because ~(—0 D )P 1=0#1=—(—1& 0)®O0.

(e) Define @ and — by the following tables

— o o oD
— 0 " OO
— oS = QR
—_— = = O] S
_C = SO0
—_ e e e e |

d

N

Then ({0, a, b, ¢, 1};®, =, 0) satisfies (A1)-(A4) and (A6) but not (A5)
because

(~a®b)®b)Da=b#-0=1.

(f) Finally, define @ and — by the following tables

x|0
—1x|1

— o o ol
—_ a0 o« O|0
—_——_= 0 = QR
—_——_= 0 Q S|
—_ e = = OO
— e e e

oS

S| o

(e} I
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Then ({0, a, b, ¢, 1}; @, —, 0) satisfies (A1)~(A5) but not (A6) because
a®b=a#c=bd—-(—~(a®b)®Db).

Theorem 2. Let A = (A;®, —,0) be a skew basic algebra, < its induced

order. Definel = =0, x Uy = ~(—~x® y)® yand fora < x,x* = -x Da.

Then D(A) = (A; U, (“)aea, 0, 1) is a bounded commutative directoid with
sectional switching involutions where

(a) the global involution x — x° is antitone
(b) ify < x then x¥ = (y°)&").

Moreover, the order of the directoid (A; 1) coincides with that of A.

Proof. By (A4) we have x LIy = y Ux. By (i) and (vi) of Lemma 1 we get
x Ux = x. Applying (A3) and (vi) of Lemma 1 we obtain

xU(@uyuz) = =(x®EECEx® )P y) D)D)
B(—((~(—x DY) DY) D2)D2)

= @@y Y®)P) =Ly Uz

Hence, (A; L) is a commutative directoid. Further,x L0 = =(—=x ®0) § 0 =
——x =xandx U1l =—(—-x® 1)@ 1 = 1 thus it is a bounded commutative
directoid. Of course, if < is the order of the directoid (A; L) and x < y then
x Uy = yand, by (A2) and (i) of Lemma 1,

XBYy="((xBy)DYDy=—-(xUY)By="ydy=1

Conversely, if ~x@y=1thenxUy=—-(-x®y)By=—10y =00
y =y thus x <y in the directoid (A; L1). Together,

x <y ifandonlyif —x@®y=1, (%)

i.e. < is the induced order of A = (A;®, —,0). Assume a < x. Then, by
(iii) of Lemma 1, ma ® (—x @ a) = 1 thus a < =x a = x*, i.e. x — x°
is a mapping of [a, 1] into itself. Further, x** = =(—x @ a) Pa =xLUa =
x.Next,a’=—-a@®a=1land 1“"=-1@®a=0Pa=athusx — x%isa
sectional switching involution for each @ € A.Finally,if x < y then, by (A5),

YO =@Uy®w=((x@ySy)dx=1
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thus, by (), =y < —x, i.e. = is a global antitone involution x > x° on A.
Moreover, if y < x then, by (A6) and (ii) of Lemma 1,

X = x@y=y®-((x@)®y)=yS-(xuy)
= y @ k= —|—|y @ =X = (—|y)(_"\) = (yo)('\.l)).

In what follows, we can prove the converse.

Theorem 3. Let D = (D;U, (“aep, 0, 1) be a bounded commutative direc-
toid with sectional switching involutions such that the global involution
x > x° is antitone and y < x = x¥ = (y°)®". Define x ® y = (x° U )
and —x = x°. Then A(D) = (D;®, —, 0) is a skew basic algebra.

Proof.

(AD) x®0=x"u0)’ =x%=x.

(A2) —(~x @Y @)Dy = (" uyHPuy®uy) =
(PuyPuy)uy =x"uy) =xoy.

(A3) x®(—(~(—~(x® DY) B Dz)= (U uy)uyu
2 U Z)z)((((xouy).vu_y))'uz)zuZ)z _ (xo y ((xo Uy)U Z))((X"I—I)’)Uz) _
((x° LU y) b )@ — 1,

(Ad) —(—x@y)dy=((xuy) uy) =xuyy” =xuy, analogously
—(-y®x)Px=yUx=xUy.

(A5) —~(x@®y)®y=—xUy and hence (~(x D y) D y)Dx = (—(—xu
y) L x)*. Since — is an antitone involution, we obtain —x Ly >
—x = —(—x Uy) < —=—x =x,thus (~(—x U y)Ux)* =x* =1.

(A6) y®-(—(x®y®y) =y (—xUy)=("yu—(—xU
PO = (my) R,

By the assumption, it is equal to (—mx U y)* = x & y.

Let us note that if A = (A; @, —, 0) is a skew basic algebra and D(A) the
commutative directoid assigned by Theorem 2 then A(D(A)) = A.

Example 1. Let A = {0,a, b, ¢, d, 1}. Consider the skew basic algebra A =
(A; ®, —, 0), where the operations — and @ are given by the tables

®|0 a b ¢ d 1
0l0 a b ¢ d 1
ala ¢ d ¢ 1 1

b d 1
blb d ¢ 1 d 1 x |0 a .
cle ¢ 11 11 —-xll d ¢ b a O
dld 1 d4 1 1 1
1 1 1 1 1 1 1

SKEW EFFECT ALGEBRA 61

¢ d=aub=>bUa

FIGURE 1

Its underlying poset is depicted in Figure 1. Note that the operation @ is
commutative, i.e. x @y =y @ x for each x,y € A. By Theorem 2, a Ub =
bua=—=(—a®b)y®db=dandalc=c,aud=d,buc=c, bud =
d, cud =1 determining the commutative directoid D(A).

The sectional switching involutions are as follows:

n[0, 1], x% = —x.

Infa,1]itis:a"=1,"=—-c@®a=d,d =—-d®a=c, 1 =a.
In[b,1]itis:b* =1, ==c®b=c,d" =—-d®b=d, 1> =b.
Inlc, 11, [d, 1] and [1, 1] it is determined uniquely.

Note that here the involutions are antitone in each section.

Example 2. Consider the skew basic algebra A= ({0, a, b,c,d,
e, 1};®, =, 0), where the operations — and @ are given by the tables

®|0 a b ¢ d e 1
0|0 a b ¢ d e 1
ala e ¢ d d 1 1
b|lb ¢ d e 1 e 1
clc d e 1 1 1 1
dld a 1 1 1 1 1
ele 1 b 1 1 1 1
r{1 1 1 1 1 1 1
x |0 a b ¢ d e 1
—x |1 e d ¢ b a 0
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aub=1=blUa

d e

FIGURE 2

Note that the operation @ is not commutative since e.g. d®a=a#d=

a @ d. The induced bounded commutative directoid D(A) is visualized in

Figure 2. Let us note that this poset is a lattice with respect to supremc'z and

infima but it is not a semilattice with respect to the directoid operation U

becauseallb=bua=—(—a®b)®b=—b®b=1 but sup(a, b) = c.
The sectional switching involutions are as follows:

In [0, 1], x% = —x.

Infa,1]itis:a® =1,¢"=d,d =c,e" =e, 19 =a.
In[b, 1] it is: =1, =ed’ =d, et =c, 12 =b.
Infc,1]itis:cc=1,d°=e, e =d and 1€ = c.
Inld, 1], e, 1]and [1,1]) it is determined uniquely.

Note that the involutions in sections [a, 1] and [b, 1] are not antitone

because

c<e but c“=d|e=¢e"

and

b

c<d but c :eHd:db.

A skew basic algebra A = (A; @, —, 0) will be called a lattice skew basic
algebra if the induced poset (A; <) is a lattice andxVy=—(-x@®y)DYy.
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Of course, since x > x? = —x is an antitone involution, we get x A y =
—(—x V —y) by DeMorgan laws.

Theorem 4. A skew basic algebra A = (A;®, —, 0) is a lattice skew basic
algebra if and only if it satisfies the axiom

(L) ~x@(~(—y®2)D)NO(—(—y®2)D2)=—-(——CxDy)®
V®2)Dz.

Proof. Applying Theorem 2, the axiom (L) can be translated in the language
of directoids as follows

xU(yuz)=@xuy)uz. (x%)

It is well-known (see e.g. [8]) that a directoid is a semilattice if and only if
the operation U is associative, i.e. if and only if it satisfies (). Then U = Vv
and due to Theorem 2 and DeMorgan laws, (A; <) is a lattice where x A y =
~(=x V).

In the previous two examples we have seen directoids, which are not lat-
tices. Obviously the identity (L) does not hold for them, e.g. forx =a,y = b
and z = ¢ because

(ma@((—bD)B)D(—(bD)Dc)=—1Bc=c#1
==c®c=—(~(~(—adb)db)Dc)Dec.

We finish this section with an interesting connection between skew basic
algebras and MV-algebras.

Theorem 5. A skew basic algebra is an MV-algebra if and only if the oper-
ation @ is associative.

Proof. We need to prove that if the operation @ is associative then the skew
basic algebra satisfies the following identities:

M1) x60=ux

M2) ——x=x

M3) x@—-0=-0

M4) xBY)Pz=xDd(HD2)

M5) =(x@y)By=—(-yDdx)®x
M6) xby=y®Dx.
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These identities define an MV-algebra A = (A; @, —, 0). The second author
proved in [12] that axiom (M6) is redundant, i.e. that it follows from the
remaining axioms: (M1)—(M5). These five axioms follow directly from (A1)
and (A4) of the axiomatic system of skew basic algebra, from the conditions
(ii) and (v) of Lemma 1 and from the assumption that the operation & is
associative.

Conversely, it is clear that every MV-algebra is a skew basic algebra
whose operation @ is associative.

3 THE COMPLETION OF SKEW EFFECT ALGEBRAS

Let S = (S;+,,0, 1) be a skew effect algebra and < its induced order. As
proved in [7], the operation x + y is defined if and only if the elements x, y
are orthogonal, i.e. if x <y’ which is equivalent to y =< x'.Then x +y =
()" = (x')? in the induced poset with sectional switching involutions.

Theorem 6. Let A = (A;®, —, 0) be a skew basic algebra and < its induced
order. Define 1 = =0, x' = —x and

x+y=x@®y ifandonlyif x <Y

Then S(A) = (A;+,',0,1) is a skew effect algebra whose induced order
coincides with <.

Proof.

(S1) If x + y is defined then x < y’ which is equivalent to y < x’ due to
antitony of the global involution x x’ and hence also y + x exists.
Further, by (A6), wehavex +y =x @y =y ® ~(—(x ® @y =
YO—(—(—x®YBY)=yd(—xUy)=ydx=y+x, using
y =

(S2) Clearly x = ——x = (x)" and hence x + x' is defined and x +x’ =
x @ —x = 1. Conversely, if x +y = 1 thenx < y" ifand only if y <
x' and x @ y = 1 if and only if =—x & y = 1 whence x" < y. Thus
y =

(S3) Ifx + 1isdefined then x <1’ = 0 and hence x = 0.

(S4) If x +y =z then x <y whence y < x’ and thus X' ==x=-xU
y=—(~x@)By=—(x®)NSy=C+y) +y=7+.

(S5) Assume x’ + (x + y) to be defined. Then x" < (x + yY,ie.x+y =<
x. However, x <y’ whence x < x+yandthusy+x=x+y=x
according to (S1). Applying (S4) and (S2), we have y=x'+x=1,
ie.y=1=0.
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(S6) Suppose (x + y)+z to be defined. Put d :=x+7y and e :=d +
z. Then x <y’ and hence x <x+y=4d and d <7/, and hence
d<d+z=e. Now x <d < e yields x <e = ——e. Thus, x + ¢
is defined and so is ¢’ 4+ x according to (S1). Applying (S4) and
(S1), from ¢’ +x = ¢’ +x we conclude (x +y)+z=d+z=¢=
—me=(4+x)+x=x+( +x).

Obviously, the induced order of the skew effect algebra (A;+,’,0, 1)
coincides with <.

Example 3. Let A = {0, a, b, ¢, d, 1}. Consider the skew basic algebra A =
(A;®, —, 0), where the operations — and ® are given by the tables

@10 a b ¢ d 1
010 a b ¢ d 1
ala d ¢ ¢ 1 1
blb ¢ d 1 d 1 x [0 a b ¢ d |
clc a 1 1 1 1 —'X|ldcba0
dld 1 b 1 1 1
11 1 1 1 1 1

Its underlying poset is depicted in Figure 3, x Uy = =(—x ® y) ® y.
Now, by Theorem 6, we define x' = —x and

X+y=x®y ifandonlyif x <y

alub=1=bua

FIGURE 3
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Then S(A) = (A;+,,0, 1) is a skew effect algebra where the partial opera-
tion + is given by the following table

+10 a b ¢ d 1
0(0 a b ¢ d 1
ala d ¢ — 1 =
b|b ¢ d - -
cle - 1 — — =
dld 1 - — — =
1/11 - = = = =

Let us note that the partial operation + in the skew effect algebra S(A)
is commutative contrary to the fact that skew basic algebra A is not commu-
tative because e.g.a ® c # c D a.

Now, we are ready to describe a completion of a skew effect algebra into
a total algebra which is a skew basic algebra.

Theorem 7. Let S = (S;+,/,0,1) be a skew effect algebra and < its
induced order. Then there exists a skew basic algebra A(S) = (S;®, —,0)
such that < coincides with the induced order of S and

x+y=x®y if x=<y.

Moreover, if S is a lattice skew effect algebra then A(S) is a lattice skew
basic algebra and the underlying lattices coincide.

Proof. Assume S = (S; +,/,0, 1) is a skew effect algebra and < its induced
order, i.e. x <y if there is z € S such that y = x +z. Since (S; <) is
directed, we can convert it into a bounded commutative directoid D(S) =
(S;U, (Dges, 0, 1) with sectional switching involutions and the global anti-
tone involution x° = x’, x¢ = x’ + a for x € [a, 1], where

xUy=yUx =xV yprovided the supremum x V y exists and
arbitrarily x Uy = y Ux € U(x, y) otherwise.

Hence, D(S) is assigned in a non-unique way if (§; <) is not a lattice but it is
assigned uniquely if (S; <) is a lattice.

Now, we define —x =x° and x ®y = (x°uy)’. By Theorem 3,
A(D(S)) = (S;®, —, 0) is a skew basic algebra. Moreover, the induced order
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of commutative directoid (S; L) coincides with < (see e.g. [7]),1.e.x <y if
and only if x LI y = y which is equivalent to

x@y=@uyY =y =1

Hence, the underlying ordered sets of S and of A(D(S)) coincide.
Now,if x <y’ (ie.x < yo ifand only if y < x9), then

x@®y=0"UyY =" =x+y

as mentioned in Preliminaries. The last assertion follows directly from the
construction of L.

As shown above, a skew basic algebra A(S) is assigned to a skew effect
algebra in a unique way if and only if S is a lattice skew effect algebra. On
the other hand, we have shown that the assignment S — A(S) captures the
whole information about S for any assigned A(S) because x +y=x @ y
whenever x + y is defined.

4 PSEUDO BASIC ALGEBRAS, SECTION SKEW BASIC
ALGEBRAS AND CONGRUENCE PROPERTIES

The concept of a pseudo basic algebra was introduced by the authors and
J. Kritdvek [6] in the sake to get a non-associative generalization of MV-
algebras. Another useful modification of MV-algebras are basic algebras,
see e.g. [3], which need not be commutative or associative. However, it was
shown by M. Botur [1] that every commutative basic algebra is either an MV-
algebra or it is infinite. Let us mention that the second author proved in [12]
that every associative basic algebra is necessarily an MV-algebra. For pseudo
basic algebras, the situation is different. Namely, there exist finite commuta-
tive pseudo basic algebras which are not MV-algebras, see [6]. Hence, pseudo
basic algebras serve as a successful modification of both MV-algebras and
basic algebras. On the other hand, they cannot be used as extensions of skew
effect algebras because orthogonal elements in pseudo basic algebras need
not commute. Moreover, the underlying poset of a pseudo basic algebra is
a Vv-semilattice which need not be the case of a skew effect algebra, see
the previous examples. In what follows, we are going to show that every
strict pseudo basic algebra can become a lattice skew basic algebra when the
orthogonal elements commute.
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Recall from [6] that an algebra A = (A; @, —, 0) of type (2, 1, 0) satisfy-
ing the following identities

(P1) —x @®x=1,where 1 = =0

(P2) x®0=x

P3) (xS Sy=xDYy

P4) —~(~(=(x@YDYD)Dz=—(-(-("y D)D) BX)Dx

is called a pseudo basic algebra. If, moreover, A satisfies also the identity

A) ~xeyeydx=1,

it is called a strict pseudo basic algebra.
The following proposition was proved in [6].

Proposition 1. Every pseudo basic algebra satisfies the following identities:

(i) 0dx=x

(ii)) ——x=x

(iii) ~(—x®y)@y="(y®x)Dx
(iv) —x®(y®x)=1,wherel=-0
(v) xé&—-x=1

i) 1dox=1=x@1.

In a pseudo basic algebra A = (A; &, —,0), the induced order < is intro-
duced by x < y if and only if ~x @y =1 and, if A is strict, then (A; <)
is a lattice where x Vy = ~(—x @ y) @y, x Ay =—(—x VvV —y)andx <y
implies —x < —y. o

In the following example, we get a strict pseudo basic algebra, which is
not a skew basic algebra.

Example 4. Define @ and — on the set {0, a, b, c, 1} by the following tables

®|0 a b ¢ 1
0|0 a b ¢ 1
ala ¢ ¢ 1 1 xlOab 1
blb b 1 1 1 —x | 1 b a 0
cle 1 1 1 1
111 1 1 1 1
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One can easily check that A = ({0, a, b, ¢, 1};®, —, 0) is a strict pseudo
basic algebra.

On the other hand A does not satisfy the axiom (A6) because
b@a=b#tc=adb=a®d—(=b®a)®a)
and hence it is not a skew basic algebra.

We can show that the axiom (A6) is just the missing condition character-
izing lattice skew basic algebras among strict pseudo basic algebras.

Theorem 8. A strict pseudo basic algebra A is a lattice skew basic algebra
if and only if it satisfies the identity (A6).

Proof. We need to prove that strict pseudo basic algebras satisfy (A1)—(A5).
Axioms (Al), (A2) and (AS5) are part of an axiomatic system of strict pseudo
basic algebras. Further axiom (A4) is the same as the condition (iii) of Propo-
sition 1. Finally, by (P4), we have

(Y BB D)D) P x =(=(—=(—x DY) DY) D) Dz (1)
By (iv) and (ii) of Proposition 1, we obtain

XOQYd—x)=1. )
From (2), (1) and (ii) of Proposition 1, we infer (A3) immediately.

In what follows, we are checking if a section [p, 1] of a given skew basic
algebra A = (A;®, —, 0) can be organized into a skew basic algebra again.
Of course, it is not possible for every p € A because the sectional involution
x? need not be antitone and, in the section [p, 1], it should become a global
involution. Howeyver, it is the only constraint as shown in the following.

Theorem 9. Let A = (A;®, —, 0) be a skew basic algebra anda € A. On a
section [a, 1] we definex @,y = —(—x ®a) ® y and —,x = —x @ a for all
x,y €la,1]. Then ([a, 11; ®a4, —q, a) is a skew basic algebra if and only if
the sectional involution x® in A is antitone.

The proof can be easily done via assigned directoid with sectional switch-
ing involutions and hence it is omitted.
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Example 5. Consider the skew basic algebra of Example 1. Then the sec-
tional switching involutions in the nontrivial sections [a, 11, [b, 1] are anti-
tone and hence these sections can be converted into skew basic algebras. On
the contrary, in the skew basic algebra of Example 2, the sectional switching
involutions in the nontrivial sections [a, 1], [b, 1] are not antitone and hence
these sections cannot be organized in skew basic algebras.

Our next task is to check some important congruence properties of skew
basic algebras.

Theorem 10. The variety S of skew basic algebras is congruence regular
and arithmetical.

Proof. By a theorem of Csakény [9], see also Theorem 6.1.3 in [4], a variety
is congruence regular if and only if there exist an integer and ternary terms
t(x,y,2),...,0(x,y,z) such that

nx,y,2)=-=t(x,y,2) =z ifandonlyif x=y.
We can take n = 2 and #;(x, y,2) = (mx ® y) M (—y ® x)) Nz, f2(x, ¥, 7y =
—((—~x ®y)N(—y ®x)) ®z,whereaUb =—(—a @ b) @ b and the derived
operation 1 is defined in the variety S via the DeMorgan laws as follows:

amnb = —(—aU —b). Then

hx,x,z2) = (x@x)Nz=1Nz=z
hx,x,z2) = —~1®z=0®z=2z.

If, conversely, #,(x, y, 2) = t(x, ¥, z) = z then
2<(x@y)N(—y @ x). (3)
As it follows from 1,(x, y, z) = z and (3),

~(~x @My ®x)®z=(((—x®y)N(-y ®x))U2)
(mx ®y)N(—y @ x))°.

o\l
Il

Since the involution in [z, 1] is switching, it yields

Cx@®y)n=ydx)=1
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thus also ~x @ y =1and —y @ x = 1. Hence x < y and y < x giving x =
y. We have shown that the variety S is congruence regular.

To prove arithmeticity, it is enough to find a so-called Pixley term, i.e. a
ternary term m(x, y, z) satisfying the identities

m(x,x,z) =z, mx,z,z)=x and m(x,y,x)=x,
see e.g. Theorem 3.2.11 in [4]. In the variety S, we can take
mx,y,z) =(=(—x®y)®2)N(—~(—z® y)®x)) N (xUz).

Since the operation M is derived from LI by using of the DeMorgan laws,
absorption laws a LI (a M b) = a and a M (a U b) are valid in the induced com-
mutative directoid and hence we compute

mx,x,2) = ((x@x)@)N(—(—zHx)Dx)MN(xUz)
= @n@Eux)nxuz) =z,
mx,z,z) = (~(~x@2)P)N(—(—zS2)Dx)MN(xUZ)

= (xuz)nx)N(xuUz) =ux,

and, finally,

mx,y,x) = (—(—x@y)Dx)N(—~(=x S y)®x))MN(xLx)
= (=(—x®y)dx)nx.

By (iii) of Lemma 1 we have x <a @ x forall ¢, x € A thus x < —(—x @
y) @ x. This yields immediately m(x, y, x) = x proving that m(x, y, z) is
really a Pixley term.

ACKNOWLEDGMENTS

Support of the research of the first author by the Project CZ.1.07/2.3.00/
20.0051 “Algebraic Methods in Quantum Logics” and of the second author
by the Project CZ.1.07/2.3.00/20.0060 “International Center for Information
and Uncertainty” is gratefully acknowledged.



72 IVAN CHAIDA AND MIROSLAV KOLARIK
REFERENCES
[1]1 Botur, M. (2010). An example of a commutative basic algebra which is not an M V-algebra.
Math. Slovaca, 60, 171-178.
[2] Chajda,]I. A representation of skew effect algebras. Math. Slovaca, to appear.
[3] Chajda,I.(2011).Basic algebras and their applications, an overview. Contributions to Gen-
eral Algebra 20, Proceedings of the Salzburg Conference AAASI, Klagenfurt, 1-10.
[4] Chajda, L., Eigenthaler, G., Langer, H. (2003). Congruence Classes in Universal Algebra.
Heldermann Verlag, Germany.
[5] Chajda,l., Hala$,R., Kiihr,J. (2009). Every effect algebra can be made into a total algebra.
Algebra Universalis, 61, 139-150.
[6] Chajda, I., Kolatik, M., Kriidvek (2013), J. Pseudo basic algebras. Journal of Multiple-
Valued Logic and Soft Computing, 21, 113-129.
[7] Chajda, I., Langer, H. (2012). A non-associative generalization of effect algebras. Soft
Computing, 16, 1411-1414,
[8] Chajda, I., Linger, H. (2011). Directoids — An Algebraic Approach to Ordered Sets. Hel-
dermann Verlag, Germany.
[9] Csédkany, B. (1970). Characterizations of regular varieties. Acta Sci. Math. (Szeged), 31,
187-189.
[10] Dvureéenskij, A., Pulmannov4, S. (2000). New trends in quantum structures. Kluwer, Dor-
drecht.
[11] Foulis, D.J., Bennett, M.K. (1994). Effect algebras and unsharp quantum logics. Found.
Phys., 24, 1331-1352.
[12] Kolafik, M. (2013). Independence of the axiomatic system for MV-algebras. Math. Slo-

vaca, 63, 1-4.

J.of Mult.-Valued Logic & Soft Computing, Vol. 23, pp. 73-96
Reprints available dircctly from the publisher
Photocopying permitted by license only

©2014 Old City Publishing, Inc.
Published by license under the OCP Science imprint,
amember of the Old City Publishing Group.

Characterizations of Abel-Grassmann’s
Groupoids

JIANMING ZHAN!, MADAD KHAN? AND SAIMA ANIS2

! Department of Mathematics, Hubei University for Nationalities, Enshi,
Hubei Province 445000, China
E-mail: zhanjianming @ hotmail .com
2Department of Mathematics, COMSATS Institute of Information Technology,
Abbottabad, Pakistan
E-mail: madadmath@yahoo.com, saimaanis_pk@yahoo.com

Received: September 19, 2012. Accepted: February 2, 2013.

In this paper, we investigate some characterizations of regular and intra-
regular Abel-Grassmann’s groupoids in terms of (€, € Vg, )-fuzzy ide-
als and (€, € vqy)-fuzzy quasi-ideals.

Keywords: AG-groupoid, left invertive law, medial law, paramedial law and
(e, € vgi)-fuzzy (quasi-)ideal.

2000 Mathematics Subject Classification: 20M10 and 20N99

1 INTRODUCTION

Usually the models of real world problems in almost all disciplines like engi-
neering, medical sciences, mathematics, physics, computer science, manage-
ment sciences, operations research and artificial intelligence are mostly full of
complexities and consist of several types of uncertainties while dealing them
in several occasion. To overcome these difficulties of uncertainties, many the-
ories have been developed such as rough sets theory, probability theory, fuzzy
sets theory, theory of vague sets, theory of soft ideals and the theory of intu-
itionistic fuzzy sets. Zadeh discovered the relationships of probability and
fuzzy set theory which has appropriate approach to deal with uncertainties.
Many authors have applied the fuzzy set theory to generalize the basic the-
ories of Algebra. Mordeson et al. [16] has discovered the grand exploration



