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SPECIAL FILTERS IN BOUNDED LATTICES
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ABSTRACT. M. Sambasiva Rao recently investigated some sorts of special filters in distributive
pseudocomplemented lattices. In our paper, we extend this study to lattices which need neither be
distributive nor pseudocomplemented. For this sake, we define a certain modification of the notion of a
pseudocomplement as the set of all maximal elements belonging to the annihilator of the corresponding
element. We prove several basic properties of this notion and then define coherent, closed and median
filters as well as D-filters. In order to be able to obtain valuable results, we often must add some
additional assumptions on the underlying lattice, e.g. that this lattice is Stonean or D-Stonean. Our
results relate properties of lattices and to those of corresponding filters. We show how the structure of
a lattice influences the form of its filters and vice versa.
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1. Introduction

M. Sambasiva Rao recently studied various types of filters and ideals in distributive lattices with
pseudocomplements, see [4] and [5]. Some of these findings require the lattice under consideration
to be either Stone or weakly Stone, as indicated in the referenced papers. The question is whether
the distributivity assumption can be relaxed and, more specifically, if the pseudocomplementation
assumption can be eliminated. This approach, in which we consider instead of the pseudocomple-
ment a certain subset (in fact an antichain) of elements behaving similar to the pseudocomplement,
has already been introduced by I. Chajda and H. Länger in [2]. In this paper the authors show
that this construction can be successfully used in order to introduce the implication and negation
connectives in an intuitionistic-like logic based on any bounded lattice that satisfies the Ascending
Chain Condition.

It is well known that some of non-classical logics are formalized by means of lattice structures,
i.e., by lattices endowed with an additional unary operation. Concerning classical propositional
logic, it is formalized by a Boolean algebra, and intuitionistic logic is usually formalized by relatively
pseudocomplemented semilattices or lattices, see, e.g., [2] and [3]. However, other non-classical
logics use logical connectives that do not necessarily have a sharp meaning, i.e., the result of
negation or implication for given entries need not be an element of the lattice in question, but may
be a subset of mutually incomparable elements, see [2] for details. In order to axiomatize such logics
bounded lattices are used where pseudocomplementation is replaced by the so-called annihilator,
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i.e., the subset of maximal elements being disjoint to a given one. Using such an operator, we can
introduce sharp and dense elements and a certain generalization of a Stone lattice.

It is generally accepted that the structure of a lattice can be revealed by investigating its filters.
This motivated us to study some special filters on bounded lattices where the annihilator serves as
an operator replacing pseudocomplementation. For distributive and pseudocomplemented lattices
such a study was performed by M. Sambasiva Rao, see [4] and [5]. We obtain similar results for
lattices that are neither distributive nor pseudocomplemented. The study of these special filters
deepens our understanding of how lattice structure influences logical connectives.

2. Preliminaries

In this paper, we will deal with bounded lattices L = (L,∨,∧, 0, 1) satisfying the Ascending
Chain Condition (ACC). A poset is said to satisfy the ACC if it has no infinite ascending chains.
We identify singletons with their unique element, i.e., we will write a instead of {a}. For a ∈ L
and for subsets A,B of L, we define

A ∨B := {x ∨ y | x ∈ A and y ∈ B},
A ∧B := {x ∧ y | x ∈ A and y ∈ B},

A0 := Max{x ∈ L | x ∧ y = 0 for all y ∈ A},
a0 := Max{x ∈ L | x ∧ a = 0}.

Here and in the following, MaxA denotes the set of all maximal elements of A which obviously is an
antichain. Observe that 00 = 1 and 10 = 0 and that A0 �= ∅. The set a0 is in fact a generalization
of the pseudocomplement of a introduced by O. Frink [3] or a modification of the annihilator since
the set

{x ∈ L | x ∧ y = 0 for all y ∈ A}
is in fact the annihilator of the set A as known in lattice theory. Recall that the pseudocomplement
a∗ of a is the greatest element of {x ∈ L | x ∧ a = 0}. The advantage of our approach is that
a0 can be defined in any lattice with 0. However, a0 need not be an element of L, but may be a
subset of L, namely an antichain of L.

It is easy to see that in a bounded completely distributive lattice every element has a pseudo-
complement. We will indicate the fact that a bounded lattice is pseudocomplemented by denoting
it in the form L = (L,∨,∧, ∗, 0, 1).

The element a is called dense if a0 = 0 and sharp if a00 = a. Let D and S denote the set of all
dense and sharp elements of L, respectively. Clearly the following holds:

a ∈ D if and only if a00 = 1,

1 ∈ D,

0, 1 ∈ S,

D ∩ S = 1.

Moreover, we define the following binary relations and unary operators on 2L:

A ≤ B if x ≤ y for all x ∈ A and all y ∈ B,

A ≤1 B if for every x ∈ A there exists some y ∈ B with x ≤ y,

A ≤2 B if for every y ∈ B there exists some x ∈ A with x ≤ y,

A =1 B if both A ≤1 B and B ≤1 A,
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A := {x ∈ L | 1 ∈ x00 ∨ y00 for each y ∈ A},
AD := {x ∈ L | x ∨ y ∈ D for all y ∈ A}.

The set A is called closed if A = A. Observe that 0 = D and 1 = L.

����� 2.1� Let (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC. Then D = L and L = D.

P r o o f. If a ∈ L, then 1 ∈ a00 ∨ x00 for all x ∈ D and hence a ∈ D. This shows L ⊆ D, i.e.,
D = L. Now let a ∈ L. Then 1 ∈ a00 ∨ x00 for all x ∈ L, especially 1 ∈ a00 ∨ 000 = a00. Since a00

is an antichain, we have a00 = 1 whence a ∈ D. This shows L ⊆ D. Conversely, if a ∈ D, then
a00 = 1 and hence 1 ∈ a00 ∨ x00 for all x ∈ L, i.e., a ∈ L. This shows D ⊆ L. Altogether, we
obtain L = D. �

Remark 1� The pair (A 
→ A,A 
→ A) is the Galois-correspondence between (2L,⊆) and (2L,⊆)

induced by the binary relation {(x, y) ∈ L2 | 1 ∈ x00 ∨ y00} on L. Hence A 
→ A is a closure
operator on (2L,⊆), and therefore the set of all closed subsets of L forms a closure system of
L, i.e., it is closed under arbitrary intersections. This means that the closed subsets of L form
a complete lattice with respect to inclusion with smallest element L = D and greatest element
∅ = L, and we have the following properties:

A ⊆ B implies B ⊆ A,

A ⊆ A,

A = A,

A ⊆ B if and only if B ⊆ A.

Analogously, the pair (A 
→ AD, A 
→ AD) is the Galois-correspondence between (2L,⊆) and
(2L,⊆) induced by the binary relation {(x, y) ∈ L2 | x ∨ y ∈ D} on L.

Recall that a non-empty subset F of L is called a filter of L if x ∧ y, x ∨ z ∈ F for all x, y ∈ F
and all z ∈ L.

Observe that for every x ∈ L the set Fx := {y ∈ L | x ≤ y} is a filter of L, the so-called principal
filter generated by x. A filter F of L is called a D-filter if D ⊆ F . It is obvious that every filter of
a finite lattice is principal.

3. Filters and D-filters

It is evident that if a given bounded lattice L = (L,∨,∧, 0, 1) is pseudocomplemented, then for
each element x ∈ L, we have x0 = x∗. We start this section with emphasizing certain differences
between the properties of our concept x0 and pseudocomplements.

It is well known that for distributive pseudocomplemented lattices (L,∨,∧, ∗, 0) with bottom
element 0 and a, b ∈ L the following holds:

(i) a ≤ b implies b∗ ≤ a∗,

(ii) a ≤ a∗∗ and a∗∗∗ = a∗,

(iii) (a ∨ b)∗ = a∗ ∧ b∗,

(iv) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

The following example shows that not all statements valid for pseudocomplements hold for x0.
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Example 1� Consider the non-distributive lattice L depicted in Figure 1.
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Figure 1. Non-distributive non-pseudocomplemented lattice

We have
x 0 a b c d e f g 1
x0 1 fg eg g c c a c 0
x00 0 a b c g g fg g 1
x F1 Fd Fd Fd abcf1 abcf1 abcdefg1 abcf1 L

D = F1 and S := {0, a, b, c, g, 1}. (Here and in the following we often write fg instead of {f, g},
and so on.) Hence L is not pseudocomplemented.

In L we have:

(i) a ≤ c and c0 = g � {f, g} = a0, but c0 ≤1 a0.

(ii) f �≤ {f, g} = f00, but f ≤1 f00.

(iii) (a ∨ b)0 = c0 = g �= {d, g} = {f, g} ∧ {e, g} = a0 ∧ b0, but (a ∨ b)0 ≤1 a0 ∧ b0.

(iv) (d ∧ f)00 = d00 = g �= {d, g} = g ∧ {f, g} = d00 ∧ f00, but (d ∧ f)00 =1 d00 ∧ f00.

On the other hand, some of the properties of pseudocomplements are also preserved here, see
the following result.

������� 3.1� Let (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC, x, y ∈ L and A,B ⊆ L.
Then the following holds:

(i) a ∧ b = 0 for all a ∈ A and all b ∈ A0, especially, x ∧ x0 = 0;

(ii) If a∧ b = 0 for all a ∈ A and all b ∈ B, then A ≤1 B0, especially, x∧ y = 0 implies x ≤1 y0;

(iii) A ≤1 A00, especially, x ≤1 x00;

(iv) A ≤1 B implies B0 ≤1 A0, especially, x ≤ y implies y0 ≤1 x0;

(v) A ≤1 B0 if and only if B ≤1 A0, especially, x ≤1 y0 if and only if y ≤1 x0;

(vi) a =1 B0 implies a = B0;

(vii) A0 =1 B0 implies A0 = B0;

(viii) A000 = A0, especially, x000 = x0;

(ix) (A ∨B)0 ≤1 A0 ∧B0, especially, (x ∨ y)0 ≤1 x0 ∧ y0;

(x) (A ∧B)00 =1 A00 ∧B00, especially, (x ∧ y)00 =1 x00 ∧ y00;
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(xi) A00∨B00 ≤1 (A0∧B0)0 implies (A00∨B00)0 =1 A0∧B0, especially, x00∨ y00 ≤1 (x0∧ y0)0

implies (x00 ∨ y00)0 =1 x0 ∧ y0.

P r o o f. (i) If b ∈ A ∧ A0, then there exists some c ∈ A and some d ∈ A0 with c ∧ d = b. Since
x ∧ d = 0 for all x ∈ A, we have b = c ∧ d = 0.

(ii) If A ∧ B = 0 and b ∈ A, then b ∧ x = 0 for all x ∈ B and hence there exists some c ∈ B0

with b ≤ c.

(iii) This follows from (i) and (ii).

(iv) If A ≤1 B, then

{x ∈ L | x ∧B = 0} ⊆ {x ∈ L | x ∧A = 0}
and hence B0 ≤1 A0.

(v) If A ≤1 B0, then B ≤1 B00 ≤1 A0 by (iii) and (iv). Analogously, B ≤1 A0 implies A ≤1 B0.

(vi) Let b ∈ B0. Because of B0 ≤1 a, we have b ≤ a, and because of a ≤1 B0 there exists some
c ∈ B0 with a ≤ c. Together we obtain b ≤ a ≤ c and hence b ≤ c. Since both b and c belong to
the antichain B0, we conclude b = c and hence b = a showing B0 = a.

(vii) Assume b ∈ A0. Because of A0 ≤1 B0 there exists some c ∈ B0 with b ≤ c, and because
of B0 ≤1 A0 there exists some d ∈ A0 with c ≤ d. Together we obtain b ≤ c ≤ d and hence
b ≤ d. Since both b and d belong to the antichain A0, we conclude b = d and hence b = c ∈ B0.
This shows A0 ⊆ B0. Interchanging the roles of A0 and B0 gives B0 ⊆ A0. Together we obtain
A0 = B0.

(viii) Because of (iii), we have A ≤1 A00 from which we conclude A000 = (A00)0 ≤1 A0 by
(iv). Again by (iii) we have A0 ≤1 (A0)00 = A000. Altogether, A000 =1 A0. Applying (vii) yields
A000 = A0.

(ix) We have A,B ≤1 A∨B and hence (A∨B)0 ≤1 A0, B0 by (iv) which implies (A∨B)0 ≤1

A0 ∧B0.

(x) We have A ∧ B ≤1 A00 ∧ B00 according to (iii) and hence (A ∧ B)00 ≤1 (A00 ∧ B00)00

according to (iv). Using (ii), (i) and (iv), we see that any of the following statements implies the
next one:

(A ∧B)0 ∧A00 ∧B00 ∧A ∧B ⊆ {0},
(A ∧B)0 ∧A00 ∧B00 ∧A ≤1 B0,

(A ∧B)0 ∧A00 ∧B00 ∧A ≤1 B0 ∧B00,

(A ∧B)0 ∧A00 ∧B00 ∧A ⊆ {0},
(A ∧B)0 ∧A00 ∧B00 ≤1 A0,

(A ∧B)0 ∧A00 ∧B00 ≤1 A0 ∧A00,

(A ∧B)0 ∧A00 ∧B00 = 0,

(A ∧B)0 ≤1 (A00 ∧B00)0,

(A00 ∧B00)00 ≤1 (A ∧B)00.

Together we obtain (A∧B)00 =1 (A00 ∧B00)00 and hence (A∧B)00 = (A00 ∧B00)00 according to
(vii). Now we have A00 ∧B00 ≤1 A00, B00 and hence (A00 ∧B00)00 ≤1 A00, B00 by (iv) and (viii)
which implies (A00 ∧B00)00 ≤1 A00 ∧B00. Together with A00 ∧B00 ≤1 (A00 ∧B00)00 that follows
from (iii) this yields (A ∧B)00 =1 (A00 ∧B00)00 =1 A00 ∧B00.

(xi) According to (iii), (iv), (ix), (viii) and the assumption, we have

A0 ∧B0 ≤1 (A0 ∧B0)00 ≤1 (A00 ∨B00)0 ≤1 A000 ∧B000 = A0 ∧B0. �
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Theorem 3.1 is very important because we will use it many times in the proofs of most of the
following statements.

Remark 2� Assume a, b ∈ L and a00 ∨ b00 ≤1 (a0 ∧ b0)0. Then because of (xi) of Theorem 3.1,
we have (a00 ∨ b00)0 =1 a0 ∧ b0. Hence any of the following statements implies the next one:

1 ∈ a00 ∨ b00,

1 ≤1 a00 ∨ b00,

(a00 ∨ b00)0 ≤1 0,

(a00 ∨ b00)0 = 0,

a0 ∧ b0 = 0.

Applying the previous results, we can show that the set of sharp elements of L = (L,∨,∧, 0, 1)
forms a subsemilattice of (L,∧).
����������	 3.2� Let (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC and a, b ∈ S. Then
a ∧ b ∈ S.

P r o o f. According to (x) of Theorem 3.1, we have (a ∧ b)00 =1 a00 ∧ b00 = a ∧ b and hence
(a ∧ b)00 = a ∧ b by (vi) of Theorem 3.1, i.e., a ∧ b ∈ S. �
Remark 3� Unfortunately, S need not be a sublattice of L. Namely, consider the lattice L
visualized in Figure 2. Here, obviously, a, b ∈ S and also a ∧ b = 0 ∈ S in accordance with
Proposition 3.2, but a ∨ b = e /∈ S since e00 = 1 �= e.

Now we prove an expected statement about the set of dense elements.

����������	 3.3� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC. Then D forms
a D-filter of L.

P r o o f. Let a, b ∈ D and c ∈ L. Then according to (x) of Theorem 3.1, we conclude (a ∧ b)00 =1

a00 ∧ b00 = 1 ∧ 1 = 1 and hence (a ∧ b)00 = 1 according to (vi) of Theorem 3.1 proving a ∧ b ∈ D.
If a ≤ c, then c0 ≤1 a0 = 0 according to (iv) of Theorem 3.1 and hence c0 = 0, i.e., c ∈ D. �

It is well known that the set F of all filters of L forms a complete lattice with respect to inclusion.
Using Proposition 3.3 one can recognize that the set of all D-filters of L forms a complete sublattice
of F with bottom element D.

D-filters were described for distributive pseudocomplemented lattices by M. Sambasiva Rao [5].
However, we are going to show that similar results can be stated also for lattices which are neither
pseudocomplemented nor distributive, but satisfy a weaker condition.


�����
 3.4� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC and A a non-empty
subset of L such that for each x, y ∈ A the following condition holds:

if 1 ∈ (x00 ∨ z00) ∧ (y00 ∨ z00) for all z ∈ A then 1 ∈ (x00 ∧ y00) ∨ z00 for all z ∈ A.

Then A is a D-filter of L.

P r o o f. Obviously, D ⊆ A. Let a, b ∈ A. Then 1 ∈ (a00 ∨ z00) ∧ (b00 ∨ z00) for all z ∈ A and
hence 1 ∈ (a00 ∧ b00) ∨ z00 =1 (a ∧ b)00 ∨ z00 for all z ∈ A according to (x) of Theorem 3.1, i.e.,
a ∧ b ∈ A. Further, if c ∈ L and a ≤ c, then a00 ≤1 c00 according (iv) of Theorem 3.1 and hence
1 ∈ a00 ∨ z00 ≤1 c00 ∨ z00 for all z ∈ A showing c ∈ A. Altogether, A is a D-filter of L. �

In the next example, we show a lattice being neither distributive nor pseudocomplemented, but
satisfying the condition from Theorem 3.4.
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Example 2� Consider the non-distributive lattice L depicted in Figure 2:
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Figure 2. Non-distributive non-pseudocomplemented lattice

We have
x 0 a b c d e f g 1
x0 1 bcd acd abd abc 0 0 0 0
x00 0 a b c d 1 1 1 1
x Fe Fe Fe Fe Fe F0 F0 F0 F0

D = Fe and S = {0, a, b, c, d, 1}. Hence L is not pseudocomplemented. Further, Fa is a D-filter of

L, {a, b} = Fe is a D-filter of L in accordance with Theorem 3.4 and {a, b}D = {c, d, e, f, g, 1}.

4. Stonean and D-Stonean lattices

The concept of a Stone lattice was introduced by R. Balbes and A. Horn [1], see also the paper
[6] by T. P. Speed. Recall from [1] that a bounded pseudocomplemented lattice (L,∨,∧, ∗, 0, 1) is
called Stone if

x∗ ∨ x∗∗ = 1 and x∗ ∨ y∗ = (x ∧ y)∗ for all x, y ∈ L.

The theory of Stone lattices is well developed, see e.g. [1] and [6] and for filters [5]. This motivated
us to introduce and study an analogous concept for bounded lattices that are not necessarily
pseudocomplemented.

In analogy to the above definition, we define the following two concepts.

���������� 1� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC. Then L is called
Stonean if

1 ∈ x00 ∨ y00 for every x ∈ L and every y ∈ x0 (4.1)

and D-Stonean if it is both Stonean and if

for all x, y ∈ L, x ∨ y ∈ D is equivalent to 1 ∈ x00 ∨ y00. (4.2)
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The Stonean property ensures that certain relations between elements hold which simplify the
investigation of filters. The stronger D-Stonean property, moreover, establishes a connection to
dense elements. These properties help to bridge the gap between classical results for distributive
lattices and more general results concerning not necessarily distributive lattices.

Observe that (4.1) is equivalent to x0 ⊆ x for all x ∈ L, and (4.2) is equivalent to x = xD for
all x ∈ L. Hence L is Stonean if and only if x0 ⊆ x for all x ∈ L, and L is D-Stonean if and only
if x0 ⊆ x = xD for all x ∈ L. The lattice visualized in Figure 2 is not Stonean since b ∈ a0, but
1 /∈ e = a ∨ b = a00 ∨ b00.

The following result relates the concept of a Stonean lattice to concepts mentioned before.

����������� 4.1	 Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC and a ∈ L. Then
the following holds:

(i) If L is Stonean and a0 ≤2 a, then a = a0.

(ii) L is Stonean if and only if x ⊆ x0 for all x ∈ L.

P r o o f. (i) Assume that L is Stonean and a0 ≤2 a. Then a0 ⊆ a and hence a ⊆ a0. Now let b ∈ a0

and c ∈ a. Since a0 ≤2 a there exists some d ∈ a0 with d ≤ c. We conclude 1 ∈ b00∨d00 ≤1 b00∨c00
and hence 1 ∈ b00 ∨ c00. This shows b ∈ a and hence a0 ⊆ a. Together we obtain a = a0.

(ii) According to the observation after Definition 1, L is Stonean if and only if x0 ⊆ x for all

x ∈ L. Now for every x ∈ L the inclusion x0 ⊆ x is equivalent to x ⊆ x0. �

The next result is elementary, but we will use it in the sequel.


���
 4.1	 Let (L,∨,∧, 0, 1) be a D-Stonean lattice and a ∈ L. Then a ∨ a0 ⊆ D.

P r o o f. If b ∈ a0, then 1 ∈ a00 ∨ b00 according to (4.1) which is equivalent to a ∨ b ∈ D because
of (4.2). �

Example 3	

(i) The lattice visualized in Figure 2 satisfies neither (4.1) nor (4.2) since b ∈ a0 and a∨b = e ∈ D,
but 1 /∈ e = a ∨ b = a00 ∨ b00.

(ii) Consider the non-distributive lattice L depicted in Figure 3:
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Figure 3. Non-distributive non-pseudocomplemented non-Stonean lattice
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We have

x 0 a b c d e f g 1
x0 1 bcg ceg beg bce bcg 0 bce 0
x00 0 e b c g e 1 g 1
x Ff bcdfg1 adefg1 adefg1 abcef1 bcdfg1 L abcef1 F0

D = Ff and S = {0, b, c, e, g, 1}. Hence L is not pseudocomplemented. Moreover, L satisfies
neither (4.1) nor (4.2) since c ∈ b0 and b∨ c = f ∈ D, but 1 /∈ f = b∨ c = b00 ∨ c00. Therefore
L is not Stonean.

������� 4.2� Conditions (4.1) and (4.2) of Definition 1 are independent.

P r o o f. The lattice visualized in Figure 1 satisfies (4.1), but not (4.2) since e ∨ g = 1 ∈ D,
but 1 /∈ g = g ∨ g = e00 ∨ g00. Hence it is Stonean, but not D-Stonean. Now consider the
non-distributive lattice L depicted in Figure 4:
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Figure 4. Non-distributive non-pseudocomplemented non-Stonean lattice

We have
x 0 a b c d e f g h i j 1
x0 1 j dg h j g d h g 0 d 0
x00 0 d b g d h j g h 1 j 1
x Fi Fc Fi Fa Fc Fc Fa Fa Fc F0 Fa F0

D = Fi and S = {0, b, d, g, h, j, 1}. Hence L is not pseudocomplemented. The lattice L satisfies
(4.2), but not (4.1) since d ∈ b0, but 1 /∈ h = b ∨ d = b00 ∨ d00. Therefore it is not Stonean. �

The following theorem shows how the concept of a Stonean lattice is related with its filters.

������� 4.3� Let L = (L,∨,∧, 0, 1) be a Stonean lattice satisfying the ACC. Then (4.2) is
equivalent to any single of the following statements:

(i) F = FD for all filters F of L,

(ii) x = xD for all x ∈ L,

(iii) for every two filters F,G of L, F ∩G ⊆ D is equivalent to F ⊆ G.
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P r o o f. (4.2) ⇒ (i): This follows from

F = {x ∈ L | 1 ∈ x00 ∨ y00 for all y ∈ F},
FD = {x ∈ L | x ∨ y ∈ D for all y ∈ F}

for all filters F of L.

(i) ⇒ (ii): For all x ∈ L, we have x = Fx = FD
x = xD.

(ii) ⇒ (iii): Let F,G be filters of L. If a ∈ F ∩ G, then a = a ∨ a ∈ F ∨ G. If, conversely,
a ∈ F ∨G, then there exists some b ∈ F and some c ∈ G with b∨ c = a and hence a ∈ F ∩G. This
shows F ∩G = F ∨G. Now the following are equivalent:

F ∩G ⊆ D,

F ∨G ⊆ D,

x ∨ y ∈ D for all x ∈ F and all y ∈ G,

y ∈ xD for all x ∈ F and all y ∈ G,

y ∈ x for all x ∈ F and all y ∈ G,

1 ∈ x00 ∨ y00 for all x ∈ F and all y ∈ G,

F ⊆ G.

(iii) ⇒ (4.2): For all x, y ∈ L the following are equivalent: x∨y ∈ D; Fx∨y ⊆ D; Fx∩Fy ⊆ D;

Fx ⊆ Fy; x ∈ y; 1 ∈ x00 ∨ y00. �

The results of the previous theorem can be checked in the following example.

Example 4� Consider the non-distributive lattice L depicted in Figure 5.
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Figure 5. Non-distributive non-pseudocomplemented D-Stonean lattice

We have
x 0 a b c d 1
x0 1 bc cd bd bc 0
x00 0 d b c d 1

Fx = FD
x = x = xD F1 bc1 acd1 abd1 bc1 F0

D = F1 and S = {0, b, c, d, 1}. Hence L is not pseudocomplemented, but it isD-Stonean. Moreover,
for x, y ∈ L both Fx ∩ Fy ⊆ D and Fx ⊆ Fy are equivalent to 1 ∈ {x, y} or (x, y ∈ {a, b, c, d} and
x �= y and {x, y} �= {a, d}) in accordance with Theorem 4.3.
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5. Coherent and closed filters

In the following we define a certain operator c on the lattice of filters of a bounded lattice which
shares some properties with a closure operator. It is a natural task to investigate when a filter
F coincides with its closure c(F ). Such filters will be called coherent. In particular, we describe
coherent filters in D-Stonean lattices.

Now let us define the operator c on filters of L as follows:

c(F ) := {x ∈ L | x ∧ F = L}.
���������� 2� A filter F of a bounded lattice L = (L,∨,∧, 0, 1) satisfying the ACC is called
coherent if c(F ) = F .

One can easily show that if F and G are filters of L with F ⊆ G, then c(F ) ⊆ c(G). Hence
c(F ∩G) ⊆ c(F ) ∩ c(G) for all filters F,G of L.

Example 5� Consider the lattice from Figure 2. Then we have

x 0 a b c d e f g 1
c(Fx) F0 Fe Fe Fe Fe Fe Fe Fe Fe

and hence F0 and Fe are the only coherent filters. The filters Fa and Ff of the lattice depicted in
Figure 3 are coherent, but the filter Fb is not since b ∈ Fb \ c(Fb).

	�

� 5.1� If L = (L,∨,∧, 0, 1) is a bounded lattice satisfying the ACC and F a filter of L
satisfying x ∪ F = L for all x ∈ F , then F ⊆ c(F ).

P r o o f. Let a ∈ F and b ∈ L. Then 1 ∈ F ∩ a and either b ∈ a and hence b = b ∧ 1 ∈ a ∧ F or
b ∈ F and hence b = 1 ∧ b ∈ a ∧ F . This shows a ∈ c(F ) and therefore F ⊆ c(F ). �

Since x = L for all x ∈ D, we have F ⊆ c(F ) for all filters F of L being contained in D.

We can show that c(F ) is closed with respect to ∧ under a weak condition.

�
��������� 5.1� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC and F a proper
filter of L and a, b ∈ L. Then the following holds:

(i) If c(F ) is closed with respect to ∧, then c(F ) is a D-filter of F ,

(ii) the inclusion a∧b ⊆ a ∧ b holds if and only if x, y ∈ L and 1 ∈ (x00∨a00)∧(y00∨b00) together
imply 1 ∈ (x ∧ y)00 ∨ (a ∧ b)00,

(iii) if x ∧ y ⊆ x ∧ y for all x, y ∈ c(F ), then c(F ) is closed with respect to ∧ and hence a D-filter
of L.

P r o o f. (i) If a ∈ D, then a00 = 1 and hence a = L whence L = L ∧ 1 ⊆ L ∧ F = a ∧ F ⊆ L, i.e.,
a ∧ F = L showing a ∈ c(F ). Therefore D ⊆ c(F ). If b ∈ c(F ), c ∈ L and b ≤ c, then b00 ≤1 c00

and hence L = b ∧ F ⊆ c ∧ F ⊆ L which implies c ∧ F = L, i.e., c ∈ c(F ).

(ii) We have

a ∧ b = {x ∧ y | x, y ∈ L and 1 ∈ (x00 ∨ a00) ∧ (y00 ∨ b00)},
a ∧ b = {x ∈ L | 1 ∈ x00 ∨ (a ∧ b)00}.

(iii) If x ∧ y ⊆ x ∧ y for all x, y ∈ c(F ), then for all x, y ∈ c(F ), we have

L = L ∧ L = (x ∧ F ) ∧ (y ∧ F ) = (x ∧ y) ∧ (F ∧ F ) = (x ∧ y) ∧ F ⊆ x ∧ y ∧ F ⊆ L

and hence x ∧ y ∧ F = L, which means nothing else than x ∧ y ∈ c(F ). �
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The condition in (ii) of Proposition 5.1 holds for all proper filters of the lattice from Figure 2.

For D-Stonean lattices, we can prove the following result.

������� 5.2� Let L = (L,∨,∧, 0, 1) be a D-Stonean lattice and F a D-filter of L. Then c(F ) ⊆
F .

P r o o f. Let a ∈ c(F ). Then a ∧ F = L and hence there exists some b ∈ a and some c ∈ F with
b ∧ c = a. Now

a = {x ∈ L | 1 ∈ x00 ∨ a00} = {x ∈ L | x ∨ a ∈ D}
and hence b = b ∨ (b ∧ c) = b ∨ a ∈ D ⊆ F which implies a = b ∧ c ∈ F . �

Note that the condition of L being D-Stonean is only sufficient but not necessary.

Example 6� The filter Fa of the non-Stonean lattice visualized in Figure 2 is not coherent since
a ∈ Fa \ c(Fa), but c(Fa) = Fe ⊆ Fa.

Combining Lemma 5.1 and Theorem 5.2, we obtain the following corollary.

����		
�� 5.2.1� If L = (L,∨,∧, 0, 1) is a D-Stonean lattice and F a D-filter of L satisfying
x ∪ F = L for all x ∈ F , then F is coherent.

Now we turn our attention to the so-called closed filters. A filter F of L is called closed if it is a

closed subset of L as defined in the introduction, i.e., if F = F . Of course, F ⊆ F holds for every
filter F of L.

Example 7� The filter Fa of the D-Stonean lattice visualized in Figure 5 is closed and coherent

since Fa = {b, c, 1} = Fa and c(Fa) = Fa.

����		
�� 5.2.2� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC and A ⊆ L.
Then the following holds:

(i) D ⊆ A,

(ii) A = L if and only if A ⊆ D,

(iii) every closed filter of L is a D-filter.

P r o o f. (i) and (ii) We use Lemma 2.1.

(iii) This follows from (i). �
Example 8� The filter Fe of the lattice depicted in Figure 2 is both coherent and closed since

c(Fe) = Fe and Fe = F0 = Fe, but its subfilter Ff is neither coherent nor closed because e ∈
c(Ff ) \ Ff and Ff = F0 = Fe �= Ff .

Remark 4� Since the set of closed subsets of L is closed under arbitrary intersections, the same is
true for the set of closed filters, and the latter forms a complete lattice with respect to inclusion.
Moreover, for every filter F of L there is a smallest closed filter of L including it.

6. Maximal, prime and median filters

Prime filters and maximal filters play an important role in the theory of rings, but also for
semirings, especially for bounded distributive lattices. The question is if similar notions can be
developed for lattices which need not be distributive. The aim of this section is to answer this
question positively. We establish connections between maximal, prime, median and coherent filters
as well as D-filters.
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First let us recall some well-known classes of lattice filters. We call a filter F of a lattice (L,∨,∧)
• proper if F �= L,

• maximal if it is a maximal proper filter,

• prime if x, y ∈ L and x ∨ y ∈ F imply x ∈ F or y ∈ F .

It is well known (see, e.g., [7]) that every maximal filter of a distributive lattice is prime. Unfor-
tunately, this does not hold for non-distributive lattices. For example, the filter Fa of the lattice
in Figure 5 is maximal, but it is not prime since b ∨ c = 1 ∈ Fa, but b, c /∈ Fa. However, we can
prove the following result.

������� 6.1� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC and F a proper filter
of L. Then the following holds:

(i) F is maximal if and only if x0 ∩ F �= ∅ for all x ∈ L \ F ,

(ii) if F is maximal, then F is a D-filter,

(iii) if F is maximal and (x ∨ y) ∧ z = 0 for all x, y ∈ L \ F and all z ∈ F with x ∧ z = y ∧ z = 0,
then F is prime.

P r o o f. (i) Assume F to be maximal and a ∈ L \ F . Then G := {x ∈ L | there exists some f ∈
F with f ∧ a ≤ x} is a filter of L strictly including F . Since F is maximal, we conclude G = L.
Hence 0 ∈ G, i.e., there exists some g ∈ F with g ∧ a ≤ 0, it means g ∧ a = 0. Therefore there
exists some b ∈ a0 with g ≤ b. Since F is a filter, we conclude b ∈ F and hence b ∈ a0 ∩ F whence
a0 ∩F �= ∅. Conversely, assume x0 ∩F �= ∅ for all x ∈ L \F . Suppose F not to be maximal. Then
there exists a proper filter H of L strictly including F . Let c ∈ H \ F . Then c0 ∩ F �= ∅. Let
d ∈ c0 ∩ F . Then c, d ∈ H. Since H is a filter of L, we have 0 = c ∧ d ∈ H and hence H = L, a
contradiction. This shows that F is maximal.

(ii) Assume F to be maximal, but not being a D-filter. Then there exists some a ∈ D \ F .
According to (i) 0 ∩ F = a0 ∩ F �= ∅ and hence 0 ∈ F which implies F = L, a contradiction.
Therefore F is a D-filter.

(iii) Assume F to be maximal and (x ∨ y) ∧ z = 0 for all x, y ∈ L \ F and all z ∈ F with
x ∧ z = y ∧ z = 0. Suppose F to be not prime. Then there exist some a, b ∈ L \ F with a ∨ b ∈ F .
According to (i), we have a0 ∩ F, b0 ∩ F �= ∅. Let f ∈ a0 ∩ F and g ∈ b0 ∩ F and put h := f ∧ g.
Then h ∈ F and a ∧ f = b ∧ g = 0 and hence a ∧ h = b ∧ h = 0. By the above assumption, we
conclude 0 = (a ∨ b) ∧ h ∈ F which implies that F is not proper which is a contradiction. Hence
F is prime. �

Of course, condition (iii) of Theorem 6.1 holds for any distributive lattice. However, the following
example shows that it may be satisfied also in a non-distributive lattice.

Example 9� The non-distributive lattice visualized in Figure 6 satisfies the condition in (iii) of
Theorem 6.1 for the maximal proper filter Fa. In accordance with this theorem, this filter is prime.

Let us now adopt a certain modification of the concept of a median filter defined in [5].

��	
�
�
�� 3� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC. A filter F of L is
called median if it is maximal and if for each x ∈ F there exists some y ∈ L \F with 1 ∈ x00 ∨ y00.

Example 10� The filter Fa of the non-Stonean lattice (L,∨,∧, 0, 1) visualized in Figure 3 is me-

dian, closed and coherent since b ∈ L\Fa, 1 ∈ x00∨b00 for every x ∈ Fa and Fa = {b, c, d, f, g, 1} =
Fa. The filter Fa of the non-Stonean lattice (L,∨,∧, 0, 1) depicted in Figure 4 is prime, median,
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�

�

�

�

�

�

�
�

�
��

�
�
�
��

�
�

�
��

�
�
�
��

0

a

b c d

1

Figure 6. Non-distributive lattice

closed and coherent since c ∈ L \ Fa, 1 ∈ x00 ∨ c00 for all x ∈ Fa and Fa = Fc = Fa. We list all
closed filters of the lattices from Figure 1 to Figure 5:

Fig. closed filters
1 F0, Fd, Ff , F1

2 F0, Fe

3 F0, Fa, Fd, Ff

4 F0, Fa, Fc, Fi

5 F0, Fb, Fc, Fd, F1

Next, we present several basic properties of proper, prime and median filters.

������� 6.2� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC, F a proper filter of
L and a ∈ L. Then the following holds:

(i) If x00 ∨ y00 ≤1 (x ∨ y)00 for all x, y ∈ L, F is a prime D-filter and a ∈ L \ F , then a ⊆ F ;

(ii) if x00∨ y00 ≤1 (x∨ y)00 for all x, y ∈ L, F is a median prime D-filter and a ∈ F , then a ⊆ F ;

(iii) if a ∈ F , then a0 �⊆ F ;

(iv) if L is D-Stonean and F a prime D-filter of L, then a ∈ F if and only if a0 �⊆ F .

P r o o f. (i) Assume x00 ∨ y00 ≤1 (x ∨ y)00 for all x, y ∈ L and let F be a prime D-filter of L,
a ∈ L \ F and b ∈ a. Then 1 ∈ a00 ∨ b00 ≤1 (a ∨ b)00. Since (a ∨ b)00 is an antichain, we have
(a ∨ b)00 = 1 which implies (a ∨ b)0 = (a ∨ b)000 = 0, i.e., a ∨ b ∈ D. Since F is a D-filter, we have
D ⊆ F and therefore a∨ b ∈ F . Because a /∈ F and F is prime, we conclude b ∈ F proving a ⊆ F .

(ii) Assume x00 ∨ y00 ≤1 (x ∨ y)00 for all x, y ∈ L and let F be a median D-filter of L, a ∈ F

and b ∈ a. Since F is median there exists some c ∈ L \ F with 1 ∈ a00 ∨ c00. Hence c ∈ a = a ⊆ b.

Since c /∈ F , we have c ⊆ F according to (i) and we obtain b ∈ b ⊆ c ⊆ F proving a ⊆ F .

(iii) If we would have a0 ⊆ F for some a ∈ F , then 0 = a∧a0 ⊆ F and hence F = L contradicting
the assumption that F is proper.

(iv) Suppose L to be D-Stonean, F to be a prime D-filter of L and a0 �⊆ F . Then there exists
some b ∈ a0 \ F . Since L is D-Stonean, we have 1 ∈ a00 ∨ b00 and hence a ∨ b ∈ D ⊆ F according
to the assumption that F is a D-filter. Because F is prime and b /∈ F , we obtain a ∈ F . The
converse implication follows from (iii). �
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The next result illuminates the relationship between coherent and median filters.

������� 6.3� Let L = (L,∨,∧, 0, 1) be a bounded lattice satisfying the ACC and F a maximal
filter of L. Then the following holds:

(i) If F is coherent, then it is median,

(ii) if F �⊆ F , then F is median,

(iii) if F = L \ F , then F is median.

P r o o f. Let a ∈ F .

(i) Assume F to be coherent. Then a ∈ c(F ), i.e., a∧F = L and hence there exists some b ∈ a
and some c ∈ F with b ∧ c = 0. Because of b ∈ a, we have 1 ∈ a00 ∨ b00. Now b ∈ F would imply
0 = b ∧ c ∈ F and hence F = L contradicting the maximality of F . Hence b /∈ F showing F to be
median.

(ii) Assume F �⊆ F . Then there exists some b ∈ F \ F . Hence 1 ∈ a00 ∨ b00 and b ∈ L \ F
proving F to be median.

(iii) Since a ∈ L \ F , we have 1 ∈ a00 ∨ x00 for all x ∈ L \ F . Because F is proper there exists
such an x. �

M. Sambasiva Rao [5] has found that median prime filters of a distributive pseudocomplemented
lattice have an interesting property. The same applies to more general lattices.

���	�
����
 6.4� Let L = (L,∨,∧, 0, 1) be a D-Stonean lattice, F a median prime filter of L
and a, b ∈ L. Then the following holds:

(i) If F is a D-filter of L, a ∈ F and a = b, then b ∈ F ,

(ii) if a ∨ b ∈ F , then there exists some c ∈ L \ F such that {a ∨ c, b ∨ c} ∩D �= ∅.

P r o o f. (i) Assume F to be a D-filter of L, a ∈ F and a = b. Since F is median there exists some
c ∈ L \ F with 1 ∈ a00 ∨ c00. Hence c ∈ a = b, i.e., 1 ∈ b00 ∨ c00. Since L is D-Stonean and F is a
D-filter, we have b ∨ c ∈ D ⊆ F . Because F is prime, we conclude b ∈ F .

(ii) Suppose a ∨ b ∈ F . Since F is prime, we have a ∈ F or b ∈ F . Because F is median, in
the first case we see that there exists some c ∈ L \ F with 1 ∈ a00 ∨ c00. Since L is D-Stonean, we
obtain a ∨ c ∈ D. The case b ∈ F can be treated analogously. �
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