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Abstract Double basic algebras are a counterpart of bounded lattices with order-
antiautomorphisms on principal filters. In the paper, an independent axiomatization
of double basic algebras is given and lattice pseudo-effect algebras are characterized
in the setting of double basic algebras.
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In [1], the first author introduced the so-called double basic algebras, these being
algebras A = (A,�, ⊕,− ,∼ , 0, 1) with the property that the rule x ≤ y iff x− � y =
1 (which is the same as x∼ ⊕ y = 1) defines a bounded lattice in which x ∨ y =
(x− � y)∼ ⊕ y = (x∼ ⊕ y)− � y and x ∧ y = (x− ∨ y−)∼ = (x∼ ∨ y∼)− and where, for
every a ∈ A, the maps x �→ x− � a and x �→ x∼ ⊕ a are mutually inverse order-
antiautomorphisms on the interval [a, 1]. In the case when the two ‘additions’ and
the ‘negations’ coincide, double basic algebras reduce to basic algebras that were
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defined in [3] in an attempt to generalize orthomodular lattices in a similar way in
which MV-algebras generalize Boolean algebras.

The present paper has two parts. The former is a revision of [1] in the sense
that we provide a new independent axiomatic system and enlighten the relations
between double basic algebras and pseudo-MV-algebras (GMV-algebras). In the
latter part, lattice pseudo-effect algebras are characterized as a subvariety of double
basic algebras, and pairs of compatible elements of lattice pseudo-effect algebras are
described in terms of double basic algebras.

1 Double Basic Algebras

We first explain some basic concepts. By a lattice with sectional antiautomorphisms
we mean a structure L = (L,∨,∧, 0, 1, (βa)a∈L) where (L,∨,∧, 0, 1) is a bounded
lattice and, for each a ∈ L, βa is an order-antiautomorphism on the interval [a, 1],
i.e., βa is a bijection from [a, 1] onto itself such that x ≤ y iff βa(x) ≥ βa(y) for all
x, y ∈ [a, 1]. If all βa’s are involutive, then we say that L is a lattice with sectional
antitone involutions.

A basic algebra [2, 3, 6] is an algebra A = (A,⊕,− , 0, 1) of type 〈2, 1, 0, 0〉
satisfying the identities

x ⊕ 0 = x,

x−− = x,

(x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x,

(((x ⊕ y)− ⊕ y)− ⊕ z)− ⊕ (x ⊕ z) = 1.

As shown in [3], there is a one-one correspondence between lattices
with sectional antitone involutions and basic algebras. Specifically, given L =
(L,∨,∧, 0, 1, (βa)a∈L) a lattice with sectional antitone involutions, the associated
basic algebra LB = (L,⊕,− , 0, 1) is defined by

x− = β0(x) and x ⊕ y = βy(x− ∨ y),

and on the other hand, if A = (A,⊕,− , 0, 1) is a basic algebra, then the stipulation
x ≤ y iff x− ⊕ y = 1 defines a bounded lattice in which

x ∨ y = (x− ⊕ y)− ⊕ y and x ∧ y = (x− ∨ y−)−,

and where, for every a ∈ A, βa : x �→ x− ⊕ a is an antitone involution on [a, 1];
thus AL = (A,∨,∧, 0, 1, (βa)a∈A) is a lattice with sectional antitone involutions. The
assignments are mutually inverse, i.e., we have (LB)L = L and (AL)B = A.

Examples of basic algebras include MV-algebras, which are precisely the asso-
ciative basic algebras, and orthomodular lattices, which may be described as basic
algebras satisfying the identity x ⊕ (x ∧ y) = x. Indeed, in an orthomodular lattice
(L,∨,∧,⊥ , 0, 1), the maps x �→ x⊥ ∨ a are antitone involutions on the sections [a, 1],
hence the addition ⊕ is defined by x ⊕ y = (x ∧ y⊥) ∨ y and the identity obviously
captures the orthomodular law.

As we have already mentioned, double basic algebras were invented as a general-
ization of basic algebras corresponding to lattices with sectional antiautomorphisms.
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According to [1], a double basic algebra is an algebra A = (A,�, ⊕,− ,∼ , 0, 1) of
type 〈2, 2, 1, 1, 0, 0〉 that satisfies the identities

x � 0 = x = x ⊕ 0,

x−∼ = x = x∼−,

(x− � y)∼ ⊕ y = (y− � x)∼ ⊕ x = (y∼ ⊕ x)− � x = (x∼ ⊕ y)− � y,

(((x � y)∼ ⊕ y)− � z)∼ ⊕ (x � z) = 1,

(((x ⊕ y)− � y)∼ ⊕ z)− � (x ⊕ z) = 1,

0− = 1 = 0∼.

It can easily be shown that if L = (L,∨,∧, 0, 1, (βa)a∈L) is a lattice with sectional
antiautomorphisms and if we define

x− = β0(x), x∼ = β−1
0 (x),

x � y = βy(x∼ ∨ y), x ⊕ y = β−1
y (x− ∨ y),

(1)

thenLD = (L,�,⊕,− ,∼ , 0, 1) is a double basic algebra, and all double basic algebras
arise in this way. Indeed, if A = (A,�,⊕,− ,∼ , 0, 1) is a double basic algebra, then
letting

x ≤ y iff x− � y = 1 (or, equivalently, x∼ ⊕ y = 1)

we obtain a bounded lattice with

x ∨ y = (x− � y)∼ ⊕ y = (x∼ ⊕ y)− � y,

x ∧ y = (x− ∨ y−)∼ = (x∼ ∨ y∼)−,

such that for each a ∈ A, the map βa : x �→ x− � a is an antiautomorphism on [a, 1]
the inverse of which is β−1

a : x �→ x∼ ⊕ a. Thus AL = (A,∨,∧, 0, 1, (βa)a∈A) is a
lattice with sectional antiautomorphisms from which, using Eq. 1, we can recover
the initial A, i.e., (AL)D = A. We also have (LD)L = L.

The connections between basic and double basic algebras are obvious. If A =
(A,⊕,− , 0, 1) is a basic algebra, then (AL)D = (A,⊕, ⊕,− ,− , 0, 1) is a double basic
algebra, and conversely, if we are given a double basic algebra in which � coincides
with ⊕, then the ‘negations’ − and ∼ coincide too, so that the double basic algebra
becomes a basic algebra. More precisely, we have

Theorem 1 Let A = (A,�,⊕,− ,∼ , 0, 1) be a double basic algebra. Then the reduct
A1 = (A,�,− , 0, 1) is a basic algebra if and only if A satisf ies the identity

x � y = x ⊕ y. (2)

Proof Let A1 be a basic algebra. Then AL = (A1)
L is a lattice with sectional antitone

involutions, hence for every a ∈ A, the map βa : x �→ x− � a is an antitone involution
which coincides with its inverse β−1

a : x �→ x∼ ⊕ a. Thus x− = β0(x) = β−1
0 (x) = x∼

and x � y = βy(x∼ ∨ y) = β−1
y (x− ∨ y) = x ⊕ y for all x, y ∈ A.

Conversely, assume that A satisfies Eq. 2. Since � and ⊕ coincide, for all x, y ∈
A we have the following equivalences: y ≤ x− iff y− � x− = 1 iff y− ⊕ x− = 1 iff
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y−−∼ ⊕ x− = 1 iff y−− ≤ x− iff y− = y−−∼ ≥ x−∼ = x iff y = y−∼ ≤ x∼. Thus x− =
x∼ for all x ∈ A, and it follows that A1 is a basic algebra. ��

Axiomatization In what follows, we aim at proving that double basic algebras can
be axiomatized by the identities

x � 0 = x, (D1)

x ⊕ 0 = x, (D2)

x−∼ = x, (D3)

(x− � y)∼ ⊕ y = (y∼ ⊕ x)− � x, (D4)

(((x � y)∼ ⊕ y)− � z)∼ ⊕ (x � z) = 1, (D5)

(((x ⊕ y)− � y)∼ ⊕ z)− � (x ⊕ z) = 1. (D6)

Thus some identities from the original axioms can be omitted.

Lemma 2 Every algebra satisfying Eqs. D1–D6 satisf ies the following identities:

x− � x = 1 = x∼ ⊕ x, (3)

0− = 1 = 0∼, (4)

1∼− = 1, (5)

1− = 0 = 1∼, (6)

1 � x = 1 = 1 ⊕ x, (7)

x∼− = x, (8)

0 � x = x = 0 ⊕ x, (9)

x � 1 = 1 = x ⊕ 1, (10)

x− � (y ⊕ x) = 1 = x∼ ⊕ (y � x). (11)

Proof By Eq. D5 we have 1 = (((x � 0)∼ ⊕ 0)− � 0)∼ ⊕ (x � 0) = x∼−∼ ⊕ x = x∼ ⊕
x and, analogously, 1 = (((x ⊕ 0)− � 0)∼ ⊕ 0)− � (x ⊕ 0) = x−∼− � x = x− � x by
Eq. D6. As an immediate consequence of Eq. 3 we get 1 = 0− � 0 = 0− and 1 =
0∼ ⊕ 0 = 0∼, which is Eq. 4. Now, 1∼− = 0−∼− = 0− = 1, 1∼ = 0−∼ = 0 and 1− =
1− � 0 = (0∼ ⊕ 0)− � 0 = (0− � 0)∼ ⊕ 0 = 0−∼ = 0 by Eq. D4, proving Eqs. 5 and 6.

Further, 1 = (((1 ⊕ y)− � y)∼ ⊕ 0)− � (1 ⊕ 0) = ((0∼ ⊕ y)− � y)∼− � 1 = ((y− �
0)∼ ⊕ 0)∼− � 1 = y−∼∼− � 1 = y∼− � 1. When replacing y with (x ⊕ 1)−, we have
(x ⊕ 1)− � 1 = 1, whence 1 = (((x ⊕ 1)− � 1)∼ ⊕ 0)− � (x ⊕ 0) = 1∼− � x = 1 � x.

Before proving 1 ⊕ x = 1, we notice that

x∼− = 0 � x = 0 ⊕ x, (12)

because x∼− = (x∼ ⊕ 0)− � 0 = (0− � x)∼ ⊕ x = (1 � x)∼ ⊕ x = 1∼ ⊕ x = 0 ⊕ x and
1∼ ⊕ x = (x− � x)∼ ⊕ x = (x∼ ⊕ x)− � x = 1− � x = 0 � x.

Now we have 1 = (((1 � 1)∼ ⊕ 1)− � x−)∼ ⊕ (1 � x−) = ((1∼ ⊕ 1)− � x−)∼ ⊕ 1 =
(1− � x−)∼ ⊕ 1 = (0 � x−)∼ ⊕ 1 = x−∼−∼ ⊕ 1 = x ⊕ 1, which is the second part of



Order (2011) 28:499–512 503

Eq. 10. It follows that 1 = (((x � 1)∼ ⊕ 1)− � 0)∼ ⊕ (x � 0) = 1−∼ ⊕ x = 1 ⊕ x. This
completes the proof of Eq. 7.

Using Eqs. 12 and 7, we get x = x−∼ = (x− � 0)∼ ⊕ 0 = (0∼ ⊕ x)− � x = (1 ⊕
x)∼ � x = 1∼ � x = 0 � x = x∼−, which proves Eq. 8 as well as Eq. 9.

We have shown above that y∼− � 1 = 1 for all y, which together with Eq. 8 implies
Eq. 10.

Finally, we have 1 = (((y � 1)∼ ⊕ 1)− � x)∼ ⊕ (y � x) = x∼ ⊕ (y � x) and 1 =
(((y ⊕ 1)− � 1)∼ ⊕ x)− � (y ⊕ x) = x− � (y ⊕ x), which is Eq. 11. ��

Theorem 3 An algebra A = (A,�,⊕,− ,∼ , 0, 1) is a double basic algebra if and only
if A satisf ies the identities Eqs. D1–D6.

Proof Applying Lemma 2, we only have to show that if A satisfies Eqs. D1–D6, then
a = b where

a = (x− � y)∼ ⊕ y = (y∼ ⊕ x)− � x,

b = (y− � x)∼ ⊕ x = (x∼ ⊕ y)− � y.

Owing to Eq. 11 we have x− � b = 1 = y∼ ⊕ b which yields b = 1∼ ⊕
b = (x− � b)∼ ⊕ b = (b∼ ⊕ x)− � x and (b∼ ⊕ x)− � (y∼ ⊕ x) = ((1− � b)∼ ⊕ x)− �
(y∼ ⊕ x) = (((y∼ ⊕ b)− � b)∼ ⊕ x)− � (y∼ ⊕ x) = 1 by Eq. D6, whence

a = (1∼ ⊕ (y∼ ⊕ x))− � x = [((b∼ ⊕ x)− � (y∼ ⊕ x))∼ ⊕ (y∼ ⊕ x)]− � x

and thus

a∼ ⊕ b = ([((b∼ ⊕ x)− � (y∼ ⊕ x))∼ ⊕ (y∼ ⊕ x)]− � x
)∼ ⊕ ((b∼ ⊕ x)− � x) = 1

by Eq. D5.
Analogously, x∼ ⊕ a = 1 = y− � a by Eq. 11, so a = 1− � a = (x∼ ⊕ a)− � a =

(a− � x)∼ ⊕ x and (a− � x)∼ ⊕ (y− � x) = ((1∼ ⊕ a)− � x)∼ ⊕ (y− � x) = (((y− �
a)∼ ⊕ a)− � x)∼ ⊕ (y− � x) = 1. Then

b = (1− � (y− � x))∼ ⊕ x = [((a− � x)∼ ⊕ (y− � x))− � (y− � x)]∼ ⊕ x

and

b− � a = ([((a− � x)∼ ⊕ (y− � x))− � (y− � x)]∼ ⊕ x
)− � ((a− � x)∼ ⊕ x) = 1

by Eq. D6.
Now we conclude

a = 1∼ ⊕ a = (b− � a)∼ ⊕ a = (a∼ ⊕ b)− � b = 1− � b = b

as desired. ��

The examples below show that this simplified axiomatization of double basic
algebras is independent.

(a) The following algebra obviously does not satisfy Eq. D1 since 0 � 0 = 1, but it
satisfies Eqs. D2–D6:

� 0 1
0 1 1
1 1 1

⊕ 0 1
0 0 1
1 1 1

x 0 1
x− = x∼ 0 1
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(b) If we switch � and ⊕, we obtain an algebra that does not satisfy Eq. D2.
(c) This algebra does not satisfy Eq. D3 since 0−∼ = 1:

� = ⊕ 0 1
0 0 0
1 1 1

x 0 1
x− 1 1
x∼ 0 1

(d) In the following algebra we have (1− � 0)∼ ⊕ 0 = 1 �= 0 = (0∼ ⊕ 1)− � 1, so it
does not fulfill Eq. D4:

� = ⊕ 0 1
0 0 1
1 1 0

x 0 1
x− = x∼ 1 0

(e) This algebra does not satisfy Eq. D5 since (((a � 1)∼ ⊕ 1)− � b)∼ ⊕ (a � b) =
b :

� 0 a b 1
0 0 a b 1
a a 1 0 1
b b 0 1 1
1 1 1 1 1

⊕ 0 a b 1
0 0 a b 1
a a 1 b 1
b b a 1 1
1 1 1 1 1

x 0 a b 1
x− = x∼ 1 a b 0

(f) Finally, when interchanging � and ⊕ we get an algebra in which Eq. D6 fails to
be true since (((a ⊕ 1)− � 1)∼ ⊕ b)− � (a ⊕ b) = b .

Pseudo-MV-algebras Besides double basic algebras, the so-called double MV-
algebras were defined in [1]. The motivation was to have a particular class of double
basic algebras that stand to MV-algebras as double basic algebras stand to basic
algebras. Though it is not the original definition, we may say a double MV-algebra is
a double basic algebra satisfying the identity

x � (y ⊕ z) = y ⊕ (x � z). (13)

In this paragraph we show that these double MV-algebras are in fact pseudo-MV-
algebras (also called GMV-algebras).

Let us recall that pseudo-MV-algebras were introduced by Georgescu and Iorgu-
lescu [12], and independently by Rachůnek [13] under the name ‘GMV-algebras’, as
a non-commutative counterpart of well-known MV-algebras (see [7]):

A pseudo-MV-algebra is an algebra A = (A,⊕,− ,∼ , 0, 1) of type 〈2, 1, 1, 0, 0〉
such that (A, ⊕, 0) is a monoid and the following identities are satisfied:

x ⊕ 1 = 1 = 1 ⊕ x, 1− = 0 = 1∼, x−∼ = x,

(x− ⊕ y−)∼ = (x∼ ⊕ y∼)−,

x ⊕ (y− ⊕ x)∼ = y ⊕ (x− ⊕ y)∼ = (y ⊕ x∼)− ⊕ y = (x ⊕ y∼)− ⊕ x,

x � (x− ⊕ y) = (x ⊕ y∼) � y,

where the term operation � is defined by x � y = (y− ⊕ x−)∼.
If we put x ∨ y = x ⊕ (y− ⊕ x)∼ and x ∧ y = x � (x− ⊕ y), then we obtain a

bounded distributive lattice whose underlying order is given by x ≤ y iff x− ⊕ y = 1
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iff y ⊕ x∼ = 1, and where, for each a ∈ A, x �→ x− ⊕ a is an order-antiautomorphism
on [a, 1] whose inverse is x �→ a ⊕ x∼. Thus every pseudo-MV-algebra is a lattice with
sectional antiautomorphisms and hence can be regarded as a double basic algebra.
Specifically, given a pseudo-MV-algebra A = (A,⊕,− ,∼ , 0, 1), the corresponding
double basic algebra A† = (A,�†, ⊕†,− ,∼ , 0, 1) is defined by

x �† y = x ⊕ y and x ⊕† y = y ⊕ x.

Since ⊕ is associative, it is plain that A† satisfies Eq. 13.

Theorem 4 Let A = (A,�,⊕,− ,∼ , 0, 1) be a double basic algebra. Then the reduct
A2 = (A,�,− ,∼ , 0, 1) is a pseudo-MV-algebra if and only if A satisf ies the identity
13, i.e., A is a double MV-algebra.

Proof If A2 is a pseudo-MV-algebra, then A fulfills Eq. 13 because A = (A2)
†. The

converse follows from some considerations in [4]. Roughly speaking, a lattice with
sectional antiautomorphisms is derived from a pseudo-MV-algebra if and only if

ββ−1
z (y∨z)(x ∨ β−1

z (y ∨ z)) = β−1
βz(x∨z)(y ∨ βz(x ∨ z))

for all x, y, z. Recalling Eq. 1, this condition becomes

x− � (y∼ ⊕ z) = y∼ ⊕ (x− � z),

which is clearly equivalent to Eq. 13. Thus if A satisfies Eq. 13, then the above
condition holds in AL, and so A2 is a pseudo-MV-algebra.

In the next section we give another proof of Theorem 4. ��

We can therefore identify pseudo-MV-algebras with double MV-algebras, i.e. with
double basic algebras satisfying Eq. 13. Accordingly, if A is a double basic algebra
and B is a subalgebra that fulfills Eq. 13, then we shall say that B is a sub-pseudo-
MV-algebra of A.

2 Pseudo-effect Algebras

Pseudo-effect algebras, introduced by Dvurečenskij and Vetterlein in [9, 10], are a
non-commutative generalization of effect algebras (see [14] or [8]):

A pseudo-effect algebra [9] is a structure E = (E,+, 0, 1), where + is a partial
binary operation on E and 0, 1 are distinguished elements of E, satisfying the
following conditions:

(PE1) + is associative, in the sense that (a + b) + c is defined if and only if a + (b +
c) is defined, and in this case (a + b) + c = a + (b + c);

(PE2) for every a ∈ E there exist unique a−, a∼ ∈ E such that a− + a = 1 = a + a∼;
(PE3) if a + b is defined, then a + b = x + a = b + y for some x, y ∈ E;
(PE4) if a + 1 or 1 + a is defined, then a = 0.

Every pseudo-effect algebra E = (E,+, 0, 1) has a natural underlying order which
is defined by stipulating that

x ≤ y iff y = x + z for some z ∈ E,
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which is the same as y = z + x for some z ∈ E. If the poset (E, ≤) thus obtained is a
lattice, E is called a lattice pseudo-effect algebra.

It is worth observing that

x + y = z iff x∼ = y + z∼ iff y− = z− + x, (14)

in other words,

x + y is defined iff y ≤ x∼ iff x ≤ y−.

Furthermore, for every a ∈ E, the maps x �→ x− + a and x �→ a + x∼ are order-
antiautomorphisms on [a, 1] which are inverses of each other, so it is obvious that
every lattice pseudo-effect algebra is a lattice with sectional antiautomorphism and
hence a double basic algebra:

Proposition 5 Let E = (E, +, 0, 1) be a lattice pseudo-ef fect algebra. Upon def ining

x � y = (x ∧ y−) + y and x ⊕ y = y + (x ∧ y∼),

the algebra ED = (E,�,⊕,− ,∼ , 0, 1) is a double basic algebra whose underlying
order coincides with that of E . If x + y exists in E , then x + y = x � y = y ⊕ x.
Moreover, ED satisf ies the quasi-identity

x ≤ y− & x � y ≤ z− ⇒ x � (z ⊕ y) = z ⊕ (x � y). (15)

Proof We know that βa : x �→ x− + a is an order-antiautomorphism on [a, 1] (and
that its inverse is β−1

a : x �→ a + x∼), so that EL = (E, ∨,∧, 0, 1, (βa)a∈E) is a lattice
with sectional antiautomorphisms. The double basic algebra (EL)D associated to EL

by Eq. 1 is then defined as follows:

x � y = βy(x∼ ∨ y) = (x∼ ∨ y)− + y = (x ∧ y−) + y,

x ⊕ y = β−1
y (x− ∨ y) = y + (x− ∨ y)∼ = y + (x ∧ y∼).

Thus ED = (EL)D is a double basic algebra, and its underlying order is just that of
EL, i.e. that of E . It is also evident that x + y = x � y = y ⊕ x since x + y is defined
iff x ≤ y− iff x∼ ≥ y.

As for the last claim, if x ≤ y− and x � y ≤ z−, then by (PE1) both (x + y) + z and
x + (y + z) are defined and equal in E . Hence we have x � (z ⊕ y) = x + (y + z) =
(x + y) + z = z ⊕ (x � y), proving that ED fulfills Eq. 15. ��

Remark Instead of ⊕ we could have defined ⊕′ by x ⊕′ y = β−1
x (x ∨ y−) = x +

(x∼ ∧ y), i.e. x ⊕′ y = y ⊕ x. This might seem more natural in the context of pseudo-
effect algebras, because when x + y exists in E , then x + y = x � y = x ⊕′ y, while
with our definition we have x + y = x � y = y ⊕ x (see [5]).

Lemma 6 Every double basic algebra satisf ies the identities

(x ∧ y) � z = (x � z) ∧ (y � z) and (x ∧ y) ⊕ z = (x ⊕ z) ∧ (y ⊕ z).

Proof Recalling Eq. 1 we have (x ∧ y) � z = βz((x ∧ y)∼ ∨ z) = βz(x∼ ∨ y∼ ∨ z) =
βz((x∼ ∨ z) ∨ (y∼ ∨ z)) = βz(x∼ ∨ z) ∧ βz(y∼ ∨ z) = (x � z) ∧ (y � z). The proof of
the other identity is analogous. ��
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Theorem 7 Let A = (A,�, ⊕,− ,∼ , 0, 1) be a double basic algebra and def ine the
partial algebra AE = (A,+, 0, 1) as follows:

x + y = x � y if f x ≤ y−.

Then AE is a pseudo-ef fect algebra if A satisf ies the quasi-identity 15. In this case the
underlying orders of A and AE coincide.

Proof Let us assume that Eq. 15 is true in A. We first notice that

x + z is defined iff x∼ ≥ z, and x + z = z ⊕ x.

Indeed, letting y = 0 we get: x ≤ 0− = 1 and x = x � 0 ≤ z− imply x � z = x � (z ⊕
0) = z ⊕ (x � 0) = z ⊕ x. Thus if x + z exists in AE, then x + z = x � z = z ⊕ x. Now
we can verify the conditions (PE1)–(PE4).

(PE1) Let (a + b) + c be defined, i.e. a ≤ b− and a + b ≤ c−. Since b ≤ a � b =
a + b ≤ c−, also b + c is defined. Since ⊕ is monotone in the first argument
(Lemma 6), a∼ ≥ b and (a � b)∼ ≥ c yield a∼ = a∼ ∨ b = (a � b)∼ ⊕ b ≥
c ⊕ b = b + c, which means that a + (b + c) is defined. Similar arguments
show that if a + (b + c) is defined, then (a + b) + c is defined, too. Hence
(a + b) + c is defined iff so is a + (b + c), in which case, by Eq. 15, a ≤ b−
and a � b ≤ c− imply a + (b + c) = a � (c ⊕ b) = c ⊕ (a � b)=(a+b)+c.

(PE2) If x + a = 1 for some x ∈ A, then x ≤ a− and x ∨ a− = (a−∼ ⊕ x)− � x =
(x + a)− � x = 1− � x = x, so x ≥ a−, proving x = a−. Certainly, a− + a =
a− � a = 1, and hence a− is the only element x such that x + a = 1. Analo-
gously, a∼ is the only element y such that a + y = 1.

(PE3) Assuming a + b is defined, we put x = ((a + b)∼ ⊕ a)− and y = ((a + b)− �
b)∼. Then x∼ ≥ a and y− ≥ b , so x + a and b + y are defined, and we
have x + a = x � a = ((a + b)∼ ⊕ a)− � a = (a + b) ∨ a = a + b and b +
y = y ⊕ b = ((a + b)− � b)∼ ⊕ b = (a + b) ∨ b = a + b since a + b = b ⊕
a ≥ a and a + b = a � b ≥ b .

(PE4) If a + 1 is defined, then a ≤ 1− = 0. If 1 + a is defined, then 0 = 1∼ ≥ a. Thus
a = 0 in either case.

We have proved that AE is a pseudo-effect algebra and there remains to show
that the underlying orders are the same. Let us denote by � the order in AE. If a ≤ b
in A, then we may write b = a ∨ b = (b∼ ⊕ a)− � a = (b∼ ⊕ a)− + a as b∼ ⊕ a ≥ a;
hence a � b in AE. Conversely, if a � b , then b = x + a for some x ∈ E, so that
b = x � a ≥ a in A. ��

Combining Proposition 5 and Theorem 7 we conclude that there is a one-one cor-
respondence between lattice pseudo-effect algebras and double basic algebras that
satisfy Eq. 15. Indeed, it is apparent that for every lattice pseudo-effect algebra E we
have (ED)E = E . On the other hand, given A = (A,�,⊕,− ,∼ , 0, 1) a double basic
algebra satisfying Eq. 15, the additions in (AE)D = (A,��, ⊕�,− ,∼ , 0, 1) are defined
by means of + (which is inherited from � and ⊕) as follows: x �� y = (x ∧ y−) +
y = (x ∧ y−) � y = x � y and x ⊕� y = y + (x ∧ y∼) = (x ∧ y∼) ⊕ y = x ⊕ y (in both
cases the last equality follows from Lemma 6). Therefore (AE)D = A.
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Compatibility in Lattice Pseudo-ef fect Algebras In [11], Dvurečenskij and Vet-
terlein introduced five types of compatibilities between elements of pseudo-effect
algebras: besides ‘pure’ compatibility these are ultra strong, strong, weak and ultra
weak compatibility. In general they differ from one another, but it turns out that
in lattice pseudo-effect algebras, except for ultra weak compatibility, all of them
coincide. Rather than giving the original definition, we use one of the alternative
characterizations presented in [11].

We must define two partial subtractions \, / that are naturally determined by the
underlying order: x \ y and y / x exist iff y ≤ x, and they are unique elements such that

(x \ y) + y = x = y + (y / x).

We should notice that in view of Eq. 14 we have

x \ y = (y + x∼)− and y / x = (x− + y)∼. (16)

Now, we can say that x and y are compatible and write x ↔ y iff

(x ∨ y) \ y = x \(x ∧ y) and (x ∨ y) \ x = y \(x ∧ y).

By [11], Proposition 3.6, we could equivalently use / instead of \, i.e., x ↔ y iff

y /(x ∨ y) = (x ∧ y) / x and x /(x ∨ y) = (x ∧ y) / y.

The concept of ultra weak compatibility is obtained by replacing ‘and’ with ‘or’,
that is, x and y are called ultra weakly compatible, in symbols x

uw←→ y, if (x ∨
y) \ y = x \(x ∧ y) or (x ∨ y) \ x = y \(x ∧ y), or equivalently, if y /(x ∨ y) = (x ∧ y) / x
or x /(x ∨ y) = (x ∧ y) / y.

We can easily describe pairs of compatible elements in the setting of double basic
algebras associated to lattice pseudo-effect algebras:

Theorem 8 Let E be a lattice pseudo-ef fect algebra and ED the corresponding double
basic algebra. Then, for all x, y ∈ E, the following are equivalent:

(i) x ↔ y in E ,
(ii) x∼ ⊕ y = y � x∼ and y∼ ⊕ x = x � y∼ in ED,

(iii) x− � y = y ⊕ x− and y− � x = x ⊕ y− in ED.

Consequently, x ↔ y if f x− ↔ y− if f x∼ ↔ y∼.

Proof Recalling Proposition 5 and Eq. 16 we have

(x∼ ⊕ y)− = (y + (x∼ ∧ y∼))− = (y + (x ∨ y)∼)− = (x ∨ y) \ y

and

(y � x∼)− = ((y ∧ x∼−) + x∼)− = ((x ∧ y) + x∼)− = x \(x ∧ y),

whence x ↔ y iff x∼ ⊕ y = y � x∼ and y∼ ⊕ x = x � y∼, so (i) is equivalent to (ii).
That (i) and (iii) are equivalent is verified by observing that (x− � y)∼ = y /(x ∨ y)

and (y ⊕ x−)∼ = (x ∧ y) / x.
The last assertion is a direct corollary. (This is also proved in [11], Proposition 3.6.)

��
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Remark It is obvious that an analogous statement with ‘or’ in place of ‘and’ holds
true for ultra weak compatibility.

We have to make a remark on pseudo-MV-algebras here. It is easy to show that
if we are given a pseudo-MV-algebra, then by restricting the addition to {(x, y) : x ≤
y−} we obtain a lattice pseudo-effect algebra. On the other hand, owing to [10], The-
orem 8.7, (ultra weak) compatibility can characterize pseudo-MV-algebras within
lattice pseudo-effect algebras. Namely, Theorem 8.7 in [10] essentially states that
if E = (E,+, 0, 1) is a lattice pseudo-effect algebra, then—with the notation of our
Theorem 4—the algebra (ED)2 = (E,�,− ,∼ , 0, 1) is a pseudo-MV-algebra if and
only if x

uw←→ y for all x, y ∈ E. Thus pseudo-MV-algebras are equivalent to lattice
pseudo-effect algebras where x

uw←→ y for all x, y.

Corollary 9 Let A be a double basic algebra satisfying Eq. 15. Then A2 is a pseudo-
MV-algebra if and only if A satisf ies the identity

x � y = y ⊕ x. (17)

Proof By Theorem 4 we know that if A2 is a pseudo-MV-algebra, then A satisfies
the identity 13, and letting z = 0 we get Eq. 17.

Conversely, if A fulfills Eq. 17, then Theorem 8 entails that in the pseudo-effect
algebra AE we have x ↔ y for all x, y ∈ A. Hence, by [10], Theorem 8.7, A2 is a
pseudo-MV-algebra. ��

Next, let us assume that E = (E, +, 0, 1) is a lattice pseudo-effect algebra satisfying
the following condition which is referred to as complement compatibility property
in [11]:

(∀x, y ∈ E) x ↔ y ⇒ x− ↔ y. (18)

In this case, if x ↔ y, then x∼ ↔ y∼ whence x∼ ↔ y∼− = y by Eq. 18, and the
condition actually means

x ↔ y iff x− ↔ y iff x∼ ↔ y.

Moreover, by [11], Proposition 4.8, this complement compatibility property entails
that ultra weak compatibility coincides with compatibility, i.e., for all x, y ∈ E, x ↔ y
iff x

uw←→ y.

Theorem 10 Let E and ED be as before. If E satisf ies the condition 18, then x ↔ y in
E if and only if x � y = y ⊕ x in ED.

Proof Using Eq. 18 and (iii) of the previous theorem, if x ↔ y, then x∼ ↔ y and
x � y = y ⊕ x. Conversely, if x � y = y ⊕ x, then x∼ uw←→ y, which yields x∼ ↔ y,
and so x ↔ y by Eq. 18. ��

By [11], a block in a lattice pseudo-effect algebra is a maximal subset of mutually
compatible elements. Theorem 4.9 in [11] says that a lattice pseudo-effect algebra
satisfying Eq. 18 is the union of its blocks, which are pseudo-MV-algebras where the
total addition is defined as our �, i.e., x � y = (x ∧ y−) + y.
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We can use this result in characterizing double basic algebras derived from lattice
pseudo-effect algebras with Eq. 18. First, in order to find a suitable definition of a
block for double basic algebras, we need a better understanding of what compatibility
in pseudo-effect algebras means in terms of sectional antiautomorphisms.

By Eq. 16 we have y /(x ∨ y) = ((x ∨ y)− + y)∼ = (βy(x ∨ y))∼ and (x ∧
y) / x = (x− + (x ∧ y))∼ = (βx∧y(x))∼, and analogously, (x ∨ y) \ y = (β−1

y (x ∨ y))−

and x \(x ∧ y) = (β−1
x∧y(x))−. Thus, in a lattice pseudo-effect algebra, we have

x ↔ y iff βy(x ∨ y) = βx∧y(x) and βx(x ∨ y) = βx∧y(y)

iff β−1
y (x ∨ y) = β−1

x∧y(x) and β−1
x (x ∨ y) = β−1

x∧y(y).

Therefore, in double basic algebras, we shall write

x ↔ y iff βy(x ∨ y) = βx∧y(x) and βx(x ∨ y) = βx∧y(y),

and

x � y iff β−1
y (x ∨ y) = β−1

x∧y(x) and β−1
x (x ∨ y) = β−1

x∧y(y).

Using the total operations � and ⊕, we have

x ↔ y iff x− � y = x− � (x ∧ y) and y− � x = y− � (x ∧ y),

x � y iff x∼ ⊕ y = x∼ ⊕ (x ∧ y) and y∼ ⊕ x = y∼ ⊕ (x ∧ y).

By a left block [respectively, a right block] in a double basic algebra we shall mean a
maximal subset such that x ↔ y [respectively, x � y] for all x, y in the subset.

The relations ↔ and �, and hence the left and right blocks, are distinct in
general:

Example 11 Let A be the double basic algebra whose underlying lattice is shown in
the above image, where the antiautomorphisms β0 and βc are given as follows:

x 0 a b c d e f 1
β0(x) 1 f e d c b a 0

x c d e f 1
βc(x) 1 e f d c

The other sections are finite chains and hence admit unique antitone involutions.
We have βb (b ∨ c) = βb (d) = d = β0(c) = βb∧c(c) and βc(b ∨ c) = βc(d) = e =

β0(b) = βb∧c(b), thus b ↔ c, while b �� c because β−1
c (b ∨ c) = β−1

c (d) = f and
β−1

b∧c(b) = β−1
0 (b) = e.

At the same time, this example shows that other seemingly natural definitions
of blocks need not work. For instance, we cannot define x ↔ y by x � y = y ⊕
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x since it might happen that x � x �= x ⊕ x and x � y = y ⊕ x, but y � x �= x ⊕
y. Indeed, c � c = βc(c∼ ∨ c) = βc(d ∨ c) = βc(d) = e, while c ⊕ c = β−1

c (c− ∨ d) =
β−1(d ∨ c) = β−1

c (d) = f , and a � c = βc(a∼ ∨ c) = βc( f ) = d = β−1
a (d) = β−1

a (c− ∨
a) = c ⊕ a, but a ⊕ c = β−1

c (a− ∨ c) = β−1
c ( f ) = e and c � a=βa(c∼ ∨ a)=βa(d)=d.

Theorem 12 Let A = (A,�,⊕,− ,∼ , 0, 1) be a double basic algebra and AE =
(A,+, 0, 1) the partial algebra as in Theorem 7. The following statements are equiva-
lent:

(i) AE is a lattice pseudo-ef fect algebra satisfying Eq. 18.
(ii) Every left block of A is (the carrier of) a sub-pseudo-MV-algebra of A.

(iii) Every right block of A is (the carrier of) a sub-pseudo-MV-algebra of A.

Proof

(i) ⇒ (ii)/(iii) In the light of Theorem 10 and the above discussion, the blocks of
AE are precisely the left/right blocks of A. As we have already men-
tioned, by [11], Theorem 4.9, A is the union of the blocks, which are
pseudo-MV-algebras. More precisely, every block B is a sublattice
and a subalgebra of AE, in the sense that x−, x∼ ∈ B for all x ∈ B,
and if x, y ∈ B and x + y is defined, then x + y ∈ B. Therefore, if we
equip B with the operations � and ⊕ as in Proposition 5, we obtain
a sub-pseudo-MV-algebra of A.

(ii)/(iii) ⇒ (i) We first observe that if x, y ∈ A are comparable, then x ↔ y as well
as x � y. In order to show that A satisfies Eq. 15, let x ≤ y− and
x � y ≤ z−. Then x ↔ y− and so x, y− belong to some left block B.
Since blocks are sub-pseudo-MV-algebras, also y ∈ B and x � y ∈ B.
Further, x ↔ z− and y ↔ z− because both x and y are less than
or equal to x � y = y ⊕ x. Hence z− ∈ B, which yields z ∈ B. Now,
since x, y, z ∈ B and since blocks are sub-pseudo-MV-algebras, it
follows that x � (z ⊕ y) = x � (y � z) = (x � y) � z = z ⊕ (x � y).

��
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