Formal Concept Analysis

Part |

Radim BELOHLAVEK

Dept. Computer Science
Palacky University, Olomouc
radim.belohlavek@acm.org

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 1/111



Introduction to Formal Concept Analysis (FCA)

Radim Belohlavek (UP Olomouc)

&
Formal Concept Analysis



Introduction to Formal Concept Analysis

— Formal Concept Analysis (FCA) = method of analysis of tabular data

(Rudolf Wille, TU Darmstadt),

— alternatively called: concept data analysis, concept lattices, Galois

lattices, ...

— used for data mining, knowledge discovery, preprocessing data

— input: objects (rows) X attributes (columns) table

Yy Y2 ¥ yi Y2 ¥3
x1 | 1 1 1 x1 | X X X
X2 1 0 1| or xo | X X
x3 | 0 1 1 X3 X X
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Introduction to Formal Concept Analysis

— output:

@ hierarchically ordered collection of clusters:
— called concept lattice,
— clusters are called formal concepts,
— hierarchy = subconcept-superconcept,

@ data dependencies:
— called attribute implications,
— not all (would be redundant), only representative set
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Output 1: Concept Lattices

input data: output concept lattice:

yi

X1
X2
X3

X X
X

X X XS

X

concept lattice = hierarchically ordered set of clusters
cluster (formal concept) = (A, B),

A = collection of objects covered by cluster,
B = collection of attributes covered by cluster,

example of formal concept: ({x1,x2}, {y1,y3}).
clusters = nodes in the Hasse diagram,

Hasse diagram = represents partial order given by
subconcept-superconcept hierarchy

concept lattice = all potentially interesting concepts in data

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011

5 /111



Output 2: Attribute Implications

input data: attribute implications:
Yi_y2 y3 .
XXX A= B like
X | X X {2} = {3}, v, 32} = {13},
X3 X X but not {y1} = {y2},

@ attribute implication = particular data dependency,
@ large number of attribute implications may be valid in given data,
@ some of them redundant and thus not interesting ({y2} = {y2}),

@ reasonably small non-redundant set of attribute dependencies
(non-redundant basis),

connections to other types of data dependencies (functional
dependencies from relational databases, association rules).
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History of FCA

@ Port-Royal logic (traditional logic): formal notion of concept
Arnauld A., Nicole P.: La logique ou I'art de penser, 1662 (Logic Or
The Art Of Thinking, CUP, 2003):
concept = extent (objects) + intent (attributes)

o G. Birkhoff (1940s): work on lattices and related mathematical

structures, emphasizes applicational aspects of lattices in data
analysis.

@ Barbut M., Monjardet B.: Ordre et classification, algbre et
combinatoire. Hachette, Paris, 1970.

@ Wille R.: Restructuring lattice theory: an approach based on
hierarchies of concepts. In: I. Rival (Ed.): Ordered Sets. Reidel,
Dordrecht, 1982, pp. 445-470.
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Literature on FCA

books
o Ganter B., Wille R.: Formal Concept Analysis. Springer, 1999.
@ Carpineto C., Romano G.: Concept Data Analysis. Wiley, 2004.

conferences

@ ICFCA (Int. Conference of Formal Concept Analysis), Springer LNCS,
http://wuw.isima.fr/icfcal7/

@ CLA (Concept Lattices and Their Applications),
http://www.lirmm.fr/cla07/index.htm

@ ICCS (Int. Conference on Conceptual Structures), Springer LNCS,
http://www.iccs.info/

@ conferences with focus on data analysis, information sciences, etc.

web
@ keywords: formal concept analysis, concept lattice, attribute
implication, concept data analysis, Galois lattice
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Selected Applications of FCA

@ clustering and classification (conceptual clustering),
@ information retrieval, knowledge extraction (structured view on data,
structured browsing),
@ machine learning,
@ software engineering
o G. Snelting, F. Tip: Understanding class hierarchies using concept
analysis. ACM Trans. Program. Lang. Syst. 22(3):540-582, May

2000.
o U. Dekel, Y. Gill: Visualizing class interfaces with formal concept

analysis. In OOPSLA'03, pp. 288-289, Anaheim, CA, October 2003.
@ preprocessing method: e.g., Zaki M.: Mining non-redundant
association rules. Data Mining and Knowl. Disc. 9(2004), 223-248.
closed frequent itemsets instead of frequent itemsets =
non-redundant association rules (<< number)
@ mathematics (new results in math. structures related to FCA)
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State of the art of FCA

e Ganter, B., Stumme, G., Wille, R. (Eds.): Formal Concept Analysis
Foundations and Applications. Springer, LNCS 3626, 2005,

@ development of theoretical foundations,

o development of algorithms,

@ applications: increasingly popular (information retrieval, software
engineering, social networks, ...),

@ FCA as method of data preprocessing, interaction with other methods
of data analysis,

@ several software packages available.
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What is a concept?

central notion in FCA = formal concept
but what is a concept? many approaches, including:

@ psychology (approaches: classical, prototype, exemplar, knowledge)
Murphy G. L.: The Big Book of Concepts. MIT Press, 2004.
Margolis E., Laurence S.: Concepts: Core Readings. MIT Press, 1999.

@ logic (rare, but Transparent Intensional Logic)

Tichy P.: The Foundations of Frege's Logic. W. De Gryuter, 1988.
Materna P.: Conceptual Systems. Logos Verlag, Berlin, 2004.

e artificial intelligence (frames, learning of concepts)

Michalski, R. S., Bratko, I. and Kubat, M. (Eds.), Machine Learning
and Data Mining: Methods and Applications, London, Wiley, 1998.

@ conceptual graphs (Sowa)
Sowa J. F.: Knowledge Representation: Logical, Philosophical, and
Computational Foundations. Course Technology, 1999.

@ ‘“conceptual modeling”, object-oriented paradigm, ...

e traditional /Port-Royal logic
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Traditional (Port-Royal) view on concepts

The notion of a concept as used in FCA — inspired by
Port-Royal logic (traditional logic):

Arnauld A., Nicole P.: La logique ou I'art de penser, 1662 (Logic Or The
Art Of Thinking, CUP, 2003):

@ concept (according to Port-Royal) := extent + intent

e extent = objects covered by concept
e intent = attributes covered by concept

o example: DOG (extent = collection of all dogs (foxhound, poodle,
..), intent = {barks, has four limbs, has tail,...})

o concept hierarchy

o subconcept/superconcept relation
e DOG < MAMMAL < ANIMAL

e conceptl=(extentl,intentl) < concept2=(extent2,intent2)
< extentl C extent2 (< intentl D intent2)
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Formal Contexts (Tables With Binary Attributes)

Definition (formal context (table with binary attributes))

A formal context is a triplet (X, Y, /) where X and Y are non-empty sets
and / is a binary relation between X and Y, ie., I C X x Y.

@ interpretation: X ...set of objects, Y ...set of attributes,
(x,y) €I ...object x has attribute y

e formal context can be represented by table (table with binary
attributes)

(x,y) €l ...Xin table, (x,y) €/ ...blank in table,

I'lyi y2» y3 ya
X1 | X X X X
xo | X X X
X3 X X X
x4 X X X
X5 | X
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Concept-forming Operators ' and *

Definition (concept-forming operators)

For a formal context (X, Y, I), operators T : 2X — 2Y and +:2Y — 2X
are defined for every AC X and B C Y by

Al = {yeY|foreachxe A:(x,y)el}
Bt = {xeX |foreachyeB:(x,y)el}.

@ operator '
assigns subsets of Y to subsets of X,
AT .. _set of all attributes shared by all objects from A,
@ operator +:
assigns subsets of X to subsets of Y,
B' .. .set of all objects sharing all attributes from B.
o To emphasize that T and * are induced by (X, Y, /), we use 7 and ¥/
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Concept-forming Operators ' and *

Example (concept-forming operators)

For table

we have:

/

yYi Y2 Y3 ya
X1 | X X X X
X2 | X X X
X3 X X X
X4 X X X
X5 | X

o [}t = {y1,y3,ya} {x2,x3}T = {y3,ya},

o {x1,xs,x5}T =10
o XI =0, 0t =Y

o {11}t ={x1,%, x5}, {y1, 2} = {xa},
o {y2,ys}¥ = {x1,x3,xa}, {y2, 3, ya}* = {x1,x3,xa },

°o Bt =X, Y+ ={x}

v
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Formal Concepts

Definition (formal concept)

A formal concept in (X, Y, /) is a pair (A,B) of AC X and B C Y such
that

AT = B and BY = A.

e A ...extent of (A, B),

e B ...extent of (A, B),

e verbal description: (A, B) is a formal concept iff A contains just
objects sharing all attributes from B and B contains just attributes
shared by all objects from A,

e mathematical description: (A, B) is a formal concept iff (A, B) is a
fixpoint of (T, ).
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Formal Concepts

Example (formal concept)

For table
I'lvn yo y3 ya
x| X X X X
X2 | X X X
X3 X X X
X4 X X X
X5 | X

the highlighted rectangle represents formal concept
(A1, B1) = ({x1,x2,x3,xa},{y3,ya}) because
{x1,x2,x3,%}" = {y3, ya},
{y3,ya}t = {x1, %, x3, %8}
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Example (formal concept (cntd.))

But there are further formal concepts:
I'lyvi y2 y3 ya I'lvi y2 y3 ya
X1 X X X X X1 X X X X
xo | X X X Xo | X X X
X3 X X X X3 X X X
X4 X X X X4 X X X
X5 X X5 X
I'lvi y2 y3 ya
X1 | X X X X
Xxo | X X X
X3 X X X
X4 X X X
X5 | X
i.e., <A27 B2> = <{X1aX37X4},{)/27)’37}’4}>v
<A3a B3> — <{X17X2}7 {Y17Y3>Y4}>' <A4a B4> - <{X]_,X2,X5}, {Y1}>




Subconcept-superconcept ordering

Definition (subconcept-superconcept ordering)

For formal concepts (A1, B1) and (Az, By) of (X, Y, /), put
(A1, B1) < (A2,Bp) iff Ay C Ay (iff B, C By).

<A1, By) < (A2, By) ... (A1, By) is more specific than (A, By)
((Az, By) is more general),
@ captures intuition behind DOG < MAMMAL.

o < ...subconcept-superconcept ordering,

Consider formal concepts from the previous example:
(A1, Br) = ({x1, %2, X3, Xa}, {y3, ya}), (A2, B2) = ({x1,x3, xa}, {2, y3, ya}),

(A3, B3) = ({x1, %2}, {y1, y3, ya}), (A4, Ba) = ({x1,x2, x5}, {y1}). Then:
(A3, B3) < (A1, B1), (A3, B3) < (A, Ba), (A3, Bs3) < (A4, Ba),
(A2, B2) < (A1, B1), (A1, B1)|[(As, Ba), (A2, B2)||{A4, Ba).
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Concept Lattice

Definition (concept lattice)

Denote by B(X, Y, ) the collection of all formal concepts of (X, Y, /), i.e.

B(X,Y,I)={(A B) €2X x2Y | At = B,Bt = A}
B(X,Y,I) equipped with the subconcept-superconcept ordering < is
called a concept lattice of (X, Y, /).

e B(X,Y,I) represents all (potentially interesting) clusters which are
“hidden” in data (X, Y, /).
o We will see that (B (X, Y,/),<) is indeed a lattice later.
Denote
Ext(X,Y,l)={Ac2X | (A B) € B(X,Y,I) for some B}
(extents of concepts)
Int(X,Y,l)={Bec2Y | (A B) € B(X,Y,I) for some A}
(intents of concepts)
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Concept Lattice — Example

input data (Ganter, Wille: Formal Concept Analysis. Springer, 1999):

| [al[bf[c[d]elflg[h][i]

leech |1 x | % X

bream | 2| x | X X | x

frog |3 x | x | X X | X

dog |4 x X X | X
spike-weed |5 || x | X X X

reed |6 X | X | X | X X

bean |7 X X | x| X

maize | 8 || X X | X X

: needs water to live, b: lives in water,

: lives on land, d: needs chlorophyll to produce food,

: can move around, h: has limbs,

a
c
e: two seed leaves, f: one seed leaf,
g
i

suckles its offspring.
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a b c d e f g h i
leech |1 || x X X
bream |2 || X X X X
frog [3]| X X X X X
dog |4 || x X X X X
spike-weed |5 || X X X X
reed |6 || X X X X X
bean |7 || X X X X
maize | 8|| X X X X
formal concepts:
CO - {1’ 27 37 47 57 67 77 8}’ {EJ}> = <{1a 27 37 4}7 {av g}>v

(
<{27374}7{aag7 h}>' = ({5,6,7,8},{3, d}>v
C4 — ({5,6,8},{a,d,f}), Cs = ({3,4.6,7,8}, {a,c}),
<{374}>{37 ¢ 8, h}>, C? <{4}7{av ¢ 8, h> i}>,
C8 - <{67778}7{‘97C7 d}> G = ({6 8} {a ¢, d, f}>
ClO = ({7},{a,c,d,e}> C11 = <{1 2 3 5 6} {a b}>
G2 = ({1,2,3},{a,b,8}), Gz = ({2, 3} {a.b,g, h}),
Cuy = <{5> 6}a {a’ b,d, f}>, Ci5 = <{3a 6}’ {av b, C}>:
Cis = ({3},{a,b,c,g, h}), Ciz = ({6},{a,b,c,d, f}),
Cis = ({},{a,b,c,d,e,f,g, h,i}).



concept lattice:
Co

l [ albJc[d[el]fle [h 7]

leech | 1 X X X

bream | 2 X X X X

frog |3 X X X X X

dog | 4 X X X X X
spike-weed | 5 X X X X

reed | 6 X X X X X

bean |7 X X X X

maize | 8 X X X X

Co = ({1,2,3,4,5,6,7,8},{a}), G = ({1,2,3,4},{a,g}),
C2 = <{27374}> {avg> h}>1 C3 = <{5,6,7,8}, {a, d}>,

Gy = ({5,6,8},{a,d,f}), G =({3,4,6,7,8},{a,c}),

C6 = <{374}> {aa G8, h}>, C? = <{4}, {3, c, g, h, i}),

G = ({6,7,8},{a,c,d}), Co = ({6,8},{a,c,d,f}),

Cio = {7},{a,c,d,e}), C11 = ({1,2,3,5,6},{a, b}),

G2 = <{17 2, 3}, {37 b,g}), Gz = <{27 3}7 {37 b, g, h}>,

G = <{57 6}a {a’ b, d, f}>, Ci5 = <{3, 6}, {a, b, C}>,

Ci6 = ({3},{a,b,c, g, h}), iz = ({6},{a,b,c,d, f}),

Cis = {{},{a,b,c,d,e,f,g, h,i}).



Formal concepts as maximal rectangles

I'lyi yo ys ya
X1 | X X X X
X2 | X X X
X3 X [ X X
X4 X X X
X5 | X

Definition (rectangles in (X, Y, /))

A rectangle in (X, Y, /) is a pair (A, B) such that Ax B C [, i.e.: for each
x € Aand y € B we have (x,y) € I. For rectangles (A1, B1) and (A, B),
put <A1, Bl> C <A2, Bz> iff A7 C Ay and B; C Bs.

Example

| A\

In the table above, ({x1, x2,x3},{y3,ya}) is a rectangle which is not
maximal w.r.t. C. ({x1,x2,x3,xa},{y3,ya}) is a rectangle which is
maximal w.r.t. C.

v
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Formal concepts as maximal rectangles

Theorem (formal concepts as maximal rectangles)

(A, B) is a formal concept of (X, Y, I) iff (A, B) is a maximal rectangle in
(X, Y, 1.

s
H¢” :

“Geometrical reasoning” in FCA based on rectangles is important.
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Mathematical structures related to FCA

— Galois connections,
— closure operators,

— fixed points of Galois connections and closure operators.

These structure are referred to as closure structures.
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Galois connections

Definition (Galois connection)

A Galois connection between sets X and Y is a pair (f,g) of f :2X — 2V
and g : 2¥ — 2X satisfying for A, A1, A» C X, B,B1,B, C Y:

A1 C Ay = f(A) C F(A1), (1)
B C By = g(B2) C g(B1), (2)
A C g(f(A)), (3)
B C f(g(B). (4)

Definition (fixpoints of Galois connections)

For a Galois connection (f, g) between sets X and Y, the set
fix((f,g)) = {(A, B) € 2% x 27| f(A) = B, g(B) = A}

is called a set of fixpoints of (f,g).
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Galois connections

Theorem (arrow operators form a Galois connection)

For a formal context (X, Y, 1), the pair (", %) of operators induced by
(X,Y,I) is a Galois connection between X and Y.
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Lemma (chaining of Galois connection)

For a Galois connection (f,g) between X and Y we have
f(A) = f(g(f(A))) and g(B) = g(f(g(B))) forany AC X and BC Y.

We prove only f(A) = f(g(f(A))), g(B) = g(f(g(B))) is dual:

“en.

f(A) C f(g(f(A))) follows from (4) by putting B = f(A).

"

?ir;ce A C g(f(A)) by (3), we get f(A) D f(g(f(A))) by application of
1). Ol

v
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Closure operators

Definition (closure operator)

A closure operator on a set X is a mapping C : 2X — 2% satisfying for
each A A1, A, C X

AC C(A), (5)
A1 C A2 = C(Al) C C(Az), (6)
C(A) = C(C(A)). (7)

Definition (fixpoints of closure operators)

For a closure operator C : 2X — 2X the set
fix(C) ={AC X|C(A) = A}

is called a set of fixpoints of C.
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Closure operators

Theorem (from Galois connection to closure operators)

If (f,g) is a Galois connection between X and Y then Cx =fogisa
closure operator on X and Cy = g o f is a closure operator on Y.

We show that f o g : 2X — 2X is a closure operator on X:

(5) is A C g(f(A)) which is true by definition of a Galois connection.
(6): A1 C Ay impies f(Az2) C f(A1) which implies g(f(A1)) C g(f(A2)).
(7): Since f(A) = f(g(f(A))), we get g(f(A)) = g(f(g(f(A)))). my
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Theorem (extents and intents)

Ext(X,Y,l) = {B'|BC Y},
Int(X,Y,l) = {AT|AC X}

We prove only the part for Ext(X, Y, /), part for Int(X, Y, /) is dual.
“C"iIf A€ Ext(X, Y, 1), then (A, B) is a formal concept for some

B C Y. By definition, A= B}, i.e. Ac {B¥|BC Y}

“D": Let A€ {B¥|B C Y}, ie. A= B} for some B. Then (A A") is a
formal concept. Namely, AN = B*+ = B+ = A by chaining, and AT = A"
for free. That is, A is the extent of a formal concept (A, AT), whence

A€ Ext(X,Y,I). O

v
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Theorem (least extent containing A, least intent containing B)

The least extent containing A C X is AT™V. The least intent containing
BCYisB'

For extents:

1. AN is an extent (by previous theorem).

2. If Cis an extent such that A C C, then A™ C C™ because ™ is a
closure operator. Therefore, A is the least extent containing A. O

v
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Extents, intents, concept lattice

For any formal context (X, Y,I):
Ext(X,Y,l) = fix("™"),
Int(X,Y,l) = fix(*"),
BX,Y, 1) = {{AA)|A€Ext(X,Y, )},
B(X,Y,) = {(B*B)|Becnt(X,Y,I)}.

For Ext(X, Y, /):

We need to show that A is an extent iff A = ATV,

“=": If Ais an extent then for the corresponding formal concept (A, B)
we have B = AT and A = BY = A™. Hence, A = AT},

“<": If A= AN then (A, AT) is a formal concept. Namely, denoting

(A, B) = (A, AT), we have both AT = B and B} = A™ = A. Therefore, A

is an extent.
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Extents, intents, concept lattice

For B(X, Y, 1) = {(A,ATY | A € Ext(X, Y, )}:
If (A, B) € B(X,Y,I) then B = A" and, obviously, A € Ext(X, Y, /).
If A€ Ext(X,Y,/)then A= A™ (above claim) and, therefore,

(A, AT € B(X, Y, ). O

The previous theorem says:
In order to obtain B(X,Y,/), we can:

1. compute Ext(X, Y, /),
2. for each A € Ext(X, Y, /), output (A, AT).
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Concise definition of Galois connections

There is a single condition which is equivalent to conditions (1)—(4) from
definition of Galois connection:

(f,g) is a Galois connection between X and Y iff for every A C X and
BCY:

AC g(B) iff BCF(A) (8)

="

Let (f,g) be a Galois connection.

If AC g(B) then f(g(B)) C f(A) and since B C f(g(B)), we get
B C f(A). In similar way, B C f(A) implies A C g(B).
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Concise definition of Galois connections

<~
Let A C g(B) iff B C f(A). We check that (f, g) is a Galois connection.
Due to duality, it suffices to check (a) A C g(f(A)), and (b) A; C A,
implies f(A) C f(A1).
(a): Due to our assumption, A C g(f(A)) is equivalent to f(A) C f(A)
which is evidently true.
(b): Let A; C Ay. Due to (a), we have Ay C g(f(Az)), therefore
A1 C g(f(A2)). Using assumption, the latter is equivalent to
f(A2) C f(A1). O
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Galois connections, and union and intersection

(f,g) is a Galois connection between X and Y then for A; C X, j € J,
and B; C Y, j € J we have

FLJA) = (A, (9)
jed Jjed
elUB) = N e(B). (10)
jed Jjed

(9):

Forany D C Y: D C f(U;e, A)) iff Uje, A € g(D) iff for each j € J:

A; C g(D) iff for each j € J: D C f(A;) iff D C e, F(A)).

Since D is arbitrary, it follows that f(U;c; Aj) = e, f(A))-

(10): dual. O

v
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Each Galois connection is induced by a binary
relation

Let (f,g) be a Galois connection between X and Y. Consider a formal
context (X, Y, ) such that | is defined by

(x,y) el iff yef({x}) or, equivalently, iff x € g({y}), (11)

for each x € X andy € Y. Then (1 V1) = (f g), i.e., the arrow operators
(T, 41y induced by (X, Y, 1) coincide with (f,g).

v

First, we show y € f({x}) iff x € g({y}):
From y € f({x}) we get {y} C f({x}) from which, using (8), we get

{x} Celfy}) ie xea({y}).

In a similar way, x € g({y}) implies y € f({x}). This establishes
y € f({x}) iff x € g({y}).
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Each Galois connection is induced by a binary
relation

Now, using (9), for each A C X we have

f(A) = f(Uxea{x}) = Nxeaf({x}) =
= Meealy €Y |y ef({x})} =Nxealy e Y [ {x,y) €1} =
= {yeY]| foreachx € A: (x,y) € I} = Al
Dually, for B C Y we get g(B) = B"'. O

v

o Relation / induced from (f, g) by (11) will be denoted by /i 4.
@ Therefore, we have established two mappings:
| — (7, %) assigns a Galois connection to a binary relation /.
U N= I 1y assigns a binary relation to a Galois connection.

4
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Representation theorem for Galois connections

Theorem (representation theorem)

[ (1,4 and (T)4) — I+ vy are mutually inverse mappings between the
set of all binary relations between X and Y and the set of all Galois
connections between X and Y.

Using the results established above, it remains to check that / = I<T, by
We have

(X, y) € by iy iff y € {3 fF (x,y) €1,
finishing the proof. Ol

In particular, previous theorem assures that (1)—(4) fully describe all the
properties of our arrow operators induced by data (X, Y, /).
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Duality between extents and intents

Having established properties of (T, +), we can see the duality relationship
between extents and intents:

For <A1, Bl>, (A, B2> S B(X, Y, /),

AL C A, iff ByCB. (12)

v

By assumption, A; = Bf and B; = A,T. Therefore, using (1) and (2), we
get A; C A implies Ag - AI, i.e., Bo C Bj, which implies Bli - Bzi, i.e.
A; C As. Ol

v

Therefore, the definition of a partial order < on B(X, Y, /) is correct.
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Duality between extents and intents

Theorem (extents, intents, and formal concepts)
1.
2.

3. (B(X,Y,I),<) is isomorphic to (Ext(X,Y,I),C).
4. (B(X,Y,I),<) is dually isomorphic to (Int(X, Y,I),C).

(Ext(X,Y,1),C) and (Int(X, Y, 1),C) are partially ordered sets.
(Ext(X,Y,1),C) and (Int(X, Y, 1), <) are dually isomorphic, i.e.,
there is a mapping f : Ext(X, Y, l) — Int(X, Y, /) satisfying

A1 C Ay iff f(Ap) C f(A1).

v

1.: Obvious because Ext(X, Y, /) is a collection of subsets of X and C is
set inclusion. Same for Int(X, Y, /).

2.: Just take f =T and use previous results.

3.: Obviously, mapping (A, B) — A is the required isomorphism.

4.: Mapping (A, B) — B is the required dual isomorphism. Ol

v
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Hierarchical structure of concept lattices

We know that B(X, Y, /) (set of all formal concepts) equipped with <
(subconcept-superconcept hierarchy) is a partially ordered set. Now, the
question is:

What is the structure of (B(X,Y,/),<)?

It turns out that (B(X, Y, /), <) is a complete lattice (we will see this as a
part of Main theorem of concept lattices).

concept lattice &~ complete conceptual hierarchy

The fact that (B(X, Y, /), <) is a lattice is a “welcome property”.
Namely, it says that for any collection K C B(X, Y, /) of formal concepts,
B(X,Y,I) contains both the “direct generalization” \/ K of concepts from
K (supremum of K), and the “direct specialization” \/ K of concepts from
K (infimum of K). In this sense, (B(X,Y,[),<) is a complete conceptual
hierarchy.

Now: details to Main theorem of concept lattices.
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Theorem (system of fixpoints of closure operators)

For a closure operator C on X, the partially ordered set (fix(C),C) of
fixpoints of C is a complete lattice with infima and suprema given by

A&:ﬂ&, (13)

Jjed Jjed
\/Aj: C(U Aj). (14)
Jjed Jjed

Proof.

Evidently, (fix(C), C) is a partially ordered set.

(13): First, we check that for A; € fix(C) we have (), A; € fix(C)
(intersection of fixpoints is a fixpoint). We need to check

ﬂjeJ Aj = C(mjeJ Aj).

“C": Njes A € C((Njey Aj) is obvious (property of closure operators).
“2": We have C((;c;Aj) € ey A; iff for each j € J we have

C(Mjes Aj) € Aj which is true. Indeed, we have ;. ; A; C A; from which
we get C([N;c; Aj) € C(A)) = A

£d



Now, since (), A; € fix(C), it is clear that (), A; is the infimum of
Aj's: first, ;e Aj is less of equal to every A;j; second, [, A; is greater
or equal to any A € fix(C) which is less or equal to all A;'s; that is,
Njes Aj is the greatest element of the lower cone of {A; | JjEJ}).

(14): We verify \/;c; Aj = C(U;e, Aj)- Note first that since V., Aj is a
fixpoint of C, we have VJeJA = C(VjesA))-

“C": C(Ujey A)) is a fixpoint which is greater or equal to every A;, and so
C(U;jey Aj) must be greater or equal to the supremum \/;_, Aj, i

ViesAi € C(Ujes AN

“D": Since vjeJA 2 Aj forany j € J, we get vjEJAf D UJ-EJAJ-, and so
ViesAi = €(Vjes A > CUjes A

To sum up, \/jeJ A= C(UjeJ Aj). -




Theorem (Main theorem of concept lattices, Wille (1982))

(1) B(X,Y,I) is a complete lattice with infima and suprema given by
A A8 = (AL (U B, V(4L 8) = (U AY™. ) B) - (15)
Jjed JjeJ Jj€J JjeJ JjeJ JjeJ
(2) Moreover, an arbitrary complete lattice V. = (V, <) is isomorphic to
B(X,Y,I) iff there are mappings v : X — V, u: Y — V such that
(i) v(X) is \/-dense in V, u(Y) is \-dense in V;
(i) v(x) < ply) iff (x,y) € 1.

remark

(1) K C V is supremally dense in V iff for each v € V there exists

K’ C K such that v = \/ K’ (i.e., every element v of V is a supremum of
some elements of K).

Dually for infimal density of K in V (every element v of V is an infimum
of some elements of K).

(2) Supremally (infimally) dense sets canbe considered building blocks of
\/



Proof.

Proof for (1) only. We check /\jeJ (Aj, Bj) = <ﬂj€J Aj, (UjeJ Bj)\):

First, (Ext(X, Y, /), C) = (fix(V), C) and (Int(X, Y, /), C) = (fix(*"), C).
That is, Ext(X, Y, /) and Int(X, Y, /) are systems of fixpoints of closure
operators, and therefore, suprema and infima in Ext(X, Y, /) and

Int(X, Y, ) obey the formulas from previous theorem.

Second, recall that (B (X, Y, /), <) is isomorphic to (Ext(X,Y,/),C) and
dually isomorphic to (Int(X, Y, /), C).

Therefore, infima in B(X, Y, /) correspond to infima in Ext(X, Y,/) and
to suprema in Int(X, Y, /).

That is, since A\;; (Aj, B)) is the infimum of (A;, B;j)'s in (B(X, Y, /), <):
The extent of A, (Aj, Bj) is the infimum of A;’s in (Ext(X, Y, /), C)
which is, according to (13), ();c; Aj. The intent of A, (Aj, B;) is the
supremum of B;'s in (Int(X, Y, /), C) which is, according to (14),

(Ujes B))*". We just proved

Njes (Ais B = (Njcs Ais (Ujes B
Checking the formula for \/; ; (Aj, B;) is dual. O




v and g in part (2) of Main theorem

Consider part (2) and take V := B(X, Y, /). Since B(X,Y,!l)is
isomorphic to B(X, Y, /), there exist mappings

X = BX, Y, l)and 2 Y — B(X, Y, 1)
satisfying properties from part (2). How do mappings v and p work?

v(x) = ({x}™, {x}1)... object concept of x,
wly) = ({y}¢7 {y}”>. .. attribute concept of y.
Then: (i) says that each (A, B) € B(X,Y,) is a supremum of some

objects concepts (and, infimum of some attribute concepts). This is true
since

(A, B) = Vyeal{x}™ {x}1) and (A, B) = A, g ({y}, {y}).

(i) is true, too: y(x) < u(y) iff {x}™ C {y} iff {y} C {x} = {x}T iff
(x,y) €l
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What does Main theorem say?

Part (1): B(X,Y,/) is a lattice + description of infima and suprema.
Part (2): way to label a concept lattice so that no information is lost.

labeling of Hasse diagrams of concept lattices

(x) = ({x}™, {x}1) ... object concept of x —labeled by x,
u(y) = {y}+ {y}¥) .. attribute concept of y — labeled by y.

How do we see extents and intents in a labeled Hasse diagram?

extents and intents in labeled Hasse diagram

Consider formal concept (A, B) corresponding to node ¢ of a labeled
diagram of concept lattice B(X, Y, /). What is then extent and the intent
of (A, B)?

x € A iff node with label x lies on a path going from ¢ downwards,

y € B iff node with label y lies on a path going from ¢ upwards.
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Labeling of diagrams of concept lattices

Example

(1) Draw a labeled Hasse diagram of concept lattice associated to formal
context

I'lvi 2 y3 va
x1 | X X X X
xo | X X X
X3 X X X
Xa X X X
X5 | X

(2) Is every formal concept either an object concept or an attribute
concept? Can a formal concept be both an object concept and an
attribute concept?

v

Label the Hasse diagram from the organisms vs. their properties example.
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Labeling of diagrams of concept lattices

Example

Draw a labeled Hasse diagram of concept lattice associated to formal
context

I'lyi yo y3 ya

X1 | X X X X

X2 | X X X

X3 X X X

X4 X X X

X5 | X

B(X,Y,I) consists of: ({x1},Y), ({x1,x2},{y1,¥3,ya}),
{Xl’X37X4} {y2a)/3’}/4}> <{X17X2’X37X4}a{)/37)/4}>1 <{X1?X27X5}7{y1}>1

(
(X, 0).
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Clarified and reduced formal contexts

Definition (clarified context)

A formal context (X, Y, /) is called clarified if the corresponding table
does neither contain identical rows nor identical columns.

That is, if (X, Y, ) is clarified then

{x1}T = {x2}T implies x; = x> for every xi,x € X;

{y1}* = {y2}* implies y1 = y, for every y1,y2 € Y.

clarification: removal of identical rows and columns (only one of several
identical rows/columns is left)

The formal context on the right results by clarification from the formal
context on the left.

'y v v3 wa R
x| X X X X R
x | X X X e X
X3 X X X X3 % %
X4 X X X = | %

X5 X
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Clarified and reduced formal contexts

If (X1, Y1, h) is a clarified context resulting from (Xa, Y2, ) by
clarification, then B(X1, Y1, ) is isomorphic to B(Xa, Y2, b).

v

Let (Xa, Ya, ) contain x1,x2 s.t. {x1}T = {x}T (identical rows). Let
(X1, Y1, h) result from (Xa, Y2, k) by removing x (i.e., X1 = Xo — {x2},
Y1 = Y2). An isomorphism f : B(Xi, Y1, h) — B(Xz, Y2, ) is given by

f((A1, B1)) = (A2, B2)
where B; = B> and

A> — Al if X1 Q Al7
2= A]_U{Xz} if x1 € A;.

Ol

v
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Clarified and reduced formal contexts

Namely, one can easily see that (A;, B1) is a formal concept of
B(Xu1, Y1, h) iff f((A1, B1)) is a formal concept of B(Xz, Y2, ) and that
for formal concepts (A1, B1), (Ci, D1) of B(X1, Y1, ) we have

(A1, B1) < (Cy, Dy) iff £({Ar, Br)) < F((Cy, D1)).

Therefore, B(Xi, Y1, h) is isomorphic to B(Xz, Y2, k). This justifies the
claim for removing one (identical) row. The same is true for removing one
column. Repeated application gives the theorem. []

Example

| A\

Find the isomorphism between concept lattices of formal contexts from the
previous example.

v
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Clarified and reduced formal contexts

Another way to simplify the input formal context: removing reducible
objects and attributes

Example

Draw concept lattices of the following formal contexts:

Ty v y3 ' Iy v
X1 X X1 X
X2 X X X X2 X X
X3 X X3 X

Why are they isomorphic?

Hint: y» = intersection of y; and y3 (i.e., {y2}* = {y1}* N {1 }).
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Clarified and reduced formal contexts

Definition (reducible objects and attributes)

For a formal context (X, Y, /), an attribute y € Y is called reducible iff
there is Y/ C Y with y € Y’ such that

¥ =)=z,

zeY!

i.e., the column corresponding to y is the intersection of columns
corresponding to zs from Y’. An object x € X is called reducible iff there
is X" € X with x ¢ X’ such that

{3t =N {2,
zeX’

i.e., the row corresponding to x is the intersection of rows corresponding
to zs from X'.
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Clarified and reduced formal contexts

— y» from the previous example is reducible (Y’ = {y1,y3}).

— Analogy: If a (real-valued attribute) y is a linear combination of other
attributes, it can be removed (caution: this depends on what we do
with the attributes). Intersection = particular attribute combination.

— (Non-)reducibility in (X, Y, /) is connected to so-called
/\-(ir)reducibility and \/-(ir)reducibility in B(X, Y, /).

— In a complete lattice (V, <), v € V is called /\-irreducible if there is
no UC V with v ¢ Us.t. v=AU. Dually for \/-irreducibility.

— Determine all A-irreducible elements in (2{2:0:¢} C) in a “pentagon”,
and in a 4-element chain.

— Verify that in a finite lattice (V, <): v is A-irreducible iff v is covered
by exactly one element of V/; v is \/-irreducible iff v covers exactly
one element of V.
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Clarified and reduced formal contexts

— easily from definition: y is reducible iff there is Y/ C Y with y € Y’

s.t.
(W = A ah {24). (16)

zeY'’

— Let (X, Y, /) be clarified. Then in (16), for each z € Y":
[V} # {zH and so, [y}, {y ) # ({214, {z141). Thus: y is
reducible iff ({y}*, {y}*1) is an infimum of attribute concepts
different from ({y}+, {y}*"). Now, since every concept (A, B) is an
infimum of some attribute concepts (attribute concepts are /\-dense),
we get that y is not reducible iff ({y}+, {y}*1) is A-irreducible in
B(X,Y,I).

— Therefore, if (X, Y, 1) is clarified, y is not reducible iff ({y}+, {y}*1)
is /\-irreducible.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 60 / 111



Clarified and reduced formal contexts

— Suppose (X, Y, 1) is not clarified due to {y}* = {z}+ for some z # y.
Then y is reducible by definition (just put Y’ = {z} in the definition).

Still, it can happen that ({y}¥, {y}*") is A-irreducible and it can
happen that y is /\-reducible, see the next example.

— Example. Two non-clarified contexts. Left: y» reducible and
{y2 3+, {yo 1) A-reducible. Right: y» reducible but ({y»}+, {yo 41

/\-irreducible.
I lyi yo y3 ya
X1 X
x| X X X X
x3 | X x X X
X4 X

[

Yi_ Y2 Y3 ya ¥
X1 X X
X2 X X
X3 X X X X
X4 X X

— The same for reducibility of objects: If (X, Y, /) is clarified, then x is
not reducible iff ({x}™, {x}1) is \/-irreducible in B(X, Y, ).

— Therefore, it is convenient to consider reducibility on clarified contexts
(then, reducibility of objects and attributes corresponds to \/- and

/\-reducibility of object concepts and attribute concepts).
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Theorem
Let y € Y be reducible in (X,Y,I). Then B(X,Y —{y},J) is isomorphic
to B(X,Y,I) where J = 1N (X x (Y —{y})) is the restriction of | to

X xY —{y}, ie, (X, Y —{y},J) results by removing column y from
(X, Y, 1.

Proof.

Follows from part (2) of Main theorem of concept lattices:

Namely, B(X,Y — {y},J) is isomorphic to B(X, Y, ) iff there are
mappings v : X — B(X,Y,l)and u: Y —{y} — B(X,Y,I) such that
(a) v(X) is \/-dense in B(X, Y,I), (b) u(Y —{y}) is A-dense in
B(X,Y,I), and (c) v(x) < u(z) iff (x,z) € J. If we define v(x) and p(z)
to be the object and attribute concept of B(X, Y, /) corresponding to x
and z, respectively, then:

(a) is evident.

(c) is satisfied because for z € Y — {z} we have (x,z) € J iff (x,z) € | (J
is a restriction of /).

Ol




(b): We need to show that each (A, B) € B(X, Y, ) is an infimum of
attribute concepts different from ({y}¥, {y}*). But this is true because y
is reducible: Namely, if (A, B) € B(X, Y, 1) is the infimum of attribute
concepts which include ({y}+, {y}*1), then we may replace ({y}+, {y}*")
by the attribute concepts ({z}+, {z}*1), z € Y’ (cf. definition of reducible
attribute), of which ({y}¥, {y}*") is the infimum. O

v




Definition (reduced formal context)
(X, Y, 1) is
row reduced if no object x € X is reducible,

column reduced if no attribute y € Y is reducible,
reduced if it is both row reduced and column reduced.

By above observation: If (X, Y, /) is not clarified, then either some
object is reducible (if there are identical rows) or some attribute is
reducible (if there are identical columns). Therefore, if (X, Y, /) is
reduced, it is clarified.

The relationship between reducibility of objects/attributes and \/-
and A-reducibility of object/attribute concepts gives:

observation

A clarified (X, Y, 1) is

row reduced iff every object concept is \/-irreducible,
column reduced iff every attribute concept is /\-irreducible.




Reducing formal context by arrow relations

How to find out which objects and attributes are reducible?

Definition (arrow relations)

For (X, Y, 1), define relations /7, //, and { between X and Y by
- x/ yiff (x,y) €1 and if {x}T C {x1}" then (x1,y) € I.
- x 2 yiff (x,y) €1 and if {y}* C {y1}* then (x,y1) € I.
- xJyiffx/ yand x 7y.

Therefore, if (x,y) € I then none of x /v, x /'y, x ] y occurs. The
arrow relations can therefore be entered in the table of (X, Y, /) such as

/ Y3 ¥ /

iy Yi_ Y2 Y3 Y4
X1 X X X X X1 X X X X
x2 | X X x | X X I v
X3 X X X x| 3 X x X
X4 X X4 /‘ X /‘
X5 X X x|/ x x 3
Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 65 / 111



Reducing formal context by arrow relations

Theorem (arrow relations and reducibility)

For any (X,Y,I),xe X,y e Y:
— ({x} {x}1) is \/-irreducible iff there isy € Y s.t. x / y;
— {y}, {yIM) is A-irreducible iff there is x € Y s.t. x /.

Due to duality, we verify A-irreducibility:

x /y IFF
x & {y}* and for every y; with {y}¥ C {y1}* we have x € {y1}¥ IFF

{y}i C ﬂy1:{y}¢c{y1}¢ IFF
{y}*, {y}*1) is not an infimum of other attribute concepts IFF
{3 {y 1) is A-irreducible. -
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Reducing formal context by arrow relations

Problem:
INPUT: (arbitrary) formal context (X1, Y1, h)
OUTPUT: a reduced context (X, Yz, k)

Algorithm:

1. clarify (X1, Y1, h) to get a clarified context (X3, Y3, /3) (removing
identical rows and columns),

2. compute arrow relations " and  for (X3, Y3, 5),

3. obtain (X2, Y2, k) from (X3, Y3, l3) by removing objects x from X3 for
which there is no y € Y3 with x /" y, and attributes y from Y3 for
which there is no x € X3 with x 7 y. That is:

Xo=Xs—{x| thereisnoy € Yss. t. x ./ y},
Yo=Ys—{y| thereisnox € Xzs. t. x 'y},
hL=15knN (X2 X YQ).
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Reducing formal context by arrow relations

Example (arrow relations)

Compute arrow relations //, 7, ] for the following formal context:

hlyv y» y3 ya
X1 X X X X
X2 X X

X3 X X X
X4 X

X5 X X

Start with . We need to go through cells in the table not containing x
and decide whether 7 applies.

The first such cell corresponds to (x2, y3). By definition, xo 7 y3 iff for
each y € Y such that {y3}¥ C {y}* we have x» € {y}+. The only such y
is y» for which we have xo € {y»}+, hence xo 7 y3.

And so on up to (xs, ya) for which we get x5 7 ya.
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Reducing formal context by arrow relations

Example (arrow relations cntd.)

Compute arrow relations //, 7, ] for the following formal context:

hlyv y» y3 ya
X1 X X X X
X2 X X

X3 X X X
X4 X

X5 X X

Continue with /. Go through cells in the table not containing x and
decide whether / applies. The first such cell corresponds to (x2, y3). By
definition, xo . y3 iff for each x € X such that {x}" C {x}T we have
y3 € {x}1. The only such x is x; for which we have y3 € {x;}", hence

X2/ 3.
And so on up to (xs, ya) for which we get x5 ., ya.
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Reducing formal context by arrow relations

Example (arrow relations cntd. — result)

Compute arrow relations //, 7, 1 for the following formal context (left):

h iy y» y3 hlyv y» y3
x| X X X X x1 | X X X X
x2 | X X x | X X T 7
X3 X X X x3 | X X X
X4 X X4 /‘ X /(

X5 X X x| S X X 3

The arrow relations are indicated in the right table. Therefore, the
corresponding reduced context is

L1y ys ya
X2 X

X3 X X
X5 X
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Reducing formal context by arrow relations

For a complete lattice (V, <) and v € V, denote

VA

@ Show that x /" y iff
(L™ LN v k) = O™, (D < v ),

@ Show that x 7y iff
(DA™ O A ) = W e > s k).
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Reducing formal context by arrow relations

Let (X1, Y1, h) be clarified, Xo C X; and Y2 C Y; be sets of irreducible
objects and attributes, respectively, let b = I N (X2 x Y2) (restriction of
l to irreducible objects and attributes).
How can we obtain from concepts of B(X1, Y1, /1) from those of
B(X2, Y2, )? Answer is based on:
1. (A1, B1) — (A1 N Xy, By N Ya) is an isomorphism from B(Xi, Y1, h)
on B(Xz, YQ, /2).
2. therefore, each extent Ay of B(Xz, Y2, k) is of the form Ay = A; N X3
where Aj is an extent of B(Xi, Y1, h) (same for intents).
3. for x € X1: x € Ay iff {X}T NXo C AN Xy,
foryc Yi:ye B iff {yP'nY,C BiNYa.
Here, T and + are operators induced by (X1, Y1, h).
Therefore, given (A, By) € B(Xz, Ya, k), the corresponding
(A1, B1) € B(Xi, Y1, Ih) is given by

Al = AU{xeX,—X|{x}HFnX, C A}, (17)
Bi = BU{yeYi—Ys:|{y}'nY,CB}. (18)

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 72 /111



Reducing formal context by arrow relations

Example

Left is a clarified formal context (Xi, Y1, /1), right is a reduced context
(X2, Yo, k) (see previous example).

hl v y» ys wa

x1 | X X X X by y3 ya
x2 | X X xy | X

X3 X X X X3 X X
X4 X X5 X

X5 X X

Determine B(Xi, Y1, h) by first computing B(Xz, Y2, k) and then using
the method from the previous slide to obtain concepts B(Xi, Y1, /1) from
the corresponding concepts from B(Xz, Y2, k).
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Example (cntd.)

hlwvn y y3 ya

x1 | X X X X L1y y3 ya
X2 X X X2 X

X3 X X X X3 X X
X4 X X5 X

X5 X X

B(X2, Ya, l) consists of:
0, Y2), ({2}, 1), ({xs}, {yz, ya}), ({x3, x5}, {y3}), (X2, 0).
We need to go through all (A, By) € B(Xa, Y2, k) and determine the
corresponding (A1, B1) € B(Xi, Y1, h) using (17) and (18). Note:
X1 —Xo ={x1,xa}, Y1 — Yo = {y}.
1. for (As, Bo) = (0, Y2) we have

xanXo = {x}nXy=0C A,

N Xo=X1NXo = Xa € A,

hence A1 = AU {x1} = {x1}, and

' nYa={p}nY,=0C B,

hence By = B, U {yz} =Y. So, <A1, Bl> = <{X1}, Y1>.




Example (cntd.)

hlyi y2 yv3

x1 | X X X X b |y y3s
x | X X x2 | X

X3 X X X X3 X X
Xa X X5 X

X5 X X

2. for (Az, Bo) = ({x2}, {y1}) we have
{Xl}T¢ NXo =0 C A, {X4}'N NXo=Xo € A,
hence Ay = Ay U {x1} = {x1,x}, and
{nYa={p}nY,=0C B,
hence By = B> U {y2} = {y1,y2}. So, (A1, B1) = ({x1, x2}, {y1, y2}).
3. for (Az, Bo) = ({x3},{y3,ya}) we have
N Xo=0C Ay, {xa}F N Xo = Xo A,
hence A1 = Ay U {x1} = {x1,x3}, and
T nYa={p}nY,=0C B,
hence By = B, U {yz} = {yz,y3,y4}. So,
(A1, Br) = ({x1,x3}, {y2, y3, ya}).




Example (cntd.)

hlyv y2» ys wa

x1 [ X X X X by y3 ya
x| X X x2 | X

X3 X X X X3 X X
X4 X X5 X

X5 X X

4. for (Az, Bo) = ({x3,x5},{y3}) we have
{Xl}T¢ NXo =0 C A, {X4}'N NXo =Xo € A,
hence Ay = Ay U {x1} = {x1,x3, x5}, and
{HnYa={p}nY,=0C B,
hence B; = By U {y»} = {y2,y3}. So,
(A1, B1) = ({x1,x3, x5}, {y2,y3}).

5. for (Ay, By) = (X2, 0) we have
{Xl}Ti ﬂXQ =0 - A2, {X4}T‘L ﬂXz = X2 - A2,
hence A1 = A, U {Xl,X4} = Xi, and
' nYa={p}nY,=0C B,
hence By = Bo U {y2} = {y2}. So, (A1, B1) = (X1,{y2}).




Clarification and reduction

exercise

Determine a reduced context from the following formal context. Use the
reduced context to compute B(X, Y, /).

! p4!
X1
X2
X3
X4
X5
X6
X7 X

5

Y3 ya Y5

X

X X X

X X X X X X
X

X
X
X

Hint: First clarify, then compute arrow relations.
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Algorithms for computing concept lattices

problem:
INPUT: formal context (X, Y, /),
OUTPUT: concept lattice B(X, Y, ) (possibly plus <)

— Sometimes one needs to compute the set B(X, Y, /) of formal
concepts only.

— Sometimes one needs to compute both the set B(X, Y, /) and the
conceptual hierarchy <. < can be computed from B(X, Y, ) by
definition of <. But this is not efficient. Algorithms exist which can
compute B(X, Y, /) and < simultaneously, which is more efficient
(faster) than first computing B(X, Y, /) and then computing <.

survey: Kuznetsov S. O., Obiedkov S. A.: Comparing performance of
algorithms for generating concept lattices. J. Experimental & Theoretical
Artificial Intelligence 14(2003), 189-216.

We will introduce:
— Ganter's NextClosure algorithm (computes B(X, Y, /)),
— Lindig's UpperNeighbor algorithm (computes B(X, Y, /) and <).
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NextClosure Algorithm

author: Bernhard Ganter (1987)
— input: formal context (X, Y,/),

— output: Int(X, Y,/) ...all intents (dually, Ext(X, Y,/) ...all
extents),

— list all intents (or extents) in lexicographic order,
— note that B(X, Y, /) can be reconstructed from Int(X, Y, /) due to

B(X,Y,)={(B*,B)|Becnt(X,Y,)},

— one of most popular algorithms, easy to implement,

— we present NextClosure for intents.
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NextClosure Algorithm

suppose Y ={1,...,n}
(that is, we denote attributes by positive integers, this way, we fix an
ordering of attributes)

Definition (lexicographic ordering of sets of attributes)
For ABCY,i€{l,...,n} put

A<;B iff ieB—AaAn{l,...,i—1}=Bn{l,...,i—1},
A< B iff A<; B for some i.

Note: < ...lexicographic ordering (thus, every two distinct sets A, B C
are comparable).

Fori=1, weput {1,...,i—1}=0.

One may think of B C Y in terms of its characteristic vector. For
Y ={1,2,3,4,5,6,7} and B = {1,3,4,6}, the characteristic vector of B
is 1011010.
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NextClosure Algorithm

Example

Let Y ={1,2,3,4,5,6}, consider sets {1}, {2}, {2,3}, {3,4,5}, {3,6},
{1,4,5}. We have
o {2} <3 {1} because 1 € {1} — {2} ={1} and AND =BN.
Characteristic vectors: 010000 <; 100000.
@ {3,6} <4 {3,4,5} because 4 € {3,4,5} — {3,6} = {4,5} and
AN{1,2,3} = BN{1,2,3}. Characteristic vectors:
001001 <4 001110.
o All sets ordered lexicographically:
{3,6} <4 {3,4,5} <2 {2} <3{2,3} <1 {1} <4 {1,4,5}.
Characteristic vectors:
001001 <4 001110 <2 010000 <3 011000 <; 100000 <4 100110.

Note: if By C By then B; < Bs.
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NextClosure Algorithm

Definition
For ACY,ie{l,...,n}, put

Adi:=((An{l,...,i—1})u{ipH'.

] 1 2 3 4
X1 X X X
X2 X X X X
X3 X

o A={1,3},i=2.
Adi=(({1,3}n{1,2})u 2" = {1Fu2H¥ = {1,211 =
{1,2,4}.

e A={2},i=1.
Adi=({2}n0)u {1 = {1 = {1,2,4}.

v
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Lemma

For any B,D,D;,D, C Y:

(1) If B<; D1, B<; D>, and i < j then Dy <; Dy;
(2) ifi ¢ B then B< B®i;

(3) if B<; D and D = D' then B® i C D;

(4) if B<; D and D = D*' then B <; B® i.

Proof.

(1) by easy inspection.

(2) is true because BN {1,...,i—1} CB®iNn{l,...,i—1} and
ie(B®i)—B.

(3) Putting GG =BnN{l,...,i—1} and & = {i} we have G U G, C D,
andso B i= (G UG €DV =D.

(4) By assumption, BN {1,...,i—1} =DnN{1,...,i—1}. Furthermore,
(3) yields B@iC Dandso BN{l,...,i—1} D B®in{l,...,i—1}.
On the other hand, B@in{l,...,i—1} D
(BN{L,...,i— 1) n{1,...,i—1} 2 BN{L,...,i —1}. Therefore,
Bn{l,...,i—1}=B®in{l,...,i—1}. Finally, ie B® . [




NextClosure Algorithm

Theorem (lexicographic successor)

The least intent BT greater (w.r.t. <) than B C Y is given by
Bt=Bai

where i is the greatest one with B <; B® i.

Let B be the least intent greater than B (w.r.t. <). We have B < BT
and thus B <; BT for some i such that i € BT. By Lemma (4),
B<iB®i, ie. B<B®i. Lemma (3)yields B@® i < BT which gives
Bt = B @i since BT is the least intent with B < B™. It remains to show
that / is the greatest one satisfying B <; B @ i. Suppose B <, B & k for
k > i. By Lemma (1), B@® k <; B & i which is a contradiction to
B®i=B" < B®k (B' is the least intent greater than B and so

Bt < B@& k). Therefore we have k = . O

v
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pseudo-code of NextClosure algorithm:

1 A:=0}T; (leastIntent)

2 store(A);

3. while not(A=Y) do

4. A:=A+;

5 store(A);

6 endwhile.

complexity: time complexity of computing AT is O(|X| - |Y|?):
complexity of computing CTis O(|X|-|Y]), for D* it is O(|X]| - |Y]), thus
for DV it is O(]X| - | Y]); complexity of computing A& i is thus

O(|X]| - Y|); to get AT we need to compute A® i |Y|-times in the worst
case. As a result, complexity of computing AT is O(|X| - |Y|?).

time complexity of NextClosure is O(|X| - |Y|?-|B(X,Y,1)|)

= polynomial time delay complexity (Johnson D. S., Yannakakis M.,
Papadimitrou C. H.: On generating all maximal independent sets. Inf.

Processing Letters 27(1988), 129-133.): going from A to AT in a
polynomial time = NextClosure has polynomial time delay complexity

Note! Almost no space requirements. But: NextClosure does not
directlv eive information about <.



Example (NextClosure Algorithm — simulation)

Simulate NextClosure algorithm on the following example.

/ 1 2 3
X1 | X X X
X2 X X
X3 X X
Xq | X

L A= =0.

2. Next, we are looking for A™, i.e. 07, whichis A® i s.t. iis the
largest one with A <; A& i. We proceed for i = 3,2,1 and test
whether A <; A® i:

- i=3 Adi= {3 ={3}and 0 <3 {3} = A® |, therefore AT = {3}.

3. Next, {3}:

- i=3A®i= {31 = {3} and {3} #3 {3} = A® i, therefore we
proceed for i = 2.

—i=2 A®i= {2} ={2,3} and {3} <2 {2,3} = A® i, therefore
At ={2,3}.




Example (cntd.)

4. Next, {2,3}*:
— =3 A®i={23¥ =123} and {2,3} #3 {23} =A@,
therefore we proceed for i = 2.
- i=2 A®i= {2} ={2,3} and {2,3} £» {2,3} = A® i, therefore
we proceed for j = 1.
—i=1 A®i= {1} ={1} and {2,3} <1 {1} = A® i, therefore we
At = (1.
5. Next, {1}:
- i=3 A®i= {13 ={1,3} and {1} <3 {1,3} = A® i, therefore
A+ = {1,3).
6. Next, {1,3}:
=3 A®i={1,3 = (1,3} and {1,3} £3 {1.3} = A&,
therefore we proceed for i = 2.
— =2 A@i={12% ={1,2,3} and {1,3} <» {1,2,3} = A,
therefore AT = {1,2,3} = Y.

Therefore, the intents from Int(X, Y, /), ordered lexicographically, are:
0 < {3} <{2,3} < {1} < {1,3} < {1,2,3}.




Example (cntd.)

/|1 2 3
X1 | X X X
X2 X X
X3 X X
Xq | X
nt(X, Y, 1) = {0,{3},{2,3}, {1}, {L,3}, {1,2,3}}.

From this list, we can get the corresponding extents:

X = 0% {xi0, 06} = (31, {xaos} = {2,31, [ a) = {13,
{x1,x} = {1,3}, {xa} = {1,2,3}".

Therefore, B(X, Y, 1) consists of: ({x1},{1,2,3}), ({x1,x},{1,3}),
<{X1>X3}’ {27 3}>' <{X17 X2, X3}? {3}>' <{X17X27X4}7 {1}>v <{X17 X27X3>X4}a ®>



NextClosure Algorithm

— If ¥ is replaced by an arbitrary closure operator C, NextClosure
computes all fixpoints of C. This is easy to see: all that matters in
the proofs of Theorem and Lemma justifying correctness of
NextClosure, is that * is a closure operator.

— Therefore, NextClosure is essentially an algorithm for computing all
fixpoints of a given closure operator C.

— Computational complexity of NextClosure depends on computational
complexity of computing C(A) (computing closure of arbitrary set A).
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UpperNeighbor Algorithm

— author: Christian Lindig (Fast Concept Analysis, 2000)
— input: formal context (X, Y,/),

— output: B(X,Y,/) and <

— idea:

1. start with the least formal concept (BT, (1),
2. for each (A, B) generate all its upper neighbors (and store the

necessary information)
3. go to the next concept.

— Details can be found at http://www.st.cs.uni-sb.de/~1lindig/
papers/fast-ca/iccs-lindig.pdf

— Crucial point: how to compute upper neighbors of a given (A, B).
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UpperNeighbor Algorithm

Theorem (upper neighbors of formal concept)

If (A,B) € B(X,Y,I) is not the largest concept then (AU {x})™, with
x € X — A, is an extent of an upper neighbor of (A, B) iff for each
z€ (AU{x}™ — A we have (AU {x})™ = (AU {z})™.

In general, for x € X — A, (AU {x})™ need not be an extent of an upper
neighbor of (A, B). Find an example.
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UpperNeighbor Algorithm

pseudo-code of UpperNeighbor procedure:
min:=X — A;
neighbors:=0);
for xe X — A do
Bi = (AU{x})'; A :=B};
if (minN((A; — A) — {x}) =0) then
neighbors:=neighborsU{(A;, B1)}
else min:=min—{x};
enddo.

O NO Ok WN -

complexity: polynomial time delay with delay O(|X|2-|Y|) (same as
NextClosure — version for extents)
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Example (UpperNeighbor — simulation)

/ 1 2 3
X1 | X X X
X2 X X
X3 X X
Xq | X

Determine all upper neighbors of the least concept
(A, B) = (0™, 0") = ({xt},{1,2,3}).
— according to 1., and 2., min := {x2, x3, x4}, neighbors := ().
— run loop 3.-8. for x € {x2,x3,xa}.
— for x = xo:
- 4. Bl = {X:L,Xz}T = {1,3;, Al = Bi’ = {Xl,XQ}.
- 5. minN((AL = A) = {x}) = {x2, x5, x4} N (({x1, 2} — Pad) — Pe}) =
{x2,x3,x} N0 = 0, therefore neighbors := {{{x1, %}, {1,3})}.

— for x = x3:
- 4. Bl = {Xl,X3} {2 3 Bl = {Xl X}
- 5. minN ((A ) {x}; {X27X37X4}ﬂ(({X17X3} {xa}) —{x}) =

{x2,x3, x4} N () = (), therefore
neighbors := {{({x1, x2}, {1, 3}), {x1,x3},{2,3})}.

S




Example (UpperNeighbor — simulation)

/|1 2 3
X1 | X X X
X2 X X
X3 X X
Xq | X

— for x = x:
= 15]- Bl = {Xl,X4}T = {1}, A1 = Bil' = {X17X27X4}.

min (1 ((Ar = A) = {x}) = {x2, 33,4} N0 ({3100, xa} = {a}) — {xa}) =
{x2,x3,xa} N {x2} = {x2}, therefore neighbors does not change and we
proceed with 7. and set min := min — {xa} = {x2, x3}.
— loop 3.-8. ends, result is
neighbors = {{({x1,x2},{1,3}), ({x1,x3},{2,3})}.
This is correct since B(X, Y, /) consists of ({x1},{1,2,3}),
<{X1’ X2}a {1? 3}>' <{X17 X3}7 {27 3}>' <{X17 X2, X3}7 {3}>v <{X17 X2, X4}7 {1}>'

({x1,x2,x3,xa},0).




Many-valued contexts and conceptual scaling

— many-valued formal contexts = tables like

age education symptom

Alice | 23 BS 1
Boris | 30 MS 0
Cyril | 31 PhD 1
David | 43 MS 0
Ellen | 24 PhD 1
Fred | 64 MS 0
George | 30 Bc 0

— how to use FCA to such data? = conceptual scaling

— conceptual scaling = transformation of many-valued formal contexts
to ordinary formal contexts such as
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Many-valued contexts and conceptual scaling

&y am ao €Bs €ems eppp Symptom

Alice | 1 0 0 1 0 0 1

Boris | 1 0 0 0 1 0 0

Cyrilt | 0 1 0 0 0 1 1

David | 0 1 O 0 1 0 0

Ellen | 1 0 0 0 0 1 1

Fred| 0 0 1 0 1 0 0

George | 1 0 O 1 0 0 0

— new attributes introduced:
ay ...young, an, ...middle-aged, a, ...old, egs ...highest education

BS, eps . .. highest education MS, eppp ... highest education PhD.

— After scaling, the data can be processed by means of FCA.

— Scaling needs to be done with assistance of a user:

- what kind of new attributes to introduce?
- how many? (rule: the more, the larger the concept lattice)
- how to scale? (nominal scaling, ordinal scaling, other types)
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Many-valued contexts and conceptual scaling

Definition (many-valued context)

A many-valued context (data table with general attributes) is a tuple
D= (X,Y,W,I) where X is a non-empty finite set of objects, Y is a
finite set of (many-valued) attributes, W is a set of values, and / is a
ternary relation between X, Y, and W, i.e., | C X X Y x W, such that

(x,y,w) € I and (x,y,v) € | imply w = v.

(1) A many-valued context can be thought of as representing a table with
rows corresponding to x € X, columns corresponding to y € Y, and table
entries at the intersection of row x and column y containing values

w € W provided (x,y,w) € | and containing blanks if there is no w € W
with (x,y,w) € .
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Many-valued contexts and conceptual scaling

remark (cntd.)

(2) One can see that each y € Y can be considered a partial function from
X to W. Therefore, we often write

y(x) = w instead of (x,y,w) € I.

A set
dom(y) = {x € X|(x,y,w) € [ for some w € W}

is called a domain of y. Attribute y € Y is called complete if

dom(y) = X, i.e. if the table contains some value in every row in the
column corresponding to y. A many-valued context is called complete if
each of its attributes is complete.
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Many-valued contexts and conceptual scaling

remark (cntd.)

(3) From the point of view of theory of relational databases, a complete
many-valued context is essentially a relation over a relation scheme Y.
Namely, each y € Y can be considered an attribute in the sense of
relational databases and putting

D, ={w|(x,y,w) € [ for some x € X},

D, is a domain for y.
(4) We consider only complete many-valued contexts.
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Example (many-valued context)

age education symptom
Alice | 23 BS 1
Boris | 30 MS
Cyril | 31 PhD
David | 43 MS
Ellen | 24 PhD
Fred | 64 MS
George | 30 Bc

OO~ O+ O

represents a many-valued context (X, Y, W, /) with
— X = {Alice, Boris, ..., George},
— Y = {age, education, symptom},

W ={01, ..., 150, BS, MS, PhD, 0,1},

— (Alice, age, 23) € I, (Alice, education, BS) € I, ..., (George,
symptom, 0) € /.

— Using the above convention, we have age(Alice)=23,
education(Alice)=BS, symptom(George)=0.




Many-valued contexts and conceptual scaling

Definition (scale)

Let (X, Y, W, I)be a many-valued context. A scale for attribute y € Y is a

formal context (data table) S, = (X, Y,,/,) such that D, C X,. Objects
w € X, are called scale values, attributes of Y, are called scale attributes.

v

Example (scale)

€Bs €ems ephD
BS 1 0 0
MS | O 1 0
PhD | 0O 0 1

is a scale for attribute y =education. Here, S, = (X,,Y,,/,), X, = {BS,
MS, PhD}, Y, = {ess,ems,epnp}, I, is given by the above table.
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Many-valued contexts and conceptual scaling

Example (scale)

a8y am 3o
0o (1 0 O
; 1 0 0
301 0 O a, am Ao
sLjo 1.0 0-30 [1 0 0
: 0 1 0 31-60 | 0 1 O
60 |l 0 1 0 61-150 | 0 0 1
61 | 0 0 1
: 0 0 1
150 0 0 1
is a scale for attribute age (right table is a shorthand version of left table).
Here, S, = (X,, Y}, 1), X, ={0,...,150}, Y, = {a,,am, a0}, I, is given
by the above table.

4
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Many-valued contexts and conceptual scaling

Example (scale - granularity)

A different scale for attribute age is.

dyy dy aAm Ao Ayo
0-25 1 0 0 O 0
26-35 0 1 0 O 0
36-55 0 0 1 O 0
56-75 0 0 O 1 0
76-150 | O 0 0 O 1

ayy ...Vvery young, a, ...young, an ...middle aged, a, ...old, a,,
...very old.

The choice is made by a user and depends on his/her desired level of
granularity (precision).
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Scale defines the meaning of a scale attributes from Y. Two most
important types are:

— nominal scale: values of attribute y are not ordered in any natural
way (y is a nominal variable) or we do not want to take this ordering
into consideration,

— ordinal scale: values of attribute y are ordered (y is an ordinal
variable).

Example (nominal and ordinal scales)

Left: nominal scale for y =education. Right: ordinal scale for
y =education with BS < MS < PhD.

€BS ems  €phD €BS emS  €phD
BS 1 0 0 BS 1 0 0
MS | O 1 0 MS | 1 1 0
PhD | O 0 1 PhD | 1 1 1

For nominal scale: eys applies to individuals with highest degree MS
For ordinal scale: eys applies to individuals with degree at least MS (MS
or higher)




Many-valued contexts and conceptual scaling
Assume Y}, N'Y,, = 0 for different y1,y> € Y.

Definition (plain scaling)

For a many-valued context D = (X, Y, W, /) (as above), scales S,

(y € Y), the derived formal context (w.r.t. plain scaling) is (X, Z, J) with
attributes defined by

- Z= Uer Yy'
- (x,z) € Jiff y(x) = w and (w, z) € I,.

Meaning of (X, Y, W,I) — (X, Z,J):
— objects of the derived context are the same as of the original
many-valued context;

— each column representing an attribute y is replaced by columns
representing scale attributes z € Y,;

— attribute value y(x) is replaced by the row of scale context S, .
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Formal context and nominal scales for age and education:

age education symptom

Alice | 23 BS 1

Boris | 30 MS 0

Cyril | 31 PhD 1

David | 43 MS 0

Ellen | 24 PhD 1

Fred | 64 MS 0

George | 30 Bc 0

dy am do €gs €MS €pnD

0-30 1 0 0 BS 1 0 0
3160 | 0 1 O MS 0 1 0
61-150 | 0 0 1 PhD | 0 0 1




Derived formal context:
ay am a €ps €eys eppp Symptom

Alice | 1 0 0 1 0 0 1

Boris | 1 0 0 0 1 0 0

Cyril | 0O 1 0 0 0 1 1

David | 0 1 0 0 1 0 0

Ellen | 1 0 O 0 0 1 1

Fred| 0 0 1 0 1 0 0

George | 1 0 O 1 0 0 0




Formal context and nominal scale for age and ordinal scale for education:

age education symptom

Alice | 23 BS 1

Boris | 30 MS 0

Cyril | 31 PhD 1

David | 43 MS 0

Ellen | 24 PhD 1

Fred | 64 MS 0

George | 30 Bc 0

dy am do €gs €MS €pnD

0-30 1 0 0 BS 1 0 0
3160 | 0 1 O MS 1 1 0
61-150 | 0 0 1 PhD | 1 1 1




Derived formal context:
ay am a €ps €eys eppp Symptom

Alice | 1 0 0 1 0 0 1

Boris | 1 0 0 1 1 0 0

Cyril | 0O 1 0 1 1 1 1

David | 0 1 0 1 1 0 0

Ellen| 1 0 O 1 1 1 1

Fred| 0 0 1 1 1 0 0

George | 1 0 O 1 0 0 0




@ In the examples of derived formal context, what scale was used for
attribute symptom?:

symptom symptom
0 or (different notation) | 0 0
1 X 1 1




What is the impact of using nominal scale vs. ordinal scale? Compare
concept lattices of two derived contexts, one one using nominal scale, the
other using ordinal scale.

education €BS €emMS €epnD
Alice BS Alice | 1 0 0
Boris MS Boris | 0 1 0
Cyril PhD Cyril | 0 0 1
David MS David | 0 1 0
Ellen PhD Ellen 0 0 1
Fred MS Fred | 0 1 0
George BS George | 1 0 0
€Bs ©MS €pnD

Alice | 1 0 0

Boris | 1 1 0

Cyril | 1 1 1

David 1 1 0

Ellen 1 1 1

Fred 1 1 0

Genroe 1 0 0




