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Abstract
The method for producing concepts within a given context was developed by R. Wille, and it is known under the name formal
concept analysis. Every concept is fully determined by its extent and intent where extent is the set of all objects and intent the
set of all attributes of this concept. We show in examples that in situations of real world this method need not be satisfactory
because time dimension plays a crucial role in human thinking. Hence, it is necessary to consider tense operators on time
depending objects or on the whole concepts. A formal method how to evaluate these operators is investigated in this paper.

Keywords Formal concept analysis · Formal context · Concept · Tense operators

1 Introduction

The bases of every reasoning are concepts. An effective
method to determine all possible concepts within a given
context was introduced by R. Wille; see, e.g., Ganter and
Wille (1999) and numerous references there. We now briefly
recap this method. Let a set O of objects be given as well as
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a set M of attributes. Besides of these, we have given a rela-
tion R ⊆ O × M such that for g ∈ O and m ∈ M we have
(g,m) ∈ R if and only if the object g shares the attribute m.
The triple K = (O, M, R) is called a (formal) context. We
usually assume that the context is given; however, it is possi-
ble to enlarge the set O or the set M whenever it is necessary.
We consider the pairs (C, D) such that C ⊆ O and D ⊆ M .
Denoting

C ′ = {m ∈ M; (g,m) ∈ R for each g ∈ C},

it is the set of all attributes shared by all the objects of C , and

D′ = {g ∈ O; (g,m) ∈ R for each m ∈ D},

analogously as above, it is the set of all objects which share
all the attributes from D. The pair (C, D) is called a concept
if D = C ′ and C = D′. Then, C is called an extent and D
an intent of the concept (C, D). One can easily check that
C ⊆ C ′′,C ′ = C ′′′, D ⊆ D′′ and D′ = D′′′. It was proved by
R. Wille (see, e.g., Ganter and Wille 1999) that the set of all
concepts C(K) of a given contextK forms a complete lattice
with respect to the order (C1, D1) � (C2, D2) if and only if
C1 ⊆ C2 or, equivalently, D2 ⊆ D1. The least element of
C(K) is the concept (∅′′, M) generated by the empty set of
objects, and the greatest element is the concept (O, O ′). If
(C, D) is a concept, g ∈ O an object and g ∈ C , we will
write alternatively g ∈ (C, D) to express that g belongs to
this concept. Then, of course {g}′ ⊇ D.

One should also mention that in Tříska and Vychodil
(2017) the authors have introduced attribute implications
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(that represent data dependencies) annotated by time points
and investigated their semantic entailment and its axiomati-
zation.

For a given context K = (O, M, R), a procedure deter-
mining all concepts of K was developed. One of the first
approaches was the computer programTOSCANA produced
by P. Burmeister in 1980s. Nowadays, other fast computer
programs and algorithms were settled by Andrews (2015)
andOutrata andVychodil (2012). Thismethod is very appro-
priate because it enables to produce concepts automatically
by computer, and hence, it can serve efficiently in artificial
intelligence (AI). However, this method has its limits which
will be discussed here and a modification will be proposed.

Consider a context which has among its attributes also “to
be small,” “to be a bowl” and “to have a handle.”Within it, the
concept of a cup can be determined as a thing having these
three attributes. Up to now, all looks positively. Imagine a
situation when you boil water for coffee and ask your friend
to go into the kitchen and bring a cup from the table.When he
comes back, he says: “There was only one cup but without a
handle.” For a man, such a proposition is possible. However,
for AI in our sense it is impossible because there cannot be
“a cup without handle,” since a cup is defined as a small bowl
with handle. How it is possible that a man can create such
a concept? The answer is easy. He recognizes that this bowl
had a handle in the past, but now it is broken. In other words,
there has been a time when it was a cup, but now the handle
is broken.

Another example concerns animals. You can go for a walk
with your little son, and in the lake, you can see some small
animals. Your son can ask what an animal it is. You can
answer: “It is a young frog.” However, in an appropriate
context which contains attributes like “to be green,” “to have
legs,” “to live in water,” “to have a tail,” a frog (e.g., green
toad) can be determined as an animal having the first three
attributes but does not have the last one. On the contrary, our
animal called a tadpole has no legs, it is not green, but it has
a tail. How you can call it “a young frog”? The answer is
as follows. You know that in the future this animal will be
green, will have legs and will not have a tail, i.e., it will be a
frog. Thus, now it can be called “a young frog.”

2 Tense operators

The foregoing two examples show that when creating con-
cepts, time dimension plays an important role. The aim of
our paper is to introduce this time dimension in the formal
concept analysis.

Moreover, we develop also a general theory of closure
operators on ordered sets with a couple of order-preserving
mappings which can form Galois connection and are con-
nected with that closure operator via a certain relation. This

is useful for amore general settingwhich completes the study
of tense operators on formal concepts which can be consid-
ered either in the fuzzification or in concept formalization
in psychology (see, e.g., Bělohlávek (2002); Bělohlávek and
Klir (2011) for details).

From now on, consider a couple (T ,�) where a non-
empty set T is considered as a timescale and the relation
� (not necessary linear order) will express time preference,
i.e., t1 � t2 for t1, t2 ∈ T means that t1 is before t2 or,
equivalently, t2 is after t1. The couple (T ,�) is called a
time frame. In temporary logic, called also tense logic, see
the paper (Burgess 1984) or, e.g., the monograph (Chajda
and Paseka 2015), four of the so-called tense operators are
introduced. They are denoted by the symbols P , F , H andG,
and they are in fact modal operators whose intendedmeaning
is as follows:

P “It has at some time been the case that …”
F “It will at some time be the case that …”
H “It has always been the case that …”
G “It will always be the case that ….”

Now, we are going to show how the description of these
operators can be formalized. Let a context K = (O, M, R)

be given. The sets O, M are usually considered to be finite.
Let (C, D) be a concept in this context K and let g ∈ C be a
given object. Denote by {a1, . . . , an} the set of all attributes
from M and put gi = 1 if g shares the attribute ai and gi = 0
otherwise. Hence, to every g ∈ C can be assigned a vector
g = (g1, g2, . . . , gn) whose entries are 1 or 0 depending on
the relation R. We will identify the object g with this vector,
and hence, it will be denoted by the same symbol. We can
assume that O ⊆ 2M .

As pointed in our examples, the nature of g can be changed
in time, and thus, g will be considered to be time depend-

ing and denoted by g̃ ∈ (

2M
)T ∼= 2M×T , i.e., g̃(t) =

(g1(t), . . . , gn(t)) where gi (t) = 1 if g shares the attribute
ai at time t ∈ T and gi (t) = 0 otherwise. It is the vector
assigned to g̃(t). For the concept (C, D), denote by v(D) the
vector (v1, . . . , vn) such that vi = 1 if ai ∈ D and vi = 0
otherwise. This is the vector assigned to the concept (C, D).
In the set {0, 1}n , we can introduce a partial order as follows:

(v1, . . . , vn) � (w1, . . . , wn) if and only if

vi � wi for all i = 1, . . . , n.

Let ˜O be a system of time depending objects and g̃ be
from ˜O . Let (C, D) be a concept within K = (O, M, R)

and let t0 ∈ T . Then, we can formalize tense operators as
follows

• P(g̃)(t0) ∈ (C, D) if there exists t1 � t0 such that
g̃(t1) = (g1(t1), . . . , gn(t1)) � v(D); (1)
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• F(g̃)(t0) ∈ (C, D) if there exists t2 � t0 such that
g̃(t2) = (g1(t2), . . . , gn(t2)) � v(D); (2)

• H(g̃)(t0) ∈ (C, D) if g̃(t1) = (g1(t1), . . . , gn(t1)) �
v(D) for all t1 � t0; (3)

• G(g̃)(t0) ∈ (C, D) if g̃(t2) = (g1(t2), . . . , gn(t2)) �
v(D) for all t2 � t0. (4)

It is clear that if we have some evidence on behavior of a
given object g̃ during the time interval either in the past or in
future, this evaluation can be provided by a formal procedure,
and hence, it can be done by using a device of AI.

The next step is to consider an evolution of the whole
concept (C, D), not only of a given object g̃ from it. Using
our previous examples, we can consider how the concept of
“a cup” can be changed in the concept “a cupwithout handle”
and a concept “young frog (alias tadpole)” can be changed
into the concept “frog.” For this, we can use our previous
investigation of the tense operators on objects.

Let (C, D) be a concept from K = (O, M, R) and let
S ⊆ ˜O be a system of time depending objects. Assume that
t0 ∈ T (meaning “now”). We define tense operators P , F , H
and G as follows

• P(S)(t0) � C if for each g̃ ∈ S there exists t1 � t0 such
that g̃(t1) ∈ C . Thismeans “Every time depending object
from S is or has been before in the concept (C, D)”;

• F(S)(t0) � C if for each g̃ ∈ S there exists t2 � t0
such that g̃(t2) ∈ C . This means “Every time depending
object from S is or will be in the concept (C, D)”;

• H(S)(t0) � C if for each g̃ ∈ S and each t1 � t0 we have
g̃(t1) ∈ C . This means “Every time depending object
from S is or has been always in the concept (C, D)”;

• G(S)(t0) � C if for each g̃ ∈ S and each t2 � t0 we have
g̃(t2) ∈ C . This means “Every time depending object
from S is or will be always in the concept (C, D).”

Reading these formulas carefully, one canmention that for
every g̃ ∈ S and all t0 ∈ T there can be different time t1 or t2
from T for which we have P(g)(t0) ∈ C or F(g)(t0) ∈ C ,
respectively. However, it is in accordance with our everyday
experience because not all handles of all cups will be broken
at the same time and not all tadpoles become frogs during
the same day.

To show how it can be checked whether P(g̃) or F(g̃)
belong in a given concept (C, D), we start with the following
example.

Example 1 We put O = {glass, pot, coffee cup, tee cup,
white cup, decorated cup},M = {bowl, small,with a handle,
white, decoration}. Let R ⊆ O×M be given by the following
table.

Then, we have a context K = (O, M, R). Let D =
{bowl, small,with a handle} be the intent of the context

glass pot coffee
cup

tee
cup

white
cup

decorated
cup

bowl 1 1 1 1 1 1
small 1 0 1 1 1 1
with a handle 0 1 1 1 1 1
white 0 0 0 1 1 0
decoration 0 0 1 0 0 1

(C, D), where C = {coffee cup, tee cup, white cup,
decorated cup}.

Assume that T = {t0, t1, t2, t3} such that t3 � t2 � t1 � t0
is our time scale. Let further g̃1, g̃2 be two time depending
objects given by the following tables

t3 t2 t1 t0 t3 t2 t1 t0

g̃1(t)

⎛

⎜

⎜

⎜

⎝

1
1
1
1
0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
1
1
0
1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
1
0
1
0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
1
0
0
1

⎞

⎟

⎟

⎟

⎠

g̃2(t)

⎛

⎜

⎜

⎜

⎝

1
1
1
0
1

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
1
1
1
0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
1
1
1
0

⎞

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎝

1
1
0
1
0

⎞

⎟

⎟

⎟

⎠

Neither g̃1 nor g̃2 are now, i.e., in the time t0 contained in
the context (C, D). But we immediately see that g̃1 was in
the time t1 or t2 in (C, D) and g̃2 was in the time t1 or t2 or t3
in (C, D). If we use a restriction of vectors gi onto attributes
from D, then this can be equivalently expressed as follows:

max(g̃1(t)|D; t � t0, t ∈ T ) =
⎛

⎝

1
1
1

⎞

⎠ = v(D)|D

and

max(g̃2(t)|D; t � t0, t ∈ T ) =
⎛

⎝

1
1
1

⎞

⎠ = v(D)|D.

The above reasoning can be extended from a single object
g̃ to a set S of time depending objects as follows.

Let S = {g̃1, g̃2}. The fact that both g̃1 and g̃2 were in the
past in the context (C, D) can be expressed as follows:

min(max(g̃1(t)|D; t � t0, t ∈ T ),max(g̃2(t)|D;
t � t0, t ∈ T )) = v(D)|D.

The above condition should read as follows:

P(S)(t0) � C .

The just-described procedure can be formulated in a gen-
eral setting as follows.
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Theorem 1 Let a context K = (O, M, R) be given and
(C, D) be a concept ofK. Let (T ,�) be a time frame, t0 ∈ T

and S ⊆ (

2M
)T

be a subset of time depending objects. Then,
P(S)(t0) � C if and only if

min(max(g̃(t)|D; t � t0, t ∈ T ); g̃ ∈ S) = v(D)|D

and F(S)(t0) � C if and only if

min(max(g̃(t)|D; t � t0, t ∈ T ); g̃ ∈ S) = v(D)|D.

Proof Let g̃ ∈ (

2M
)T

be a time depending object. Then, we
have the following sequence of equivalences:

P(g̃)(t0) ∈ (C, D) ⇐⇒ there exists t1 � t0 such that g̃(t1) � v(D)

⇐⇒ there exists t1 � t0 such that g̃(t1)|D = v(D)|D
⇐⇒ max(g̃(t)|D; t � t0, t ∈ T ) = v(D)|D.

It follows that

P(S)(t0) � C ⇐⇒ for each g̃ ∈ S we have P(g̃)(t0) ∈ (C, D)

⇐⇒ for each g̃ ∈ S max(g̃(t)|D; t � t0, t ∈ T ) = v(D)|D
⇐⇒ min(max(g̃(t)|D; t � t0, t ∈ T ); g̃ ∈ S) = v(D)|D.

By the same considerations, we obtain that

F(g̃)(t0) ∈ (C, D) ⇐⇒ max(g̃(t)|D; t � t0, t ∈ T ) = v(D)|D and

F(S)(t0) � C ⇐⇒ min(max(g̃(t)|D; t � t0, t ∈ T ); g̃ ∈ S) = v(D)|D.

��
Remark 1 Reformulating the above condition in the language
of subsets, we have that

P(g̃)(t0) ∈ (C, D) if and only if D ∈
⋃

t�t0

↓(g̃(t0))

and

P(S)(t0) � C if and only if D ∈
⋂

g̃∈S

⋃

t�t0

↓(g̃(t0)).

Similarly,

F(g̃)(t0) ∈ (C, D) if and only if D ∈
⋃

t�t0

↓(g̃(t0))

and

F(S)(t0) � C if and only if D ∈
⋂

g̃∈S

⋃

t�t0

↓(g̃(t0)).

So we may prescribe, to any S ∈ 22
M×T ∼= 2(2M )T , a

sequence of subsets
(

⋂

g̃∈S
⋃

t�t0 ↓(g̃(t0))
)

t0∈T
or

(

⋂

g̃∈S
⋃

t�t0 ↓(g̃(t0))
)

t0∈T
from (22

M
)T ∼= 22

M×T , respec-

tively.

Because the evaluation of P and F for objects is a formal
procedure as mentioned above, then also the evaluation of
these operators for concepts is a formal procedure, and hence,
it can be provided by means of a device of AI.

To develop our study of tense operators on concepts, we
can mention that our approach is not the only way how to
define and evaluate these operators. An alternative way is to
consider the relation R of a given contextK = (O, M, R) as
time depending (i.e., R(t)) and study the operators P , F , H
andG on thematrix of R(t) (see, e.g.,Wolff 2001). However,
this was not our intent in this paper.

3 Galois connections and closure operators

For our construction of tense operators on a given formal con-
text, we need several advanced concepts and methods from
algebra and the theory of ordered sets. These are collected in
this section.

Let A = (A,�) and B = (B,�) be ordered sets. A
mapping f : A → B is called residuated if there exists a
mapping g : B → A such that

f (a) � b if and only if a � g(b)

for all a ∈ A and b ∈ B.
In this situation, we say that f and g form a residuated

pair or that the pair ( f , g) is a (monotone)Galois connection
(shortly adjunction). Themapping f is called a lower adjoint
of g or a left adjoint of g, and themapping g is called an upper
adjoint of f or a right adjoint of f . We also say that f and
g are tense operators if A = B.

The following description of Galois connections is a folk-
lore in the theory of ordered sets.

Lemma 1 Let (A,�) and (B,�) be ordered sets. Let
f : A → B and g : B → A be mappings. The following
conditions are equivalent:

(1) ( f , g) is a Galois connection.
(2) f and g are monotone, id A � g ◦ f and f ◦ g � id B.
(3) g(b) = ∨

({x ∈ A | f (x) � b}) and f (a) = ∧

({y ∈
B | a � g(y)}) for all a ∈ A and b ∈ B.

In the above case, g is determined uniquely by f and,
similarly, f is determined uniquely by g. Moreover, f pre-
serves all existing joins in (A,�) and g preserves all existing
meets in (B,�). If, in addition, both (A,�) and (B,�) are
complete lattices, we have the converse, i.e., if f preserves
all joins in (A,�), then f has an upper adjoint g given by
the condition g(b) = ∨

({x ∈ A | f (x) � b}), for all b ∈ B.
Similarly, if g preserves all meets in (A,�), then g has a
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lower adjoint f given by the condition f (a) = ∧

({y ∈ B |
a � g(y)}), for all a ∈ A.

Definition 1 Let A = (A,�) be an ordered set. A closure
operator onA is amap j : A → A such that for any a, b ∈ A:

(c1) a � j(a) ( j is extensive)
(c2) a � b implies j(a) � j(b) ( j is order pre-

serving)
(c3) ( j ◦ j)(a) = j(a) ( j is idempotent).

A coclosure operator on A is a map j : A → A such that for
any a, b ∈ A:

(co1) a � j(a) ( j is coextensive)
(c2) a � b implies j(a) � j(b)
(c3) ( j ◦ j)(a) = j(a)

We put A j = {a ∈ A | j(a) = a}. Clearly, A j with
the induced order is a sub-poset ofA. Recall that a coclosure
operator on an ordered set is a closure operator on the ordered
set with a dual order.

Note that a self-map j : A → A is a closure operator on
A if and only if

a � j(b) ⇐⇒ j(a) � j(b).

Moreover, for any Galois connection ( f , g), the composition
j = g ◦ f : A → A is a closure operator on A and we say
that j is a closure operator induced by f .

In what follows, we will explain the connection between
ordered setsAwith a closure operator j : A → A and formal
contexts.

We can define a formal context K(A, j) = (A, A j ,�)

where � is the order on A restricted to A × A j . We say
that K(A, j) is the context induced by (A, j). We denote by
E(A, j) the set of all extents of the context K(A, j).

Having a formal context K = (O, M, R), we know that
the mapping X �→ X ′′ for X ⊆ O or the mapping Y �→ Y ′′
forY ⊆ M is the closure operators on 2O or 2M , respectively.
However, now we show that also conversely, every ordered
set with a closure operator can be represented by means of
a certain context. In fact, such an ordered set A = (A,�)

with a closure operator j can be embedded into the context
K(A, j) defined above.

Theorem 2 Representation theorem of closure operators. Let
A = (A,�) be an ordered set and let j : A → A be a closure
operator onA. LetK(A, j) be the context induced by (A, j).
Then, the mapping iA : A → 2A given by iA(a) =↓ (a)

is an order-reflecting morphism of ordered sets such that
iA(A) is a sub-poset of 2A, iA(A j ) = E(A, j) ∩ iA(A) and
{a}′′ =↓ ( j(a)) for all a ∈ A, i.e., the following diagram

commutes:

A
j � A j

2A

iA
�

(−)
′ ′� E(A, j)

iA | A j
�

Proof Sincea � b if and only if↓(a) ⊆↓(b), for alla, b ∈ A,
we have that iA is an order-reflecting morphism of ordered
sets, and hence, iA(A) is a sub-poset of 2A.

Let a ∈ A. We compute:

(iA | A j ◦ j)(a) = iA | A j ( j(a)) =↓( j(a)) and
((−)

′ ′ ◦ iA)(a) = (↓(a))′′ = {a}′′ =↓( j(a)).

��

Hence, any ordered setAwith a closure operator j : A →
A can be realized as a restriction of the ordered set 2A of
all subsets of A with the closure operator (−)

′ ′
given by the

induced context K(A, j).
We denote byCord the category of ordered setswith a clo-

sure operator with order-preservingmappings asmorphisms,
and by cCord the category of ordered sets with a coclosure
operator with order-preserving mappings as morphisms.

In what follows, we want to provide a meaningful con-
struction giving tense operators which will be in accordance
with the intuitive idea of time dependency.

For this reason, we introduce tense operators which can
be easily evaluated on a given complete lattice accompanied
with a time frame.

Consider a complete lattice L = (L;�, 0, 1). Let (T ,�)

be a time frame. Define the followingmappings ̂G, ̂P, ̂H and
̂F on LT as follows:
for all p ∈ LT , s ∈ T

̂G(p)(s) =
∧

L

{p(t) | s � t}

̂P(p)(s) =
∨

L

{p(t) | t � s};

̂H(p)(s) =
∧

L

{p(t) | t � s};

̂F(p)(s) =
∨

L

{p(t) | s � t}.

The just constructed operator ̂G or ̂P or ̂H or ̂F will be
called a tense operator on LT constructed by means of the
time frame (T ,�). Moreover, (̂P, ̂G) and (̂F, ̂H) are Galois
connections [see Chajda and Paseka (2015, Theorem 6.1)].
If we assume that the time frame (T ,�) is a preordered set,
i.e., � is reflexive and transitive, then we have again from
Chajda and Paseka (2015, Theorem 6.1) that ̂P and ̂F are
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closure operators and ̂G and ̂H are coclosure operators such
that ̂G � ̂F and ̂H � ̂P .

Let A = (A,�) be an ordered set and let P : A → A and
G : A → A be mappings. Let C = (C,�) be an ordered set
and let T be a set of order-preserving mappings fromA toC.

We put

ρP = {(s, t) ∈ T × T | (∀a ∈ A)(s(a) � t(P(a)))} and
ρG = {(s, t) ∈ T × T | (∀b ∈ A)(s(G(b)) � t(b))}.

We say that ρG is the G-induced relation and ρP is the
P-induced relation.

The situation can be simplified as shown in the following
lemma.

Lemma 2 LetA = (A,�) be an ordered set. Let P : A → A
and G : A → A be mappings such that (P,G) is a Galois
connection. Let C = (C,�) be an ordered set and let T be
a set of order-preserving mappings from A to C. Then,

ρP = ρG .

Proof Assume first that (s, t) ∈ ρG , a ∈ A. Then, s(a) �
s(G(P(a))) � t(P(a)). Conversely, let s(a) � t(P(a))

for all a ∈ A. It follows, for any b ∈ A, that s(G(b)) �
t(P(G(b))) � t(b), i.e., (s, t) ∈ ρG . Hence,

ρG = {(s, t) ∈ T × T | (∀a ∈ A)(t(P(a)) � s(a))} = ρP .

��
Proposition 1 Let A = (A,�) be an ordered set and let
P : A → A and G : A → A be order-preserving mappings.
LetC = (C,�) be an ordered set and let T be a set of order-
preserving mappings from A to C. The following statements
hold:

(i) Let t ∈ T , t ◦ P ∈ T . Then, (t ◦ P, t) ∈ ρP and, for all
a ∈ A, the set {s(a) | s ρP t} has a greatest element
t(P(a)), i.e.,

t(P(a)) = max
C

{s(a) | s ρP t}.

(ii) Let s ∈ T , s ◦ G ∈ T . Then, (s, s ◦ G) ∈ ρG and, for
all b ∈ A, the set {t(b) | s ρG t} has a smallest element
s(G(b)), i.e.,

s(G(b)) = min
C

{t(b) | s ρG t}.

Proof (i): Since, for all a ∈ A, t(P(a)) = (t ◦P)(a)we have
that (t ◦ P, t) ∈ ρP and clearly for all a ∈ A, (t ◦ P)(a) =
minC {s(a) | s ρP t}. (ii): It is enough to note that the claim
follows from (i) applied to the ordered sets Aop and Cop. ��

One can now ask, for a given ordered set A = (A,�)

and mappings P : A → A, G : A → A such that (P,G)

is a Galois connection, whether there exist a frame (T , ρ)

and a non-trivial ordered setM = (M;�, 0, 1) such that the
mappingsG, P canbederivedby this constructionwhereA is
embedded into the power algebraMT .Hence,we askwhether
every element p of A is of the form (p(t))t∈T in MT and,
moreover, G(p)(s) = ∧

M {p(t) | s ρ t} and P(p)(s) =
∨

M {p(t) | t ρ s}. If such a representation exists, then one
can recognize the time variability of elements of A expressed
as time-dependent functions (p(t))t∈T .

We have

Proposition 2 [Chajda and Paseka (2015, Proposition 6.4)]
Let A = (A;�) be an ordered set equipped with a full set
T of order-preserving mappings into a non-trivial complete
latticeM. Then, the map iTA : A → MT given by iTA (x)(s) =
s(x) for all x ∈ A and all s ∈ T is an order-reflecting order-
preserving mapping such that i TA (A) is embedded into MT .

LetA = (A;�) be an ordered setwith a full set T of order-
preservingmappings into a complete latticeM. Let P : A →
A and G : A → A be order-preserving mappings, ρG the
G-induced relation by M and ρP the P-induced relation by
M. Let us denote by (�) the following condition:

(1) for all b ∈ B and for all s ∈ S, s(G(b)) = ∧

M {t(b) |
s ρG t},(�)

(2) for all a ∈ A and for all t ∈ T , t(P(a)) = ∨

M {s(a) |
s ρP t}.

By the same arguments as in Chajda and Paseka (2015),
Theorem 6.3, we can prove the following.

Theorem 3 LetA be an ordered set with a full set T of order-
preservingmappings into a complete latticeM. Let P : A →
A and G : A → A be order-preserving mappings, ρG the
G-induced relation by M and ρP the P-induced relation by
M, respectively, such that the condition (�) is satisfied. Then,
the map iTA is an order-reflecting order-preserving mapping
from A into the complete lattice MT such that the following
diagrams commute:

A
P � A

MT

iTA �

˜P
� MT

iTA�

A
G � A

MT

iTA �

̂G
� MT

iTA�

Here ̂G is constructed by means of (T , ρG) and ˜P is con-
structed by means of (T , ρP ).

In particular, if ρG = ρP or (P,G) is a Galois connec-
tion, then ˜P = ̂P.
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4 Logical complete lattices and ordered sets
with a closure operator

In Sect. 2, we studied behavior and formalization of tense
operators on concepts derived from the classical context K.
Here the main role is played by the tense operators F and P ,
and the operators G and H are not so essential for evolution
of objects and their sets. On the other hand, there exist also
other tense operators, e.g., the operators “since" and “until"
[for other possible tense operators, the reader is referred to
the monograph (see e.g., Rump (2013); Chajda and Paseka
(2015)] Further, not only classical context is of some interest.
It was shown in the monograph Bělohlávek and Klir (2011)
that also the so-called fuzzy concepts play an important role
in applications, in particular when the concepts are created
by human beings. All of these ideas lead to a study of more
general setting where our results from Sect. 2 are included
as particular cases. In what follows, we will not study the
possible applications, but we will develop a general theory.
Because concepts in classical context are just the closed sub-
sets with respect to the mentioned closure operator (denoted
by ′′ in Sect. 1) and because P and F are order-preserving
self-mappings on the complete lattice of formal concepts, it
is natural to investigate a general closure operator on a given
ordered set endowed with two order-preserving mappings
which are connected with that closure operator via certain
binary relations. It seems that the order-categorical approach
can be used here with advantage.

In this section, we exhibit a duality between a class of
ordered sets with a closure operator to a class of complete
lattices with a coclosure operator. Since every dual of a com-
plete lattice with a coclosure operator is an ordered set with
a closure operator, this leads to a self-embedding of the cat-
egory of complete lattices with a coclosure operator.

An element c of a complete lattice L is said to be super-
compact if for any non-empty subset X ⊆ L , the inequality
c �

∨

X implies that c � x for some x ∈ X . The set of
supercompact elements of L will be denoted by Lsc.

For every ordered set A, the upper sets X ⊆ A (i.e., the
subsets X of A with a � b ∈ X implies a ∈ X ) can be made
into a complete lattice (U(A),⊆) with the smallest element
∅ and the greatest element A (since U(A) is closed under
arbitrary unions and intersections) such that supercompact
elements of U(A) are exactly the principal upper sets ↑(a)

(Banaschewski and Niefield 1991). The lattices of the form
U(A) are (up to isomorphism) exactly the superalgebraic
lattices, i.e., those which are join generated by their super-
compact elements. If A = (A,�), B = (B,�) are ordered
sets and h : A → B an order-preserving mapping, it is well
known that the induced mapping U(h) : U(B) → U(A),
Y �→ h−1[Y ] is a complete lattice homomorphism (preserv-
ing arbitrary joins and meets).

Conversely, for superalgebraic lattices L, K and a com-
plete lattice homomorphism g : L → K , we put V(L) =
(Lsc;�) and V(g) : Ksc → Lsc will be a restriction of the
left adjoint f : K → L of g to the ordered set Ksc [see Erné
et al. (2007, Proposition 2.5)].

The functors U and V provide a duality between the cate-
gory of ordered sets with order-preserving mappings and the
category of superalgebraic lattices with complete homomor-
phisms (Erné et al. 2007, Proposition 2.2).

Note also that a complete lattice is superalgebraic if and
only if it is completely embeddable in a discrete cube {0, 1}X .
Definition 2 Let L be a complete lattice with a coclosure
operator c. We say that L is a logical lattice if the following
conditions are satisfied.

(i) Every a ∈ L can be represented as a join a = ∨

C
with C ⊆ Lsc.

(ii) c is a complete lattice endomorphism.
(iii) c(Lsc) ⊆ Lsc.

Amorphism of logical latticesL,K is a mapping h : L →
K which satisfies h(

∨

X) = ∨

h(X) and h(
∧

X) =
∧

h(X) for any subset X ⊆ L . The category of logical lat-
tices will be denoted by LogL.

Now we define two functors U : Cord → LogL and
V : LogL → Cord such that U is a restriction of U toCord,
V is a restriction of V to LogL, and, for a closure operator j
on an ordered set A and a coclosure operator c on a logical
lattice L, we put c j (X) = ⋃{↑( j(x)) | x ∈ X}, X ∈ U(A),
and jc(a) = c(a), a ∈ Lsc. Clearly, c j (X) ∈ U(A) and
jc(a) ∈ Lsc.
Now let us prove our first main result.

Theorem 4 Let A ∈ Cord and L ∈ LogL. Then, U(A) ∈
LogL and V(L) ∈ Cord. The functors U and V are well
defined and provide a duality between the category of ordered
sets with a closure operator and the category of logical lat-
tices.

Proof From Erné et al. (2007, Proposition 2.2), we know
that U(A) is an superalgebraic lattice and V(L) is an ordered
set. It is enough to show that, for a closure operator j on
A and a coclosure operator c on L, c j : U(A) → U(A) is
a coclosure operator on U(A), and jc : V(L) → V(L) is a
closure operator on V(L) such that A ∼= V(U(A)) in Cord
and L ∼= U(V(L)) in LogL.

Let X ,Y ∈ U(A), X ⊆ Y . Assume that a ∈ c j (X). Then,
there is x ∈ X such that x � j(x) and a ∈↑( j(x)). Hence,
a ∈↑ (x), i.e., a ∈ X . Moreover, since x ∈ X we obtain
that x ∈ Y , i.e., a ∈ c j (Y ). It follows that c j is coextensive
and order preserving. Hence, also c j (c j (X)) ⊆ c j (X). Now,
assume that b ∈ c j (X). Then, there is an element a ∈ X such
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that b ∈↑( j(a)) =↑( j( j(a))) and j(a) ∈ c j (X). It follows
that b ∈ c j (c j (X)) and we have c j (X) ⊆ c j (c j (X)). To
show that c j is a complete lattice homomorphism, note that
c j (↑(a)) =↑( j(a)) = j−1(↑(a)) for all a ∈ A (this also
yields that c(U(A)

sc
) ⊆ U(A)

sc
), and

c j (X) = ⋃{↑( j(x)) | x ∈ X} = ⋃{ j−1(↑(x)) | x ∈ X}
= j−1(

⋃{↑(x) | x ∈ X}) = j−1(X).

Since j−1 preserves all unions and intersections so does c j .
The fact that V(L) ∈ LogL follows from the fact that Lsc

is ordered with the reverse partial order to the order on L. In
particular, the restriction of the coclosure operator c to Lsc

will be a closure operator.
Next, consider the order-reversing injection

↑(−) : A → U(A).

Evidently, ↑(−)maps A bijectively onto U(A)sc. For a, x ∈
A, we have ↑ (x) � jc j (↑ (a)) in U(A)sc if and only if
↑(x) ⊆ jc j (↑(a)) if and only if ↑x ⊆ c j (↑(a)) if and only
if x � j(a). This yields that ↑( j(a)) = jc j (↑(a)), i.e., the
following diagram commutes

A
j � A

U(A)sc

↑(−)
�

jc j
� U(A)sc

↑(−)
�

and ↑(−) induces an isomorphism A ∼= V(U(A)) in Cord.
Let us verify that every logical lattice L is isomorphic to

U(V(L)) = U(Lsc). Let us consider the mapping κ : L →
U(Lsc) with

κ(p) := {x ∈ Lsc | x � p}.

Similarly as in Rump and Yang (2014) we have that κ(p)
is an upper set in the ordered set V(L), i.e., with respect
to the reverse order and that κ induces an isomorphism
L ∼= U(V(L)) in ordered sets. In particular, κ preserves
supercompact elements. Let us check that κ preserves the
coclosure operator. For p ∈ L, x ∈ Lsc, we have κ(x) =↑
Lsc (x) ⊆ c jc (κ(p)) inU(V(L)) if and only if x ∈ c jc (κ(p)) if
and only if there is y ∈ Lsc, y � p such that x ∈↑Lsc ( jc(y))
if and only if there is y ∈ Lsc, y � p such that x � c(y)
if and only if x � c(p) (since p is a join of supercompact
elements x , x ∈ Lsc and c preserves arbitrary joins). Thus,
κ is an isomorphism of logical lattices.

Since U coincides with U on morphisms, i.e., on order-
preservingmappings, andV coincides withV onmorphisms,
i.e., on complete lattice homomorphisms, the proof is com-
pleted. ��

5 Being before and being after

Now, let us express the property “Every time depending
object from S is or has been before in the concept (C, D).”
in the language of upper sets on 2O . More precisely, let a
context K = (O, M, R) be given and (C, D) be a concept
of K. Let (T ,�) be a time frame, t0 ∈ T , g ∈ OT , and
S ⊆ OT be a subset of time depending objects (now as func-
tions from T to O). Then, P(g)(t0) ∈ (C, D) if and only if
there exists t1 � t0 such that g(t1) ∈ C if and only if there
exists t1 � t0 such that C ∈↑2O ({g(t1)}) if and only if there
exists t1 � t0 such that ↑2OC ⊆↑2O ({g(t1)}) if and only if
↑2OC ⊆ ⋃

t1�t0 ↑2O ({g(t1)}).
Hence, P(S)(t0) � C if and only if ↑ 2OC ⊆

⋂

g∈S
⋃

t1�t0 ↑2O ({g(t1)}).
Since g(t1) uniquely corresponds to ↑ 2O ({g(t1)}), we

obtain a tense operator P : (U(2O)
)T → (U(2O)

)T
defined

by P((Xt )t∈T )(t0) = ⋃

t1�t0 Xt which is in accordance with
the standard definition of tense operators on complete lattices
(see Chajda and Paseka 2015). Moreover, we can extend P

to 2

(

U(2O )
)T

as follows

P(S)(t0) =
⋂

{P((Xt )t∈T )(t0) | (Xt )t∈T ∈ S}.

So we obtain a mapping P : 2
(

U(2O )
)T

→ (U(2O)
)T

.
Let A = (A,�) be an ordered set and let j : A → A

be a closure operator on A. Note that the set of all order-
preserving mappings O(A, j) is a monoid with respect to
the composition of mappings containing always the identity
mapping idA and the closure operator j . In what follows, we
shall assume that Tj ⊆ O(A, j) will be a submonoid of the
ordered set O(A, j) of all order-preserving mappings on A
containing j and all order-preserving mappings which will
be used in the assumptions of our statements.

We introduce a mapping i
Tj
A : A → (U(A)

)Tj as follows:

i
Tj
A (a) = (↑(h(a)))h∈Tj

for all a ∈ A.
Clearly, i

Tj
A is an order-preserving mapping from (A,

�) into
(U(A)

)Tj since a � b, a, b ∈ A implies h(a) � h(b)
(since any h ∈ Tj is order preserving) which in turn yields
that↑(h(a)) ⊆↑(h(b)), i.e., (↑(h(a)))h∈Tj � (↑(h(b)))h∈Tj .
Conversely, if (↑ (h(a)))h∈Tj � (↑ (h(b)))h∈Tj we have

(since idA ∈ Tj ) that ↑ (a) ⊆↑ (b), i.e., a � b and i
Tj
A is

order reflecting.

Proposition 3 Let A = (A,�) be an ordered set, j a clo-
sure operator on A. Let P : A → A and G : A → A be
order-preserving mappings, Tj a submonoid of the ordered
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set O(A, j) containing j , G and P such that ρP is the P-
induced relation on Tj and ρG is the G-induced relation on
Tj with respect to the dual order.

Then, the mapping i
Tj
A is an order-reflecting morphism of

ordered sets such that the following diagrams commute:

A
P � A

(U(A)
)Tj

i
Tj
A �

˜P
� (U(A)

)Tj

i
Tj
A�

A
G � A

(U(A)
)Tj

i
Tj
A �

̂G
� (U(A)

)Tj

i
Tj
A�

Here ˜P is constructed bymeans of the time frame (Tj , ρ
P )

and ̂G is constructed by means of the time frame (Tj , ρG) on
the logical lattice U(A).

Proof Wehave only to check that the part (2) of the condition
(�) is satisfied. This in turn translates to the following two
conditions:

(a) for all a ∈ A and for all t ∈ Tj ,

i
Tj
A (P(a))(t) =

⋃

{i Tj
A (a)(s) | s ρP t} = ˜P(i

Tj
A (a))(t),

(b) for all b ∈ A and for all s ∈ Tj ,

i
Tj
A (G(b))(s) =

⋂

{i Tj
A (b)(t) | s ρG t} = ̂G(i

Tj
A (b))(s).

Let a ∈ A and t ∈ Tj be arbitrary, fixed. Let x ∈
i
Tj
A (P(a))(t) =↑(t(P(a))). Put h = t ◦ P . Then, h ∈ Tj ,

h ρP t and we obtain that x ∈↑ (h(a)) ⊆ ⋃{i Tj
A (a)(s) |

s ρP t}. Conversely, let s ρP t . Then, s(a) � t(P(a)), i.e.,

↑(s(a)) ⊆↑(t(P(a))). This in turn implies that
⋃{i Tj

A (a)(s) |
s ρP t} ⊆ i

Tj
A (P(a))(t). Hence, the condition (a) is satisfied.

Similarly, let b ∈ A and s ∈ Tj be arbitrary, fixed. If
s ρG t , we have that s(G(a)) � t(a) for all a ∈ A. Hence,

↑(s(G(b))) ⊆↑(t(b)), i.e., i
Tj
A (G(b))(s) ⊆ ⋂{i Tj

A (b)(t) |
s ρG t}. Since s ρG s ◦ G, we obtain that i

Tj
A (G(b))(s) =

⋂{i Tj
A (b)(t) | s ρG t} and the condition (b) is satisfied. ��

The above theorem allows us to lift any order-preserving

mapping P on A to a left adjoint ˜P on
(U(A)

)Tj using the
time frame (Tj , ρ

P ). In particular, we are able to lift our
closure operator j : A → A to a coclosure operator and a

right adjoint ̂j on
(U(A)

)Tj using the time frame (Tj , ρ j ).

Theorem 5 Let A = (A,�) be an ordered set, j a closure
operator on A and X ⊆ A. Let P : A → A be an order-
preserving mapping and Tj a submonoid of the ordered set
O(A, j) containing j and P such that ρP is the P-induced
relation and ρ j is the j-induced relation on Tj .

Then, the mapping i
Tj
A is an order-reflecting morphism of

ordered sets such that the following diagrams commute:

A
P � A

(U(A)
)Tj

i
Tj
A �

˜P
� (U(A)

)Tj

i
Tj
A�

A
j � A

(U(A)
)Tj

i
Tj
A �

̂j
� (U(A)

)Tj

i
Tj
A�

Here ˜P and ̂j are constructed by means of time frames
(Tj , ρ

P ) and (Tj , ρ j ), respectively, on the complete lattice
(U(A)

)Tj . Moreover, we obtain an operator ˜F constructed
by means of the time frame (Tj , (ρ

P )op), i.e., for any g ∈
(U(A)

)Tj ,

˜F(g)(s) =
⋃

{g(t) | s ρP t}.

In particular, if we identify the identity operator on A
with the present tense “now,” then the time depending object

g ∈ (U(A)
)Tj has been in the closure j(a) (which plays

the role of our concept (C, D)) if and only if↑ ( j(a)) =
i
Tj
A ( j(a))(id A) = i

Tj
A (a)( j) ⊆ ˜P(g)(id A).

Similarly, g ∈ (U(A)
)Tj will be in the closure j(a) if and

only if i
Tj
A (a)( j) ⊆ ˜F(g)(id A).

Therefore, a subset S ⊆ (U(A)
)Tj has been in the clo-

sure j(a) if and only if i
Tj
A (a)( j) ⊆ ⋂

g∈S ˜P(g)(id A), and

S will be in the closure j(a) if and only if i
Tj
A (a)( j) ⊆

⋂

g∈S ˜F(g)(id A).
It is transparent that, for a context K = (O, M, R) and

a concept (C, D) of K, our considerations from Sect. 2 and
from the beginning of this section are covered by Theorem 5
and the above observations.
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Bělohlávek R, Klir GJ (eds) (2011) Concepts and fuzzy logic. MIT
Press, Cambridge. ISBN 9780262016476

Burgess J (1984) Basic tense logic. In: Gabbay DM, Günther F (eds)
Handbook of philosophical logic (II). D. Reidel Publishing, Dor-
drecht, pp 89–139

Chajda I, Paseka J (2015) Algebraic approach to tense operators. Hel-
derman Verlag, Lemgo. ISBN 9783885382355

ErnéM,GehrkeM, Pultr A (2007) Complete congruences on topologies
and down-set lattices. Appl Categorical Struct 15:163–184

Ganter B, Wille R (1999) Formal concept analysis. Springer, Berlin.
ISBN 9783540627715

Outrata J, Vychodil V (2012) Fast algorithm for computing fixpoints of
Galois connections induced by object-attribute relational data. Inf
Sci 185:114–127

Rump W (2013) Quantum B-algebras, Central European. J Math
11:1881–1899

RumpW, Yang YC (2014) Non-commutative logical algebras and alge-
braic quantales. Ann Pure Appl Logic 165:759–785
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