FCA tools, algorithms and datasets
This is a collection of tools, algorithms and datasets, we used in our works on Formal Concept Analysis. Our intention is to make the results of our research as transparent as possible.
Software
- Performance comparison of CbO-based algorithms
Language: Data and Javascript Sources: cbo-graphs.tgz Online: View - FCA algorithms and tools
Language: C++ Sources: fca-apps-jg.tgz License: GPLv3 - LinCbO in the framework made by Bazhanov & Obiedkov (https://github.com/yazevnul/fcai )
Language: C++ Sources: LinCbO.zip License: MIT - Context binarizer
Language: Java Sources: ContextBinarizer.zip License: MIT
Datasets
All provided datasets are in Burmeister format , were binarized from the original dataset given in the last column.
Dataset | #objects | #attributes | #incidences | #intents | #ps.intents | Source |
---|---|---|---|---|---|---|
inter10crx | 653 | 139 | 40,170 | 10,199,818 | 20,108 | |
inter10shuttle | 43,500 | 178 | 3,567,907 | 38,199,148 | 936 | |
inter3magic | 19,020 | 52 | 399,432 | 1,006,553 | 4181 | |
inter4magic | 19,020 | 72 | 589,638 | 24,826,749 | 21,058 | |
inter5bike_day | 731 | 93 | 24,650 | 3023,326 | 20,425 | |
inter5crx | 653 | 79 | 20,543 | 348,428 | 3427 | |
inter5shuttle | 43,500 | 88 | 1,609,510 | 333,783 | 346 | |
inter6shuttle | 43,500 | 106 | 2,002,790 | 381,636 | 566 | |
nom10bike_day | 731 | 100 | 9293 | 52,697 | 29,773 | |
nom10crx | 653 | 85 | 8774 | 51,078 | 6240 | |
nom10magic | 19,020 | 102 | 209,220 | 583,386 | 154,090 | |
nom10shuttle | 43,500 | 97 | 435,000 | 2931 | 810 | |
nom15magic | 19,020 | 152 | 209,220 | 1,149,717 | 397,224 | |
nom20magic | 19,020 | 202 | 209,220 | 1,376,212 | 654,028 | |
nom5bike_day | 731 | 65 | 9293 | 61,853 | 16,296 | |
nom5bike_hour | 17,379 | 90 | 238,292 | 1,868,205 | 320,679 | |
nom5crx | 653 | 55 | 8774 | 29,697 | 2162 | |
nom5keg | 65,554 | 144 | 1,834,566 | 13,262,627 | 42,992 | |
nom5shuttle | 43,500 | 52 | 435,000 | 1461 | 319 | |
ord10bike_day | 731 | 93 | 28,333 | 664,713 | 11,795 | |
ord10crx | 653 | 79 | 37,005 | 1,547,971 | 2906 | |
ord10shuttle | 43,500 | 88 | 1,849,216 | 97,357 | 279 | |
ord5bike_day | 731 | 58 | 14,929 | 81,277 | 5202 | |
ord5bike_hour | 17,379 | 83 | 457,578 | 2,174,964 | 99,691 | |
ord5crx | 653 | 49 | 19,440 | 139,752 | 973 | |
ord5magic | 19,020 | 42 | 535,090 | 821,796 | 1267 | |
ord5shuttle | 43,500 | 43 | 868,894 | 4068 | 119 | |
ord6magic | 19,020 | 52 | 662,177 | 2,745,877 | 2735 |
All above datasets can be downloaded in archive.
Datasets used by Bazhanov & Obiedkov can be found on their GitHub repository: https://github.com/yazevnul/fcai/tree/refactoring/test_data/contexts
Accepted publications
- Petr Krajca: On Pruning Techniques in Map-Reduce Style CbO Algorithms.
Annals of Mathematics and Artificial Intelligence
- Radek Janostik, Jan Konecny: LCM from FCA Point of View: A CbO-style Algorithm with Speed-up Features.
Int. J. Approx. Reason. 142: 64-80 (2022)
DOI 10.1016/j.ijar.2021.11.005 , ISSN: 0888613X - Radek Janostik, Jan Konecny: LinCbO: Fast algorithm for computation of the Duquenne-Guigues basis.
Inf. Sci. 572: 223-240 (2021)
DOI 10.1016/j.ins.2021.04.104 , ISSN: 00200255 - Jan Konecny, Petr Krajca: Systematic categorization and evaluation of CbO-based algorithms in FCA.
Inf. Sci. 575: 265-288 (2021)
DOI 10.1016/j.ins.2021.06.024 , ISSN: 00200255 - Pruning Techniques in LinCbO for Computation of the Duquenne-Guigues Basis.
ICFCA 2021: 91-106
DOI 10.1007/978-3-030-77867-5_6 - Petr Krajca: Improving the Performance of Lindig-Style Algorithms with Empty Intersections.
ICCS 2021: 91-104
DOI 10.1007/10.1007/978-3-030-86982-3_7 - Petr Krajca, Martin Trnecka: Reducing Negative Impact of Noise in Boolean Matrix Factorization with Association Rules.
IDA 2021: 365-375
DOI 10.1007/978-3-030-74251-5_29 - Radek Janostik, Jan Konecny, Petr Krajca: Interface between Logical Analysis of Data and Formal Concept Analysis.
Eur. J. Oper. Res. 284(2): 792-800 (2020)
DOI 10.1016/j.ejor.2020.01.015 , ISSN 0377-2217 - Jan Konecny: Attribute implications in L-concept analysis with positive and negative attributes: Validity and properties of models.
Int. J. Approx. Reason. 120: 203-215 (2020)
DOI 10.1016/j.ijar.2020.02.009 - Radek Janostik, Jan Konecny: General framework for consistencies in decision contexts.
Inf. Sci. 530: 180-200 (2020)
DOI 10.1016/j.ins.2020.02.045 , ISSN: 00200255 - Radek Janostik, Jan Konecny, Petr Krajca: LCM is Well Implemented CbO: Study of LCM from FCA Point of View.
CLA 2020: 47-58
- Jan Konecny, Petr Krajca: Pruning in Map-Reduce Style CbO Algorithms.
ICCS 2020: 103-116
DOI 10.1007/978-3-030-57855-8_8 - Jan Konecny, Petr Krajca: On attribute reduction in concept lattices: The polynomial time discernibility matrix-based method becomes the CR-method.
Inf. Sci. 491: 48-62 (2019)
DOI 10.1016/j.ins.2019.03.038 , ISSN 0020-0255 - Petr Krajca, Martin Trnecka: Parallelization of the GreConD Algorithm for Boolean Matrix Factorization.
ICFCA 2019: 208-222
DOI 10.1007/978-3-030-21462-3_14
Submitted publications
- Radek Janostik, Jan Konecny: Pruning techniques in LinCbO for computation Duquenne-Guigues basis.
Information Sciences
Supported by the grant JG 2019 of Palacký University Olomouc, No. JG_2019_008.