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Abstract We study some properties of directoids and their
expansions by additional signature, including bounded invo-
lutive directoids and complemented directoids. Among other
results, we provide a shorter proof of the direct decompo-
sition theorem for bounded involutive directoids given in
Chajda and Länger (Directoids. An algebraic approach to
ordered sets. Heldermann Verlag, Lemgo 2011); we present
a description of central elements of complemented direc-
toids; we show that the variety of directoids, as well as its
expansions mentioned above, all have the strong amalgama-
tion property.
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1 Introduction

It is superfluous to recall how important partially ordered sets,
and in particular directed posets, are for the whole of math-
ematics. However, unlike other equally fundamental mathe-
matical structures, such as groups or Boolean algebras, posets
and directed posets are relational structures, not algebras,
whence they do not lend themselves to be the objects of com-
mon algebraic constructions like quotients, products, subal-
gebras and the like. In fact, insofar as they exist at all for rela-
tional structures, these constructions admit of several com-
peting variants, none of which enjoys a universal acclaim,
and are generally recognised as more cumbersome and less
efficient than in the algebraic case. In order to enable such
algebraic constructions with ordered sets, (Ježek and Quack-
enbush 1990)—and, independently, (Kopytov and Dimitrov
1988) and (Gardner and Parmenter 1995)—introduced the
notion of directoid. To every directed poset A = 〈A,≤〉 a
groupoid D(A) = 〈A,�〉 can be associated in such a way
that for all a, b ∈ A, a ≤ b if and only if a � b = b � a = b.
In the terminology of Ježek and Quackenbush (1990), this
groupoid is called a commutative directoid. Directoids were
investigated in detail by several authors; for a survey, see
Chajda and Länger (2011).

Here, we study some properties of directoids and some of
their expansions by additional signature. The paper is struc-
tured as follows. In Sect. 2, after recapping some preliminary
notions, we investigate involutive directoids, that correspond
to directed posets with an antitone involution, and some of
their notable subclasses, including complemented directoids.
In Sect. 3, we focus on some classes of directoids where the
binary operation � has “join-like” properties. In Sect. 4, we
improve on the direct decomposition theorem for bounded
involutive directoids given in Chajda and Länger (2011), by
providing a shorter proof; moreover, we present a compact
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description of central elements of complemented directoids.
Finally, in Sect. 5, we show that the variety of directoids, as
well as its expansions mentioned above, all have the strong
amalgamation property.

2 Involutive directoids

Recall that a partially ordered set (poset) A = 〈A,≤〉 is
said to be directed in case any two a, b ∈ A have a com-
mon upper bound, i.e. in case the upper corner U (a, b) =
{c ∈ A : a, b ≤ c} is nonempty. Of course, if A has a great-
est element 1, then it is directed. An antitone involution on a
poset A = 〈A,≤〉 is a unary operation ′ s.t., for any a ∈ A,
(a′)′ = a, and if a ≤ b in A, then b′ ≤ a′. (a′)′ will be
shortened to a′′ hereafter. It is evident that, whenever a poset
with antitone involution D has a greatest element 1, then it
contains a smallest element too, namely, 1′. In place of 1′,
we denote such an element by 0. Furthermore, observe that
if a ∨ b exists in D, then the infimum a′ ∧ b′ = (a ∨ b)′ also
exists in D.

A directoid (commutative directoid, in the usage of Ježek
and Quackenbush) is a groupoid D = 〈D,�〉 that satisfies
the following axioms:

(D1) x � x ≈ x ;
(D2) x � y ≈ y � x ;
(D3) x � ((x � y) � z) ≈ (x � y) � z.

If D = 〈D,�〉 is a directoid, the partial order relation ≤
defined for all a, b ∈ D by

a ≤ b iff a � b = b

will be called the order induced by � on D, or its induced
order, while the poset 〈D,≤〉 will be called the induced poset
of D.

Any directed poset A = (A,≤) can be turned into a direc-
toid as follows:

– if a ≤ b, then we set a � b = b � a = b;
– if a and b are incomparable (denoted by a ‖ b), then

a � b = b � a is an arbitrary common upper bound of
a, b.

The resulting directoid D(A) = 〈A,�〉 is such that its
induced order coincides with the partial ordering of A. In
other words, the directoid fully retrieves the ordering of the
original poset. However, it may happen that two incompara-
ble elements a, b ∈ A have a supremum a ∨ b that does not
coincide with our choice of a � b. And this is a shortcom-
ing under several respects. It is therefore our aim to prove
that, for directed posets A = 〈A,≤〉 that admit an antitone
involution, we can get around this difficulty.

An involutive directoid is an algebra D = 〈D,�,′ 〉 of type
(2, 1) s.t. 〈D,�〉 is a directoid and ′ is an antitone involution
on the induced poset of D. Observe that:

Proposition 1 The class of involutive directoids is a variety.

Proof We only have to prove that the quasi-identity x ≤
y ⇒ y′ ≤ x ′ can be expressed equationally. Indeed, it can
be expressed by the single equation x ′ � (x � y)′ ≈ x ′. If
we assume the quasi-identity, then since a ≤ a � b, we have
(a � b)′ ≤ a′, and therefore a′ � (a � b)′ = a′. For the
other implication, if the equation is valid, and a ≤ b, then
a � b = b, and therefore a′ � b′ = a′ � (a � b)′ = a′. That
is, b′ ≤ a′, as required. 
�

Recall from Chajda and Länger (2011) that two elements
a, b of a directoid D are said to be orthogonal in case a ≤ b′,
or equivalently b ≤ a′.
Theorem 1 Let D = 〈D,�,′ 〉 be an involutive directoid,
and let ≤ be its induced order. The following conditions are
equivalent:

(1) for all a, b ∈ D, if a, b are orthogonal, then a � b =
a ∨ b;

(2) D satisfies the identity

(D4) (((x � z) � (y � z)′)′ � (y � z)′) � z′ ≈ z′.

Proof First, notice that item (1) is equivalent to

(A) if a ≤ b′ and a, b ≤ c then a � b ≤ c.

For, if a ≤ b′ and a, b ≤ c, then a � b = a ∨ b ≤ c. The
converse is obvious, since, by axiom (D3), a, b ≤ a � b.
Moreover, the identity (D4) is clearly equivalent to

(B)((x � z) � (y � z)′)′ � (y � z)′ ≤ z′,
by the definition of induced order.

Hence, to obtain our claim, it suffices to show the equiv-
alence of (A) and (B). Assume (A). Set a = ((x � z) �
(y � z)′)′ and b = (y � z)′. Clearly, (x � z) � (y � z)′ ≥
(y � z)′, i.e. b ≤ a′. Hence, a ≤ b′. Also, b ≤ z′. More-
over, a′ ≥ x � z ≥ z. Therefore, a ≤ z′. Thus, by (A)
((x � z)� (y � z)′)′ � (y � z)′ ≤ z′, which is (B). Conversely,
assume (B). Let x ≤ y′ and x, y ≤ z. Then y ≤ x ′ and
x ′, y′ ≥ z′, i.e. y � x ′ = x ′, x ′ � z′ = x ′ and y′ � z′ = y′. So
we obtain:

x � y = x ′′ � y = (x ′ � y)′ � y = ((x ′ � z′) � y)′ � y

= ((x ′ � z′) � y′′)′ � y = ((x ′ � z′) � (y′ � z′)′)′ � y

= ((x ′ � z′) � (y′ � z′)′)′ � y′′

= ((x ′ � z′) � (y′ � z′)′)′ � (y′ � z′)′

(by (B)) ≤ z.


�
The previous correspondence assumes a particularly inter-

esting form when the poset in question is bounded, and the
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type includes two constants denoting the bounds. A case in
point is given by effect algebras, which play a noteworthy
role in quantum logic (see e.g. Dalla Chiara et al. 2004;
Dvurečenskij and Pulmannová 2000)—in fact, they can be
presented as bounded posets equipped with an antitone invo-
lution, such that the supremum a ∨ b exists for orthogonal
elements a, b. We have that:

Corollary 1 Let A = 〈A,≤,′ , 0, 1〉 be a bounded poset with
antitone involution. The following conditions are equivalent:

(1) For a, b ∈ A, a ∨b exists whenever a, b are orthogonal.
(2) D(A) = 〈A,�,′ , 0, 1〉 satisfies (D2)–(D4) and

(D5) x � 0 ≈ x

Proof (1 ⇒ 2) Since A is bounded, it follows that A is
directed. Then, by Theorem 1, A satisfies (D2)–(D4).

(2 ⇒ 1) First, let us observe that D(A) is a directoid,
since, putting y = z = 0 in (D3), we get for any a ∈ A,

a � a = a � (a � 0) = a � ((a � 0) � 0)

= (a � 0) � 0 = a � 0 = a.

Our claim, then, follows from Theorem 1. 
�
Corollary 1 entails that bounded involutive directoids,

such that a ∨ b exists for orthogonal elements a, b, are com-
pletely characterised by the equations (D2)–(D5), and there-
fore form a variety of type (2, 1, 0, 0).

Given an involutive directoid D = 〈D,�,′ 〉, we define

x 
 y := (x ′ � y′)′.

It is not difficult to verify (see e.g. Chajda and Länger 2011,
Remark 7.4) that 〈A,
〉 is again a directoid whose induced
order is dual to the induced order of D. Moreover, the absorp-
tion laws

x 
 (x � y) ≈ x and x � (x 
 y) ≈ x,

are satisfied. In fact,

x ≤ y ⇔ y′ ≤ x ′ ⇔ x ′ � y′ = x ′ ⇔ (x ′ � y′)′

= x ′′ ⇔ x 
 y = x .

Therefore, since x ≤ x � y, we have x 
 (x � y) = x . And
since x 
 y ≤ x , we also have x � (x 
 y) = x . Thus, we
obtain the following theorem (cf. Chajda and Länger 2011,
Theorem 7.8).

Theorem 2 Any variety of involutive directoids is congru-
ence distributive, with 2

3 majority term

M(x, y, z) := ((x 
 y) � (y 
 z)) � (x 
 z).

Proof We only prove that M(x, x, z) = x , the other condi-
tions being just slight modifications thereof.

M(x, x, z) = ((x 
 x) � (x 
 z)) � (x 
 z)

= (x � (x 
 z)) � (x 
 z)

= x � (x 
 z)

= x .


�
In the absence of the involution, Theorem 2 fails, because

semilattices (a subvariety of directoids) satisfy no nontrivial
lattice identity (Freese and Nation 1973, Theorem 2).

Let us call a bounded involutive directoid complemented
in case it satisfies the equation x � x ′ ≈ 1. If this directoid
satisfies the equivalent conditions in Theorem 1, we get that
x �x ′ = x ∨x ′, because x ≤ x = x ′′, i.e. x and x ′ are orthog-
onal. Now, all the aforementioned properties are captured by
means of identities. That is, the class of complemented direc-
toids satisfying Theorem 1 forms a variety that includes, for
example, orthomodular lattices.

3 Saturated directoids

We have seen in the previous section that there are directoids
where a � b = a ∨ b, at least for orthogonal or comparable
elements a, b. In this section, we show that the classes of
directoids where x�y is minimal in the upper corner U (x, y),
or where x � y = x ∨ y in case x ∨ y exists, have a special
significance. To this aim we introduce the following notions.
A directoid D = 〈D,�〉 is called saturated if x �y is minimal
in U (x, y). D is supremal if x � y = x ∨ y in case x ∨ y
exists.

Example 1 Consider the following ordered set:

1
������

������

c

������������� d

�������������

a
������ b

������

0

If we set a � b = c or a � b = d, and for {x, y} �= {a, b}
we take x � y = x ∨ y, then it is a saturated directoid.
However, upon setting a � b = 1, on the same ordered set,
the resulting directoid is no longer saturated, since 1 is not
minimal in U (a, b), even though it is still trivially supremal,
because x ∨ y does not exist.

Note that every saturated directoid is supremal. In fact, if
x ∨ y exists, then it is minimal in U (x, y), whence x � y =
x ∨ y. The previous example shows that the converse is not
true.

Theorem 3 A directoid D = 〈D,�〉 is saturated if and only
if it satisfies the quasi-identity:
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(Q) (x � z ≈ z ≈ y � z) & (z � (x � y) ≈ x � y)

⇒ z ≈ x � y.

Proof Assume D satisfies the quasiequation and x, y ≤ z ≤
x �y. Then, x � z = z = y � z and z�(x �y) = x �y. Hence
z = x � y. Therefore, x � y is minimal in U (x, y), i.e. D is
saturated. Conversely, if D is saturated, and x �z = z = y�z
and z � (x � y) = x � y hold, then x, y ≤ z ≤ x � y. Since
z ∈ U (x, y) and x � y is minimal in U (x, y), then x � y = z.

Observe that the quasi-identity (Q) is in fact equivalent to
the condition

x, y ≤ z ≤ x � y ⇒ z ≈ x � y.

By Theorem 3, the class of saturated directoids is a qua-
sivariety. The next example shows that it is not a variety,
because it is not closed under quotients.

Example 2 Let D be the directoid given by the following
diagram:

1

�������������

�������������

y

��������������������

������ x

������
������ z

��������������������

������

a b

where a � b = x , and p � q = p ∨ q for the remaining
elements. D is a saturated directoid. Consider the congruence
θ(x, 1). Then, we obtain the quotient

[1]θ = [x]θ
��������

							

[y]θ





















 [z]θ

���������������������

[a]θ [b]θ
where [a]θ � [b]θ is not minimal in U ([a]θ , [b]θ ).

Note that the variety of join semilattices is a nontrivial
class strictly included in the quasivariety of saturated direc-
toids. For involutive directoids, we can provide a sufficient
condition for saturation formulated in the form of an identity.

Theorem 4 Let D = 〈D,�, ′〉 be an involutive directoid. If
D satisfies

(D6) ((x 
 ((x � y) 
 z)) � (y 
 ((x � y) 
 z))) � z ≈ z

then D is saturated.

Proof Suppose that for a, b, c ∈ D a � c = c = b � c and
c � (a � b) = a � b. Then

c = ((a 
 ((a � b) 
 c)) � (b 
 ((a � b) 
 c)))

� c = (a � b) � c = a � b,

whence we get our conclusion.

Observe that the variety of involutive directoids satisfying
(D6) contains all the involutive lattices. We can also charac-
terise the quasivariety of supremal directoids.

Theorem 5 A directoid is supremal if and only if it satisfies
the quasiequation

x, y ≤ w & w ≤ x � y & x, y, w ≤ z ⇒ w ≈ x � y.

Proof If a directoid D satisfies the antecedent of the quasi-
equation, the w is the smallest element in U (x, y). Therefore,
if it is supremal then w = x � y = x ∨ y. And if the quasi-
equation itself is satisfied, then it is clear that D is supremal.

Let us note that the quasi-identity of Theorem 5 can be
easily expressed as a quasi-identity in the language of direc-
toids.

4 Decomposition of bounded involutive directoids

In Chajda and Länger (2011, Theorem 7.28) the standard
direct decomposition theorem for orthomodular lattices (see
e.g. Bruns and Harding 2000, Theorem 2.7) is generalised to
the effect that an appropriate version of it is shown to hold
for bounded involutive directoids. Contextually, a character-
isation of central elements of bounded involutive directoids
is provided. The aim of this section is giving an alternative
proof of this result, as well as a simplified description of cen-
tral elements in case the directoid is complemented. To this
aim, we put to good use the tools developed in the theory of
Church algebras Salibra et al. (2013).

The key observation motivating the introduction of Church
algebras is that many algebras arising in completely differ-
ent fields of mathematics—including Heyting algebras, rings
with unit, or combinatory algebras—have a term operation q
satisfying the fundamental properties of the if-then-else con-
nective: q (1, x, y) ≈ x and q (0, x, y) ≈ y. As simple as
they may appear, these properties are enough to yield rather
strong results. This motivates the next definitions.

An algebra A of type ν is a Church algebra if there are
term-definable elements 0A, 1A ∈ A and a term operation qA

s.t., for all a, b ∈ A, qA
(
1A, a, b

) = a and qA
(
0A, a, b

) =
b. A variety V of type ν is a Church variety if every member of
V is a Church algebra with respect to the same term q (x, y, z)
and the same constants 0, 1.

Expanding on an idea due to Vaggione (1996), we also
say that an element e of a Church algebra A is central if
the pair (θ (e, 0) , θ (e, 1)) is a pair of complementary factor
congruences on A. A central element e is nontrivial if e /∈
{0, 1}. By Ce (A) we denote the centre of A, i.e. the set of
central elements of the algebra A.

By defining

x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y) and x∗ = q(x, 0, 1),
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we get:

Theorem 6 [Salibra et al. (2013)] Let A be a Church alge-
bra. Then Ce (A) = 〈Ce (A) ,∧,∨,∗ , 0, 1〉 is a Boolean
algebra which is isomorphic to the Boolean algebra of factor
congruences of A.

Hereafter, it will be clear from the context when the sym-
bols ∧,∨ will denote the previously defined operations on
Church algebras instead of defining lattice meet and join,
respectively.

If A is a Church algebra of type ν and e ∈ A is a central
element, then we define Ae = (Ae; ge)g∈ν to be the ν-algebra
defined as follows:

Ae = {e ∧ b : b ∈ A}; ge(e ∧ b) = e ∧ g(e ∧ b).

By Ledda et al. (2013, Theorem 4), we have that:

Theorem 7 Let A be a Church algebra of type ν and e be a
central element. Then we have:

(1) For every n-ary g ∈ ν and every sequence of elements
b ∈ An, e ∧ g(b) = e ∧ g(e ∧ b), so that the function h :
A → Ae, defined by h(b) = e ∧ b, is a homomorphism
from A onto Ae.

(2) Ae is isomorphic to A/θ(e, 1). It follows that A = Ae ×
Ae′ for every central element e, as in the Boolean case.

The if-then-else term that makes orthomodular lattices
into Church algebras works, more generally, for bounded
involutive directoids:

Proposition 2 Bounded involutive directoids form a Church
variety, as witnessed by the term q(x, y, z) = (x�z)
(x ′�y).

Proof If A is a bounded involutive directoid, and a, b ∈ A,
then qA(1, a, b) = (1�b)
(1′�a) = 1
(0�a) = 1
a = a.
Also, qA(0, a, b) = (0�b)
(0′�a) = b
(1�a) = b
1 = b.

In Chajda and Länger (2011, Chapter 7), central elements
(in Vaggione’s sense) of a bounded involutive directoid D
are described as the members of C (D) ∩ Is (D), namely,
those elements e that satisfy the following conditions for all
a, b ∈ D:

a = (e 
 a) � (e′ 
 a)

(a 
 b) 
 e = (a 
 e) 
 (b 
 e)

(a 
 b) 
 e′ = (
a 
 e′) 
 (

b 
 e′)

(a � b) 
 e = (a 
 e) � (b 
 e)

(a � b) 
 e′ = (
a 
 e′) � (

b 
 e′)

However, according to Salibra et al. (2013, Proposition 3.6),
central elements of a Church algebra can also be charac-
terised in a completely general way, as follows.

Proposition 3 If A is a Church algebra of type ν and e ∈ A,
the following conditions are equivalent:

(1) e is central;
(2) for all a, b, a, b ∈ A:

(a) q(e, a, a) = a,
(b) q(e, q(e, a, b), c) = q(e, a, c) = q(e, a, q(e, b, c)),
(c) q(e, f (a), f (b))= f (q(e, a1, b1), . . . , q(e, an, bn)),

for every f ∈ ν,
(d) q(e, 1, 0) = e.

If A is a bounded involutive directoid, condition (a) says
a = (e � a) 
 (e′ � a), for every a ∈ A, or equivalently
a = (e 
 a) � (e′ 
 a), for every a ∈ A.

The first equality of condition (b) says (e � c) 
(
e′ � ((e � b) 
 (e′ � a))

) = (e � c) 
 (e′ � a), for every
a, b, c ∈ A. Taking c = 1, it is easy to see that this is
equivalent to e′ � ((e � b) 
 (e′ � a)) = e′ � a, for every
a, b ∈ A. The second equality is analogous, and boils down
to e � ((e′ � b) 
 (e � c)) = e � c, for every b, c ∈ A.

Condition (c) is q(e, 1, 1) = 1 and q(e, 0, 0) = 0 for the
constants. These equalities are trivially satisfied for every
element e ∈ A. If f is ′, then (e � b′)
 (e′ � a′) = ((e � b)

(e′ �a))′, that is to say, (e�b′)
(e′ �a′) = (e′ 
b′)�(e
a′),
for every a, b ∈ A. But this is equivalent to (e�b)
(e′�a) =
(e′ 
 b) � (e 
 a), for every a, b ∈ A. If f is �, we have that

(e � (b1 � b2)) 
 (e′ � (a1 � a2))

= ((e � b1) 
 (e′ � a1)) � ((e � b2) 
 (e′ � a2)).

Finally, condition (d) is trivial, since q(e, 1, 0) = e is always
true for every element e ∈ A.

We will use one or the other of these two alternative char-
acterisations of central elements, according to convenience.

We now focus for a while on complemented directoids,
for which we show that the latter set of conditions can be
considerably streamlined. For a start, we need to prove the
following lemmas.

Lemma 1 If A is a bounded involutive directoid, then it sat-
isfies:

(1) x � y ≈ x � (x � y),
(2) x ≈ x � (x � (x ′ � y))′. If it is complemented, it also

satisfies:
(3) (x � y) � y′ ≈ 1.

Proof (1) This is true, since x � x � y.
(2) Since x ′ � x ′�y � x �(x ′�y), we have (x �(x ′�y))′ �

x , and therefore x = x � (x � (x ′ � y))′.
(3) Substituting x by (x � y)� y′ and y by y′ in the previous

item, we obtain:
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(x � y) � y′ = ((x � y) � y′) � (((x � y) � y′)
� (((x � y) � y′)′ � y′))′

= ((x � y) � y′) � (((x � y) � y′) � y′)′

= ((x � y) � y′) � ((x � y) � y′)′

= 1.

Now, consider the equations

(C1) a = (e 
 a) � (e′ 
 a)

(C2) (e � (b1 � b2)) 
 (e′ � (a1 � a2))

= ((e � b1) 
 (e′ � a1)) � ((e � b2) 
 (e′ � a2))

Lemma 2 If A is a complemented directoid and e ∈ A sat-
isfies (C1) and (C2) for every a, b, a1, a2, b1, b2 ∈ A, then
for every a, b ∈ A,

(1) e � (a � b) = (e � a) � (e � b),
(2) e 
 (a 
 b) = (e 
 a) 
 (e 
 b),
(3) (a) e � a = e � (e′ 
 a),

(b) e 
 a = e 
 (e′ � a),
(4) e � (a � (e 
 b)) = e � a,
(5) e � (a � b) = (e � a) � b,
(6) e 
 (a � b) = (e 
 a) � (e 
 b),
(7) (e � a)′ � b = (e � (a′ � b)) 
 (e′ � b),
(8) (e � b) 
 (e′ � a) = (e′ 
 b) � (e 
 a).

Proof Taking b1 = a, b2 = b, and a1 = 1 = a2 in (C2), we
obtain (1).

For (2), we only have to use the De Morgan laws and the
fact that e satisfies (C1)–(C2) if and only e′ also satisfies
them. In order to prove (3a), observe that:

e � a = e � ((e 
 a) � (e′ 
 a))

= (e � (e 
 a)) � (e � (e′ 
 a))

= e � (e � (e′ 
 a)) = e � (e′ 
 a).

(3b) is proved dually. (4) is just:

e � (a � (e 
 b)) = (e � a) � (e � (e 
 b))

= (e � a) � e = e � a.

For (5), we show that

(e � a) � b = e � (b � (e � a)) = (e � b) � (e � (e � a))

= (e � b) � (e � a)

= e � (a � b).

As regards (6), it follows from (C1)–(C2) that for any
a, b ∈ A:

e 
 (a � b) = (e′ 
 0) � (e 
 (a � b))

= (e � 0) 
 (e′ � (a � b))

= (e � (0 � 0)) 
 (e′ � (a � b))

= (
(e � 0) 
 (e′ � a)

) � (
(e � 0) 
 (e′ � b)

)

= (e 
 a) � (e 
 b),

where the last equality uses (3b).
(7) In fact,

(e � a)′ � b = (e � ((e � a)′ � b)) 
 (e′ � ((e � a)′ � b))

= ((e � (e � a)′) � b)) 
 (e′ � ((e � a)′ � b))

= ((e � a′) � b)) 
 (e′ � ((e′ 
 a′) � b))

= (e � (a′ � b)) 
 ((e′ � (e′ 
 a′)) � b)

= (e � (a′ � b)) 
 (e′ � b).

(8) We substitute in (7) a by a′ and b by e 
 b in order to
obtain:

(e � a′)′ � (e 
 b) = (e � (a � (e 
 b))) 
 (e′ � (e 
 b)),

whence, using (3) and (4), we obtain the result. 
�
We are now ready to obtain our characterisation.

Proposition 4 An element e of a complemented directoid A
is central if and only if it satisfies (C1) and (C2) for every
a, b, a1, a2, b1, b2 ∈ A.

Proof In light of the previous lemmas and of the general
description of central elements in Church algebras, discussed
above, we only have to prove that an element e ∈ A satisfying
(C2) also satisfies e � a = e � ((e � a) 
 (e′ � b)) and
e′ � a = e′ � ((e′ � a) 
 (e � b)). Note that if e satisfies (C2)
for every a, b, a1, a2, b1, b2 ∈ A, then the same equation is
true replacing e by e′. Therefore it is enough to prove that
(C2) implies e�a = e�((e�a)
(e′ �b)) for every a, b ∈ A.
Making b1 = a, b2 = e, a1 = b, a2 = e in (C2), we have

(e � (a � e)) 
 (e′ � (b � e))

= ((e � a) 
 (e′ � b)) � ((e � e) 
 (e′ � e)).

Using Lemma 1, we have that e � (a � e) = e � a and that
e′ � (b � e) = 1, and therefore (e � (a � e))
 (e′ � (b � e)) =
(e � a) 
 1 = e � a. For the right-hand side of the equation
we have ((e � a)
 (e′ � b))� ((e � e)
 (e′ � e)) = ((e � a)

(e′ � b)) � (e 
 1) = ((e � a) 
 (e′ � b)) � e, as we wanted
to prove. 
�
Example 3 Conditions (C1) and (C2) are independent. In
fact, in the complemented directoid whose Hasse diagram is
hereafter reproduced:

1
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a a′ b b′
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every element satisfies (C2), but only 0 and 1 satisfy (C1). On
the other hand, every element of the complemented directoid
whose Hasse diagram is hereafter reproduced satisfies (C1),
but only 0 and 1 satisfy (C2).

1

��
��

��
�

��
��

��
�

c′ b′

��
��

��
�

��
��

��
� a′

a b

�������
�������

c

0

�������

�������

With these results at hand, we can give a more informative
version of Theorem 6 above:

Proposition 5 If A is a complemented directoid, and Ce(A)

is the set of the central elements of A, then Ce (A) =
〈Ce(A),
,�, ′, 0, 1〉 is a Boolean algebra.

Proof In virtue of Theorem 6, 〈Ce(A),∧,∨, ∗, 0, 1〉 is a
Boolean algebra, where ∧, ∨ and ∗ are defined as follows:

x ∧ y = q(x, y, 0) x ∨ y = q(x, 1, y) x∗ = q(x, 0, 1).

The only thing we need to prove is that ∧, ∨, and ∗ coincide
with �, 
, and ′, respectively. We note that:

x ∨ y = q(x, 1, y) = (x � y) 
 (x ′ � 1)

= (x � y) 
 1 = x � y,

x∗ = q(x, 0, 1) = (x � 1) 
 (x ′ � 0) = 1 
 x ′ = x ′.

Therefore, ∨ and ∗ coincide with � and ′, respectively. And
this implies that ∧ and 
 must coincide, too, because: x ∧y =
(x∗ ∨ y∗)∗ = (x ′ � y′)′ = x 
 y. 
�

It follows from the previous proposition (and, actually,
also directly from Proposition 4) that if A is a complemented
directoid and e is a central element, then e′ is also central.
Notice, also, that in case either x, y fail to be central elements
or else they are (possibly) central but A is a bounded invo-
lutive directoid that is not complemented, x ∧ y need not be
equal to x 
 y; however, we still have that

x ∧ y = x 
 (
x ′ � y

)
.

Now, if A is a bounded involutive directoid and e is a
central element of A, let

[0, e] = 〈{a : a ≤ e} ,�,e , 0, e
〉

ae = e 
 a′

In the following theorem, we freely avail ourselves of the
characterisation of central elements in bounded involutive
directoids given at the beginning of the section.

Theorem 8 Let A be a bounded involutive directoid and e a
central element of A. Then A ∼= [0, e] × [

0, e′].

Proof By Theorem 7.2 and Proposition 2, upon observing
that for all a ≤ e we have that e ∧ a = e 
 a, all we have to
prove is the following:

(1) Ae = {a : a ≤ e}
(2) for a, b ≤ e, a � b = e ∧ (a � b)

(3) for a ≤ e, ae = e ∧ a′

(1) Let a � e = e. Then a = a 
 (a � e) = a 
 e = e ∧ a,
whence a ∈ Ae. Conversely, if a ∈ Ae, then for some b
we have that a = e 
 (

e′ � b
)
, and so

e � a = e � (
e 
 (

e′ � b
)) = e

(2)

e ∧ (a � b) = e 
 (
e′ � (a � b)

)

= (
e 
 e′) � (e 
 (a � b))

= e 
 (a � b)

= (e 
 a) � (e 
 b)

= a � b

(3)

e ∧ a′ = e 
 (
e′ � a′)

= e 
 a′


�
Proposition 6 Let A be a bounded involutive directoid, e ∈
Ce(A) and c ∈ Ae. Then,

c ∈ Ce(A) ⇔ c ∈ Ce(Ae).

Moreover, if c ∈ Ce(Ae), then (Ae)c = Ac.

Proof (⇒) It is an immediate consequence of the fact that
h : A → Ae in Theorem 7 is an onto homomorphism such
that for every a ∈ Ae, h(a) = a, and central elements are
characterised by equations, in virtue of Proposition 4. (⇐)

Since central elements are characterised by equations, if ci

is a central element of a bounded involutive directoid Ai , for
i = 1, 2, then (c1, c2) ∈ Ce(A1 × A2). Therefore, if c ∈ Ae,
the image of c by the isomorphism of Theorem 7 is (c, 0). The
element 0 is always central, and c is central by hypothesis.
Hence (c, 0) is central in Ae × Ae′ . But, this implies that
c ∈ Ce(A), because A ∼= Ae × Ae′ . Finally, if we have
c ∈ Ce(Ae), we have already proved that c ∈ Ce(A), and the
only thing we have to check is the fact that the definition of
the involution c does not depend on whether we are defining
it in terms of ′ or of e. That is to say, we have to prove that for
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every a ≤ c, a′ 
 c = ae 
 c. Indeed, ae 
 c = (a′ 
 e)
 c =
(a′ 
 c) 
 (e 
 c) = (a′ 
 c) 
 c = a′ 
 c, where we have
used Lemma 2, the fact that c ≤ e, and the dual of Eq. (1) of
Lemma 1. 
�

As we have seen, Ce(A) is a Boolean algebra, and we can
consider the set of its atoms, which we denote by At (A).
Note that an atom of Ce(A) needs not be an atom of A.

Lemma 3 If A is a complemented directoid and e is an
atomic central element of A, then At (Ae′) = At (A) − {e}.
Proof (⊇) Since e is an atom in the Boolean algebra Ce(A),
for any other atomic central element c of A, e 
 c = 0, and
therefore e′ � c′ = 1. Hence, c = c 
 1 = c 
 (e′ � c′) =
(c 
 e′) � (c 
 c′) = (c 
 e′) � 0 = c 
 e′, which shows
that c ≤ e′. Thus, by Proposition 6, c ∈ Ce(Ae′). Moreover,
if d is a central element of Ae′ such that d < c, then d is
a central element of A, and since we are assuming that c
is atomic central of A, then d = 0. Which shows that c is
also an atom in Ae′ . (⊆) If c ∈ At (Ae′), then in particular,
by Proposition 6, c ∈ Ce(A). If d is a central element of A
such that d < c, then we have d ≤ e′, because c ∈ Ae′ ,
and therefore d ∈ Ce(Ae′), again by Proposition 6. Since
by hypothesis c is atomic central in Ae′ , then d = 0. Which
shows that c is atomic central in A. Finally, c ≤ e′, and
therefore c �= e. Otherwise, we would have e ≤ e′, and
hence e = e 
 e′ = 0, which is impossible because e is
atomic central. 
�
Theorem 9 If A is a complemented directoid such that
Ce(A) is an atomic Boolean algebra with finitely many
atoms, then

A =
∏

e∈At (A)

Ae

is a decomposition of A as a product of directly indecompos-
able algebras.

Proof In order to proceed with the proof of the theorem, we
will use induction on the number of elements of At (A). If
1 is the only atomic central element of A, then A is directly
indecomposable, and the result follows because A1 = A. If
there is an atomic central element e �= 1, then A = Ae × Ae′
in virtue of Theorem 8. Since e is an atom, Ce(Ae) = {0, e},
because if Ae had another central element, say c, then c would
be a central element of A in virtue of Proposition 6, and such
that 0 < c < e, contradicting the fact that e is an atom.
Therefore, Ae is directly indecomposable. Now, At (Ae′) =
At (A) − {e}, by Lemma 3, and by the induction hypothesis,
Ae′ = ∏

c∈At ((Ae′ )) Ac, whence the result readily follows. 
�

5 Strong amalgamation property

A V-formation (Fig. 1) is a tuple (A, B1, B2, i, j) such that
A, B1, B2 are similar algebras, and i : A → B1, j : A → B2

B2 k

A

j

i

D

B1
h

Fig. 1 A generic amalgamation schema

are embeddings. A class K of similar algebras is said to have
the amalgamation property if for every V-formation with
A, B1, B2 ∈ K and A �= ∅ there exists an algebra D ∈ K and
embeddings h : B1→ D, k : B2→ D such that k ◦ j = h ◦ i .
In such an event, we also say that k and h amalgamate the
V-formation (A, B1, B2, i, j). K is said to have the strong
amalgamation property if, in addition, such embeddings can
be taken s.t. k ◦ j (A) = h (B1) ∩ k (B2).

Amalgamations were first considered for groups by
Schreier (1927) in the form of amalgamated free products.
The general form of the AP was first formulated by Fraïsse
(1954), and the significance of this property to the study of
algebraic systems was further demonstrated in Jónsson’s pio-
neering work on the topic Jónsson (1956, 1960, 1961, 1962).
The added interest in the AP for algebras of logic is due to
its relationship with various syntactic interpolation proper-
ties. We refer the reader to Metcalfe et al. (2014) for relevant
references and an extensive discussion of these relationships.

In this section, we show that the variety of directoids has
the strong amalgamation property.

Theorem 10 The variety of directoids has the strong amal-
gamation property.

Proof Let us suppose that we have a V-formation like the
solid part of Fig. 1, and without loss of generality, let us
assume that B1 ∩ B2 = A. We are going to give an explicit
construction of the amalgam of this V-formation. Let us con-
sider D = B1 ∪ B2 ∪ {1}, where 1 is a new element. We
proceed to define a partial order in D as follows: x ≤ 1, for
all x ∈ D, and if x ∈ Bi and y ∈ B j :

x ≤ y ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

i = j and x ≤Bi y,

or

i �= j, x, y /∈ A, and there is b ∈ A,

such that x ≤Bi b ≤B j y.

We show in what follows that ≤ is a partial ordering on D.
First, note that if x ≤ y and x, y ∈ Bi , then x ≤Bi y. Now, ≤
is obviously reflexive. In order to see that it is antisymmetric,
let us suppose that x ∈ Bi , y ∈ B j , and x ≤ y and y ≤ x .
We will distinguish three different cases:

(1) i = j . Then, x ≤Bi y and y ≤Bi x , and by the antisym-
metry of ≤Bi , x = y.
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(2) i �= j , x, y /∈ A. Then there are b1, b2 ∈ A such that
x ≤Bi b1 ≤B j y and y ≤B j b2 ≤Bi x . In that case,
b2 ≤Bi x ≤Bi b1 and b1 ≤B j y ≤B j b2, whence b2 ≤A

b1 and b1 ≤A b2, and therefore b1 = b2. This would
imply that x = b1 = b2 = y, and actually that x, y ∈ A,
which is a contradiction. So this case is impossible.

(3) The only remaining case is x ≤ 1 and 1 ≤ x . However,
1 ≤ x implies by definition that x = 1.

In order to prove the transitivity of ≤, let us suppose that
x, y, z ∈ D and x ≤ y and y ≤ z. Obviously, if z = 1, then
x ≤ z and there is nothing to prove. We assume then that
z �= 1, which implies that x, y �= 1 as well, and distinguish
three cases:

• If x, y, z ∈ Bi for some i = 1, 2, then x ≤Bi y ≤Bi z,
and then obviously x ≤Bi z, which implies x ≤ z.

• x ∈ Bi , z ∈ B j , x, z /∈ A. We have different subcases
depending on the position of y. If y ∈ Bi and y /∈ A,
then there exists b ∈ A such that y ≤Bi b ≤B j z, and
therefore x ≤Bi b ≤B j z, which by definition implies
x ≤ z. If y ∈ A, then we have x ≤Bi y ≤B j z, which
again by definition implies x ≤ z. If y ∈ B j and y /∈ A,
then there exists b ∈ A such that x ≤Bi b ≤B j y and
therefore x ≤Bi b ≤B j z, whence x ≤ z.

• x, z ∈ Bi , y ∈ B j , and y /∈ A. If x ∈ A and z /∈ A,
then there is b ∈ A such that y ≤Bi b ≤B j z. But then,
x ≤Bi y ≤Bi b, which implies x ≤A b, and therefore
x ≤B j b ≤B j z, whence x ≤ z. If x /∈ A and z ∈ A,
then we argue analogously. If x, z /∈ A, then there are
b1, b2 ∈ A such that x ≤Bi b1 ≤B j y ≤B j b2 ≤Bi z.
Hence, b1 ≤B j b2, which is the same as b1 ≤A b2, and
then b1 ≤Bi b2. Thus, x ≤Bi b1 ≤Bi b2 ≤Bi z, and by
the transitivity of ≤Bi , we obtain x ≤ z.

Thus, we have turned D into a poset. We can readily see
that it is directed, because it is bounded above. Then we take
the directoid D = D(D,≤), where � is defined as follows:

x � y = y � x =

⎧
⎪⎨

⎪⎩

y if x � y,

x �Bi y if x, y ∈ Bi and x ‖ y,

1 otherwise.

This operation is well-defined, because if x, y ∈ B1 ∩ B2 =
A, then x �B1 y = x �A y = x �B2 y. Now, it is not difficult
to prove that Bi is a subalgebra of D. Indeed, if x, y ∈ Bi ,
then it could be that x ≤Bi y, y ≤Bi x , or x ‖ y. In any of
those three cases x � y = x �Bi y. And as we saw in the first
section, D retains the information relative to the ordering of
(D,≤), that can be recovered by stipulating that x ≤ y if
and only if x � y = y. By construction, the intersection of
B1 and B2 as subalgebras of D is the algebra A. Therefore,
we have proven that D is a strong amalgam of B1 and B2. 
�

Note that we needed to add a new element 1 to B1∪B2 just
to ensure that U (x, y) is nonempty, for every x, y ∈ D, in
particular when x ∈ Bi , y ∈ B j and x, y /∈ A. If B1 and B2

are algebras with a common subalgebra A, in a language with
the constant 1, which is interpreted as the top element on each
of these algebras, there is no need to add any new element
to B1 ∪ B2. The construction of the amalgam is otherwise
entirely analogous.

Theorem 11 The varieties of bounded directoids, involutive
directoids, bounded involutive directoids, and complemented
directoids have the strong amalgamation property.

Proof Essentially, the amalgam of a V-formation in each one
of those varieties is the amalgam of the �-reducts, although
some technical but innocuous modifications are needed in
some cases. If we are in the variety of bounded directoids,
we have to identify the new top element 1 in the amalgam with
the top element of A (which would also be the top element
of B1 and B2). Otherwise said, we do not need to add a new
element 1. If we are in the variety of involutive directoids,
then we not only have to add the new element 1 to B1 ∪ B2,
but also another new element 0, which should be defined to
be the infimum. And the involution ∗ of D should be defined
to be 1∗ = 0, 0∗ = 1, and x∗ = x ′Bi if x ∈ Bi .

As established in Kiss et al. (1983), the epimorphisms of
the varieties enjoying the strong amalgamation property can
be characterised as the onto homomophisms. Therefore, we
have the following result:

Corollary 2 In each one of the varieties of directoids,
bounded directoids, involutive directoids, bounded involu-
tive, and complemented directoids, the epimorphisms are
onto.
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