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Abstract. As algebraic semantics of the logic of quantum mechanics there are usually used or-
thomodular posets, i.e. bounded posets with a complementation which is an antitone involution
and where the join of orthogonal elements exists and the orthomodular law is satisfied. When
we omit the condition that the complementation is an antitone involution, then we obtain skew-
orthomodular posets. To each such poset we can assign a bounded λ-lattice in a non-unique way.
Bounded λ-lattices are lattice-like algebras whose operations are not necessarily associative. We
prove that any of the following properties for bounded posets with a unary operation can be
characterized by certain identities of an arbitrary assigned λ-lattice: complementarity, orthogon-
ality, almost skew-orthomodularity and skew-orthomodularity. Moreover, we prove correspond-
ing independence results. Finally, we show that the variety of skew-orthomodular λ-lattices is
congruence permutable as well as congruence regular.
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It is well-known that an algebraic semantics of the logic of quantum mechanics is
provided by means of orthomodular lattices as shown by G. Birkhoff and J. von Neu-
mann [2] or, independently, by K. Husimi [9]. The details of this construction can
be found e.g. in the monograph by L. Beran [1]. However, it was shown later that in
the logic of quantum mechanics the connective disjunction represented by the lattice
operation ∨ need not exist for elements that are not orthogonal. Hence the concept of
an orthomodular poset was introduced as follows:

A bounded poset P = (P,≤, ′,0,1) with a unary operation is called orthomodular
(see e.g. [4]) if ′ is an antitone involution on (P,≤) which is a complementation, i.e.
x ≤ y implies y′ ≤ x′, x′′ = x, sup(x,x′) exists for all x ∈ P and it is equal to 1, and
inf(x,x′) exists for all x ∈ P and it is equal to 0; moreover, sup(x,y) must exist in case
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x ≤ y′; finally, for all x,y ∈ P with x ≤ y there exists x∨ (x′∧ y) and it is equal to y.
Due to De Morgan’s laws, also dually, y∧(y′∨x) exists for all x,y ∈ P with x ≤ y and
it is equal to x. The last property is called the orthomodular law and can be expressed
in the case of lattices alternatively in the form of the equivalent identities

x∨ (x′∧ (x∨ y))≈ x∨ y,

y∧ (y′∨ (x∧ y))≈ x∧ y.

It was shown by V. Snášel [10] that every bounded poset can be organized into a so-
called bounded λ-lattice. Bounded λ-lattices can be considered as bounded lattices
whose binary operations are not necessarily associative. More precisely, a bounded
λ-lattice is a bounded lattice if and only if its binary operations are associative, see [6]
for details. The notion of a λ-lattice was successfully used by the first two authors for
constructing a variety of λ-lattices which corresponds to the class of orthomodular
posets. This variety turns out to be congruence permutable and congruence regular.
Of course, it is of advantage to work with varieties of algebras instead of classes
of posets since for varieties the well-known methods of Universal Algebra can be
applied.

Back to the logic of quantum mechanics, we take as an appropriate structure for
the algebraic semantics complemented posets in which the join of two orthogonal
elements exists and which satisfy the orthomodular law. We do not ask this comple-
mentation to be an antitone involution. The concept of complemented lattices which
satisfy the orthomodular law, but whose complementation need not be an antitone
involution was introduced in [3] and studied in [7]. This concept was generalized by
the first and third author to posets in [8]. In the present paper we show that simil-
arly to the case of orthomodular posets, for the posets described above the method of
considering assigned λ-lattices can be successfully applied. In fact, it turns out that
important properties of certain posets can be characterized by identities of assigned
λ-lattices.

Let P = (P,≤, ′,0,1) be a bounded poset with a unary operation and a,b ∈ P. We
define

L(a,b) := {x ∈ P | x ≤ a,b},
U(a,b) := {x ∈ P | a,b ≤ x}.

If there exists sup(a,b) or inf(a,b) then we will denote these elements by a∨ b or
a∧b, respectively.

We call P complemented if it satisfies the identities x∨ x′ ≈ 1 and x∧ x′ ≈ 0. In
this case the operation ′ is called a complementation. We say that a,b are orthogonal
elements of P, shortly a ⊥ b, if a ≤ b′. We call a complemented poset P orthogonal
if x∨y exists for arbitrary orthogonal elements x,y of P. We call an orthogonal poset
P almost skew-orthomodular if x∨ (x′∧ y) exists for all x,y ∈ P with x ≤ y. We call



VARIETIES CORRESPONDING TO CLASSES OF COMPLEMENTED POSETS 613

an almost skew-orthomodular poset P skew-orthomodular if x∨ (x′ ∧ y) = y for all
x,y ∈ P with x ≤ y.

Example 1. The poset shown in Fig. 1
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Fig. 1

with

x 0 a b c d e f g h i j 1
x′ 1 j j j i i h f f e c 0

is skew-orthomodular, but is not a lattice. Moreover, ′ is antitone, but not an involu-
tion.

In the following, let P c, P o, P a and P s denote the class of all complemented,
orthogonal, almost skew-orthomodular and skew-orthomodular posets, respectively.
We are going to show that these classes do not coincide, i.e. the inclusions are proper.

Theorem 1. We have

P s ⫋ P a ⫋ P o ⫋ P c.
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Proof. The poset shown in Fig. 2
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Fig. 2

with
x 0 a b c d e f 1
x′ 1 c c d f f a 0

is not a lattice and belongs to P a \P s since a ≤ d, but a∨ (a′ ∧ d) = a∨ (c∧ d) =
a∨0 = a ̸= d. Moreover, ′ is neither antitone nor an involution. The poset shown in
Fig. 3
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x 0 a b c d e f 1
x′ 1 f d d a d d 0
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belongs to P o\P a since a ≤ e, but a′∧e = f ∧e does not exist. Moreover, ′ is neither
antitone nor an involution. The poset shown in Fig. 4
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Fig. 4
with

x 0 a b c d e f 1
x′ 1 c d a c c c 0

belongs to P c \P o since a ≤ d = b′, but a∨b does not exist. Moreover, ′ is neither
antitone nor an involution. □

Now we introduce the concept of a bounded λ-lattice taken from [10].
A bounded λ-lattice is an algebra (L,⊔,⊓,0,1) of type (2,2,0,0) satisfying the

identities

x⊔ y ≈ y⊔ x, x⊓ y ≈ y⊓ x,

x⊔ ((x⊔ y)⊔ z)≈ (x⊔ y)⊔ z, x⊓ ((x⊓ y)⊓ z)≈ (x⊓ y)⊓ z,

x⊔ (x⊓ y)≈ x, x⊓ (x⊔ y)≈ x,
x⊔0 ≈ x, x⊔1 ≈ 1.

Hence the class of bounded λ-lattices forms a variety. Notice that every bounded
λ-lattice satisfies the identities

x⊓0 ≈ 0 and x⊓1 ≈ x.

Recall from [6] that every variety of bounded λ-lattices is congruence distributive. It
is well-known that in every bounded λ-lattice x⊔ y = y is equivalent to x⊓ y = x.

Let P = (P,≤, ′,0,1) be a bounded poset with a unary operation. We introduce
binary operations ⊔ and ⊓ on P as follows (x,y ∈ P): If x∨y exists then x⊔y := x∨y.
Otherwise x⊔ y = y⊔ x is an arbitrary element of U(x,y). If x∧ y exists then x⊓ y :=
x∧ y. Otherwise x⊓ y = y⊓ x is an arbitrary element of L(x,y). Then (P,⊔,⊓, ′,0,1)
is a bounded λ-lattice with a unary operation which we call a λ-lattice assigned to
the bounded poset P. Let A(P) denote the set of all λ-lattices assigned to P.
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To every bounded λ-lattice L = (L,⊔,⊓, ′,0,1) with a unary operation we assign a
bounded poset P(L) = (L,≤, ′,0,1) as follows:

x ≤ y if and only if x⊔ y = y

(x,y ∈ L). It was shown in [10] that (L,≤,0,1) is a bounded poset and

x ≤ y if and only if x⊓ y = x.

Moreover, using the absorption laws, we easily derive the identities

x⊔ x ≈ x and x⊓ x ≈ x.

For i ∈ {c,o,a,s} let L i denote the class of all bounded λ-lattices L with a unary
operation satisfying P(L) ∈ P i. Hence L i can be considered as a representation of
P i. This means that the properties of L i may be considered as properties of P i.

In the following we will characterize the above mentioned properties of bounded
posets with a unary operation by means of identities of assigned λ-lattices. Surpris-
ingly, this works despite the fact that this assignment is not unique. Hence, classes
of complemented, orthogonal, almost skew-orthomodular and skew-orthomodular
posets will be characterized by means of varieties of bounded λ-lattices. We start
with complemented posets.

Theorem 2. Let P = (P,≤, ′,0,1) be a bounded poset with a unary operation and
L = (P,⊔,⊓, ′,0,1) ∈ A(P). Then P is complemented if and only if L satisfies the
identities

(x⊔ y)⊔ (x′⊔ y) ≈ 1, (1)
(x⊓ y)⊓ (x′⊓ y) ≈ 0. (2)

Hence Lc is a variety.

Proof. Let a,b ∈ P. First assume P ∈ P c. Then

a ≤ a⊔b ≤ (a⊔b)⊔ (a′⊔b),

a′ ≤ a′⊔b ≤ (a⊔b)⊔ (a′⊔b)

and hence (a⊔b)⊔ (a′⊔b) ∈U(a,a′) = {1}, i.e., (a⊔b)⊔ (a′⊔b) = 1. Dually,

(a⊓b)⊓ (a′⊓b)≤ a⊓b ≤ a,

(a⊓b)⊓ (a′⊓b)≤ a′⊓b ≤ a′

and hence (a⊓b)⊓ (a′⊓b) ∈ L(a,a′) = {0}, i.e., (a⊓b)⊓ (a′⊓b) = 0. Conversely,
suppose L to satisfy identities (1) and (2). If a,a′ ≤ b then a⊔ b = a′ ⊔ b = b and
hence

b = b⊔b = (a⊔b)⊔ (a′⊔b) = 1
showing a∨a′ = 1. Similarly, b ≤ a,a′ implies a⊓b = a′⊓b = b and therefore

b = b⊓b = (a⊓b)⊓ (a′⊓b) = 0
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showing a∧a′ = 0. Hence P ∈ P c. □

The identities

x⊔ x′ ≈ 1,

x⊓ x′ ≈ 0.

are necessary, but not sufficient for a bounded λ-lattice to be complemented.
Orthogonal posets can be characterized by an identity that is a bit more complic-

ated than the previous ones (1) and (2).

Theorem 3. Let P = (P,≤, ′,0,1) ∈ P c and L = (P,⊔,⊓, ′,0,1) ∈ A(P). Then P
is orthogonal if and only if L satisfies the identity

(((x⊓ y′)⊔ z)⊔ (y⊔ z))⊓ ((x⊓ y′)⊔ y)≈ (x⊓ y′)⊔ y. (3)

Hence Lo is a variety.

Proof. Let a,b,c ∈ P. First assume P ∈ P o. Then (a⊓b′)∨b exists. Now

a⊓b′ ≤ (a⊓b′)⊔ c ≤ ((a⊓b′)⊔ c)⊔ (b⊔ c),

b ≤ b⊔ c ≤ ((a⊓b′)⊔ c)⊔ (b⊔ c)

and hence ((a⊓b′)⊔ c)⊔ (b⊔ c) ∈U(a⊓b′,b) which yields

(a⊓b′)⊔b ≤ ((a⊓b′)⊔ c)⊔ (b⊔ c)

which is equivalent to identity (3). Conversely, suppose L to satisfy identity (3).
Assume a ⊥ b. Then a⊓b′ = a. If a,b ≤ c then a⊔ c = b⊔ c = c and hence

a⊔b = (a⊓b′)⊔b = (((a⊓b′)⊔ c)⊔ (b⊔ c))⊓ ((a⊓b′)⊔b)≤
≤ ((a⊓b′)⊔ c)⊔ (b⊔ c) = (a⊔ c)⊔ c = c⊔ c = c

showing a⊔b = a∨b, i.e. a∨b exists. Hence P ∈ P o. □

Similarly as above we can characterize almost skew-orthomodular posets.

Theorem 4. Let P = (P,≤, ′,0,1) ∈ P o and L = (P,⊔,⊓, ′,0,1) ∈ A(P). Then P
is almost skew-orthomodular if and only if L satisfies the identity

(((x⊓ y)′⊓ z)⊓ (y⊓ z))⊔ ((x⊓ y)′⊓ y)≈ (x⊓ y)′⊓ y. (4)

Hence La is a variety.

Proof. Let a,b,c ∈ P. First assume P ∈ P a. Then (a⊓b)′∧b exists. Now

((a⊓b)′⊓ c)⊓ (b⊓ c)≤ (a⊓b)′⊓ c ≤ (a⊓b)′,

((a⊓b)′⊓ c)⊓ (b⊓ c)≤ b⊓ c ≤ b

and hence ((a⊓b)′⊓ c)⊓ (b⊓ c) ∈ L((a⊓b)′,b) which yields

((a⊓b)′⊓ c)⊓ (b⊓ c)≤ (a⊓b)′⊓b
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which is equivalent to identity (4). Conversely, suppose L to satisfy identity (4).
Assume a ≤ b. Then a⊓b = a. If c ≤ a′,b then a′⊓ c = b⊓ c = c and hence

c = c⊓ c = (a′⊓ c)⊓ c = ((a⊓b)′⊓ c)⊓ (b⊓ c)≤
≤ (((a⊓b)′⊓ c)⊓ (b⊓ c))⊔ ((a⊓b)′⊓b) = (a⊓b)′⊓b = a′⊓b

showing a′ ⊓ b = a′ ∧ b, i.e. a′ ∧ b exists. Moreover, a⊔ b = b. If a,a′ ⊓ b ≤ c then
a⊔ c = (a′⊓b)⊔ c = c and hence

a⊔ (a′⊓b) = (b⊓a′)⊔a = (((b⊓a′)⊔ c)⊔ (a⊔ c))⊓ ((b⊓a′)⊔a)≤
≤ ((b⊓a′)⊔ c)⊔ (a⊔ c) = ((a′⊓b)⊔ c)⊔ c = c⊔ c = c

showing a⊔ (a′⊓b) = a∨ (a′∧b), i.e. a∨ (a′∧b) exists. Hence P ∈ P a. □

Example 2. The poset shown in Fig. 5
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Fig. 5

with x 0 a b c d e f g 1
x′ 1 g g 1 1 g g 1 g

satisfies identity (4), but does not belong to P c since c∧ c′ = c∧1 = c ̸= 0, and it is
not a lattice. Moreover, ′ is antitone, but not an involution.

Next we characterize skew-orthomodular posets by identities of assigned λ-lattices.
Since in almost skew-orthomodular λ-lattices we have

x⊔ (x′⊓ (x⊔ y)) = x∨ (x′∧ (x∨ y)),

we only need to add a single identity. Let us note that the poset shown in Fig. 1 is
almost skew-orthomodular, but not skew-orthomodular. For skew-orthomodularity
we have the following result. The proof is evident.
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Corollary 1. Let P = (P,≤, ′,0,1) be a bounded poset with a unary operation and
L = (P,⊔,⊓, ′,0,1) ∈ A(P). Then P is skew-orthomodular if and only if L satisfies
the identities (1) – (5) where

x⊔ (x′⊓ (x⊔ y))≈ x⊔ y. (5)

Hence Ls is a variety.

In the following we show some important congruence properties of the variety Ls.
Let V be a variety. The variety V is called congruence permutable if Θ ◦Φ =

Φ◦Θ for all A∈V and all Θ,Φ∈ConA. The variety V is called congruence regular
if for each A= (A,F)∈V , a∈A and Θ,Φ∈ConA with [a]Θ= [a]Φ we have Θ=Φ.
It is well-known (cf. [5], Theorems 3.1.8 and 6.1.3) that V is congruence permutable
if and only if there exists a so-called Malcev term, i.e. a ternary term p satisfying

p(x,x,y)≈ p(y,x,x)≈ y

and it is regular if and only if there exists a positive integer n and ternary terms
t1, . . . , tn such that

t1(x,y,z) = · · ·= tn(x,y,z) = z if and only if x = y.

Theorem 5. Let V be a variety of bounded λ-lattices (L,⊔,⊓, ′,0,1) with a unary
operation satisfying the identities x⊓ x′ ≈ 0 and (5). Then V is congruence permut-
able. In particular, Ls is congruence permutable.

Proof. The term

p(x,y,z) := (x⊔ (y′⊓ (y⊔ z)))⊓ (z⊔ (y′⊓ (y⊔ x)))

is a Malcev term since

p(x,x,z)≈ (x⊔ (x′⊓ (x⊔ z)))⊓ (z⊔ (x′⊓ (x⊔ x)))≈ (x⊔ z)⊓ (z⊔ (x′⊓ x))≈
≈ (x⊔ z)⊓ (z⊔0)≈ (x⊔ z)⊓ z ≈ z,

p(x,z,z)≈ (x⊔ (z′⊓ (z⊔ z)))⊓ (z⊔ (z′⊓ (z⊔ x)))≈ (x⊔ (z′⊓ z))⊓ (z⊔ x)≈
≈ (x⊔0)⊓ (z⊔ x)≈ x⊓ (z⊔ x)≈ x.

□

We are going to show also congruence regularity of the variety Ls.

Theorem 6. Let V be a variety of bounded λ-lattices (L,⊔,⊓, ′,0,1) with a unary
operation satisfying the identities 0′ ≈ 1, x⊓ x′ ≈ 0 and (5). Then V is congruence
regular. In particular, the variety Ls is congruence regular.

Proof. Put
t(x,y) := (x′⊓ (x⊔ y))⊔ (y′⊓ (x⊔ y)).

Then

t(x,x)≈ (x′⊓ (x⊔ x))⊔ (x′⊓ (x⊔ x))≈ (x′⊓ x)⊔ (x′⊓ x)≈ 0⊔0 ≈ 0,
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and if t(x,y) = 0 then x′⊓ (x⊔ y) = y′⊓ (x⊔ y) = 0 and hence

x = x⊔0 = x⊔ (x′⊓ (x⊔ y)) = x⊔ y = y⊔ x = y⊔ (y′⊓ (y⊔ x)) = y⊔0 = y.

If we put

t1(x,y,z) := t(x,y)⊔ z,

t2(x,y,z) := (t(x,y))′⊓ z

then

t1(x,x,z)≈ t(x,x)⊔ z ≈ 0⊔ z ≈ z,

t2(x,x,z)≈ (t(x,x))′⊓ z ≈ 0′⊓ z ≈ 1⊓ z ≈ z,

and if t1(x,y,z) = t2(x,y,z) = z then t(x,y) ≤ z ≤ (t(x,y))′ and hence t(x,y) =
t(x,y)⊓(t(x,y))′ = 0 whence x = y. (Observe that in Lc we have 0′ ≈ 0⊔0′ ≈ 1.) □

Finally, we are going to show the independence of identities (1) – (4).

Theorem 7. Within the variety of bounded λ-lattices with a unary operation the
following hold:

(i) Identities (1) – (4) are independent,
(ii) identities (1) – (4) do not imply identity (5).

Proof.

(i) The λ-lattice ({0,1},⊔,⊓,0,1) with

x 0 1
x′ 0 0

satisfies (2), (3) and (4), but not (1) since

(0⊔0)⊔ (0′⊔0) = 0⊔ (0⊔0) = 0 ̸= 1.

The λ-lattice ({0,1},⊔,⊓,0,1) with

x 0 1
x′ 1 1

satisfies (1), (3) and (4), but not (2) since

(1⊓1)⊓ (1′⊓1) = 1⊓ (1⊓1) = 1 ̸= 0.
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The λ-lattice shown in Fig. 6
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Fig. 6

with a⊔b = 1, b⊔ c = f , e⊓ f = c and

x 0 a b c d e f 1
x′ 1 d e d a b d 0

satisfies (1), (2) and (4), but not (3) since
(((a⊓b′)⊔ f )⊔ (b⊔ f ))⊓ ((a⊓b′)⊔b) = (((a⊓ e)⊔ f )⊔ f )⊓ ((a⊓ e)⊔b) =

= ((a⊔ f )⊔ f )⊓ (a⊔b) = ( f ⊔ f )⊓1 =

= f ̸= 1 = a⊔b = (a⊓ e)⊔b =

= (a⊓b′)⊔b.

The λ-lattice shown in Fig. 7
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with a⊔ b = e, a⊔ c = e, a⊔ d = f , b⊔ c = 1, b⊔ d = g, c⊔ d = g, e⊓ f = a,
e⊓g = c, f ⊓g = d and

x 0 a b c d e f g 1
x′ 1 g f f e d b a 0

satisfies (1), (2) and (3), but not (4) since

(((d ⊓g)′⊓b)⊓ (g⊓b))⊔ ((d ⊓g)′⊓g) = ((d′⊓b)⊓b)⊔ (d′⊓g) =

= ((e⊓b)⊓b)⊔ (e⊓g) = (b⊓b)⊔ c =

= b⊔ c = 1 ̸= c = e⊓g = d′⊓g =

= (d ⊓g)′⊓g.

(ii) The λ-lattice shown in Fig. 8
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@
@
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0

a

b

c

1

Fig. 8
with

x 0 a b c 1
x′ 1 b a b 0

satisfies (1) – (4), but not (5) since

a⊔ (a′⊓ (a⊔ c)) = a⊔ (b⊓ c) = a⊔0 = a ̸= c = a⊔ c.

□

It should be mentioned that the λ-lattices in Fig. 6 (with a∨ b = f ) and in Fig. 8
are in fact lattices.
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