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Applications of Formal Concept Analysis (FCA)

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 2 / 40



Applications of FCA – outline

– FCA as a method of data preprocessing,

– software for FCA,

– FCA in information retrieval,

– FCA in data analysis problems,

– links, resources.
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FCA as a method of data preprocessing

– idea:
input data D → (pre)processing of D by FCA → further processing
(other methods),

examples:

– FCA in factor analysis (formal concepts are optimal factors for
Boolean factor analysis),

– FCA in mining association rules (enables mining non-redundant
association rules),

– FCA in inductive logic programming (reducing the search space).
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Formal Concepts and Their Role in Factor Analysis

What is factor analysis?

– Spearman: General intelligence, objectively determined and measured.
Amer. J. Psychology (1904)

– according to Harman:
“The principal concern of factor analysis is the resolution of a set of
variables linearly in terms of (usually) a small number of categories
or ‘factors’. . . . A satisfactory solution will yield factors which convey all
the essential information of the original set of variables. Thus, the chief
aim is to attain scientific parsimony or economy of description.”

– given an objects × attributes n ×m matrix I
– decompose I into I ≈ A ◦ B where

– A . . . n × k objects × factors matrix
– B . . . k ×m factors × attributes matrix
– desire: no. factors << no. attributes
– gain: objects described in space of k factors instead of m variables
– variables are manifestations of (more fundamental) factors
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Formal Concepts and Their Role in Factor Analysis

example
input data (Rummel: Applied Factor Analysis, characteristics of
hypothetical nations A–G, “p.c.”=“per capita”)

GNP phones vehicles population national area
p.c. ($) p.c. p.c. (mil) income ($M) (mil km2)

A 60 .004 .003 57.6 3,500 1.3
B 78 .004 .001 1.7 140 .04
C 85 .010 .008 2.3 198 .12
D 114 .083 .026 23.5 2,731 .97
E 321 .0122 .907 .8 303 .71
F 502 .679 .835 1.7 914 .63
G 1,361 1.421 .984 19.4 2,722 1.16

Can we find more general factors using which we could:

– describe the nations,

– explain all the variables (GNP, . . . , area)?
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Denote by I the corresponding 7× 6 matrix:

I =


60 .004 .003 57.6 3, 500 1.3
78 .004 .001 1.7 140 .04
85 .010 .008 2.3 198 .12

114 .083 .026 23.5 2, 731 .97
321 .0122 .907 .8 303 .71
502 .679 .835 1.7 914 .63

1, 361 1.421 .984 19.4 2, 722 1.16


The question is: Can we decompose I into a product

I ≈ A ◦ B

where

– ≈ means “approximately equal”,

– A is a 7× k matrix describing nations in terms of k factors (Ail

. . . value of factor l on nation i), i.e., each nation is described by a
k-dimensional vector of factors,

– B is a k × 6 matrix describing factors in terms of original variables
(Blj . . . value of variable j on factor l), i.e., each factor is described by
a 6-dimensional vector of original variables,

– k < 6 (number of factors < number of original variables).



Answer: yes, we can have k = 2
with I ≈ A ◦ B being

60 .004 .003 57.6 3, 500 1.3
78 .004 .001 1.7 140 .04
85 .010 .008 2.3 198 .12

114 .083 .026 23.5 2, 731 .97
321 .0122 .907 .8 303 .71
502 .679 .835 1.7 914 .63

1, 361 1.421 .984 19.4 2, 722 1.16

 =


−2.4 2.6
−2.1 −1.1
−1.6 −.4
−.4 1.8
.8 −2.0

1.3 −1.1
3.1 1.4

 ◦ B

where B is a 2× 6 matrix (we do not display B).
The two factors (columns of A) can be interpreted as:

– factor 1 . . . level of economic development

– factor 2 . . . size

Factor analysis (and related methods such as principal component
analysis):

– classic topic,

– many textbooks available,

– implemented in SW packages.



Boolean Factor Analysis

Boolean factor analysis: data matrix I is a 0/1-matrix (Boolean matrix) of
dimension n ×m, i.e. data consists of yes/no (presence/absence) variables
such as  1 1 0 0 0

1 1 0 0 1
1 1 1 1 0
1 0 0 0 1


goal again: decompose I ≈ A ◦ B where

– A . . . objects × factors matrix, n × k matrix
– B . . . factors × attributes matrix, k ×m matrix
– desire: k (no. factors) << m (no. variables/attributes)

such as:  1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

 =

 1 0 0
1 0 1
1 1 0
0 0 1

 ◦( 1 1 0 0 0
0 0 1 1 0
1 0 0 0 1

)
.

Investigated since 1970s.
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Factorizability and concept-factorizability

Definition (k-factorizability)

Boolean matrix I k-factorizable if there are Boolean matrices A (n × k)
and B (k ×m) s.t. I = A ◦ B.

Example:

I =

(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
is 3-factorizable since

I =

(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 0 0
1 0 1
1 1 0
0 0 1

)
◦
(

1 1 0 0 0
0 0 1 1 0
1 0 0 0 1

)
.
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Factorizability and concept-factorizability

Can we use (some) formal concepts 〈A,B〉 ∈ B(X,Y, I) as factors?
(note: “factors = abstract concepts” appealing)

We will freely identify matrix I and the corresponding formal context, i.e.
we consider 〈X ,Y , I 〉, X = {1, . . . , n}, Y = {1, . . . ,m}, 〈i , j〉 ∈ I iff
Iij = 1.
Given matrix I and F = {〈A1,B1〉, . . . , 〈Ak ,Bk〉} ⊆ B(X ,Y , I ), denote by
AF and BF the n × k and k ×m Boolean matrices defined by

(AF )il =

{
1 if xi ∈ Al ,
0 if xi 6∈ Al ;

(BF )lj =

{
1 if yj ∈ Bl ,
0 if yj 6∈ Bl .

Remark: Ai = i-th column of AF , Bi = i-th row of BF .

Definition (concept-factorizability, factor concepts)

Boolean matrix I concept-factorizable if there is F ⊆ B(X ,Y , I ) s.t.
I = AF ◦ BF . Formal concepts from F are called factor concepts.
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Example (concept-factorizability)

Take

I =

 1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1


Consider formal concepts 〈A1,B1〉 = 〈{x1, x2, x3}, {y1, y2}〉,
〈A2,B2〉 = 〈{x3}, {y1, y2, y3, y4}〉, 〈A3,B3〉 = 〈{x2, x4}, {y1, y5}〉. Denote

F = {〈A1,B1〉, 〈A2,B2〉, 〈A3,B3〉}.
Then

AF =

 1 0 0
1 0 1
1 1 0
0 0 1

 and BF =

( 1 1 0 0 0
1 1 1 1 0
1 0 0 0 1

)
.

Notice: extents of concepts from F are the columns of AF , intents are the rows of BF
Then

I = AF ◦ BF .
Therefore, I is concept-factorizable with F being the set of concept-factors.



Optimality of concept-factorizability

Theorem (universality of concept-factorizability)

Each I is concept-factorizable. I.e., for each I there is F s.t. I = AF ◦ BF .

Theorem (optimality of concept-factorizability)

If I is k-factorizable then I is concept-factorizable using F (factor
concepts) s.t. |F| ≤ k.

Corollary (upper bound)

Each n ×m Boolean matrix I is concept-factorizable using F with
|F| ≤ min(n,m).

Proof of optimality theorem is based on
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“Geometric interpretation” of formal concepts

Theorem (formal concepts = maximal rectangles)

〈A,B〉 is a formal concept IFF 〈A,B〉 is a maximal rectangle in data.

I y1 y2 y3 y4
x1 1 1 1 1
x2 1 0 1 1
x3 0 1 1 1
x4 0 1 1 1
x5 1 0 0 0

I y1 y2 y3 y4
x1 1 1 1 1
x2 1 0 1 1
x3 0 1 1 1
x4 0 1 1 1
x5 1 0 0 0

I y1 y2 y3 y4
x1 1 1 1 1
x2 1 0 1 1
x3 0 1 1 1
x4 0 1 1 1
x5 1 0 0 0

(A1,B1) = ({x1, x2, x3, x4}, {y3, y4})

(A2,B2) = ({x1, x3, x4}, {y2, y3, y4})

(A3,B3) = ({x1, x2}, {y1, y3, y4})
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Further results on concept-factorizability

Attaining upper bounds of concept-factorizability
put

O(X ,Y , I ) = {〈{xi}↑↓, {xi}↑〉 | 1 ≤ i ≤ n} ⊆ B(X ,Y , I ),

A(X ,Y , I ) = {〈{yj}↓, {yj}↓↑〉 | 1 ≤ j ≤ m} ⊆ B(X ,Y , I ).

Theorem (particular F which is not worse than upper bound)

Let F = O(X ,Y, I) or F = A(X ,Y, I), whichever is smaller. Then
|F| ≤ min(n,m) and I is concept-factorizable using F .

Mandatory factor-concepts

Theorem (concepts from O(X ,Y , I ) ∩ A(X ,Y , I ) are always factor
concepts, no choice)

Let I be concept-factorizable with a set F of factor concepts. Then
O(X ,Y , I ) ∩ A(X ,Y , I ) ⊆ F .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 15 / 40



Algorithm for computing factor concepts

previous results =⇒ algorithm for computing a minimal set of factor
concepts

INPUT: Boolean matrix I
OUTPUT: set F of factor concepts (desire: F is small)

basic points:

– compute concept lattice B(X ,Y , I )
(algorithm with polynomial time delay exists)

– finding factor concepts can be reduced to set-covering problem
(approximation algorithms exist)

– theoretical insight (e.g. mandatory factors) speeds-up set-covering
algorithms
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Illustrative example: input data

I . . . 12× 8 Boolean matrix describing patients × symptoms

I =



1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1
0 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1
1 1 1 0 1 0 0 0
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 0 0 0 0 0 1 0
1 1 1 0 1 0 0 0
0 0 0 0 0 0 1 0
1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1



symptom symptom description

y1 headache
y2 fever
y3 painful limbs
y4 swollen glands in neck
y5 cold
y6 stiff neck
y7 rash
y8 vomiting
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Illustrative example: corresponding concept lattice

recall: concept lattice of I = space of possible factors

diagram of concept lattice:

c8

c4

c7

c5

c3

c6

c2 c1

c0

formal concepts (possible factors):
ci 〈set of patients〉,〈set of symptoms 〉 verbal description

c0 〈{}, {y1, y2, y3, y4, y5, y6, y7, y8}〉 empty concept
c1 〈{x1, x5, x9, x11}, {y1, y2, y3, y5}〉 “flu”
c2 〈{x2, x4, x12}, {y1, y2, y6, y8}〉 “meningitis”
c3 〈{x3, x6, x7}, {y2, y5, y7}〉 “measles”
c4 〈{x3, x6, x7, x8, x10}, {y7}〉 “chickenpox”
c5 〈{x1, x3, x5, x6, x7, x9, x11}, {y2, y5}〉 “suspicion of flu or measles”
c6 〈{x1, x2, x4, x5, x9, x11, x12}, {y1, y2}〉 “suspicion of flu or meningitis”
c7 〈{x1, x2, x3, x4, x5, x6, x7, x9, x11, x12}, {y2}〉 “susp. of flu or meas. or men.”
c8 〈{x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12}, {}〉 universal concept
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Illustrative example: input data factorized

two minimal sets of factor concepts are:

F = {c1, c2, c3, c4} and F ′ = {c1, c2, c4, c5}.

Thus, I can be decomposed by

I = AF ◦ BF or I = AF ′ ◦ BF ′ .

For I = AF ◦ BF , we have

1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1
0 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1
1 1 1 0 1 0 0 0
0 1 0 0 1 0 1 0
0 1 0 0 1 0 1 0
0 0 0 0 0 0 1 0
1 1 1 0 1 0 0 0
0 0 0 0 0 0 1 0
1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1


=



1 0 0 0
0 1 0 0
0 0 1 1
0 1 0 0
1 0 0 0
0 0 1 1
0 0 1 1
0 0 0 1
1 0 0 0
0 0 0 1
1 0 0 0
0 1 0 0


◦

(
1 1 1 0 1 0 0 0
1 1 0 0 0 1 0 1
0 1 0 0 1 0 1 0
0 0 0 0 0 0 1 0

)
.
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Conclusions and further topics

FCA brings

foundations for Boolean factor analysis

factors = formal concepts (psychological plausibility, easy
interpretation)

optimality results and theoretical insights for algorithms

further issues and problems:

heuristics for finding sets of factor concepts,

approximate factorizability, i.e. I ≈ A ◦ B, instead of I = A ◦ B

factor analysis of matrices with truth degrees like(
0.1 1 0.8 0.8
1 1 0.2 0.5
1 0.7 0.5 1

)
analogous results using fuzzy concept lattices
alternative to classical factor analysis (nonlinear)
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Concept-factorizability – revisited with proofs

Note: X = {1, . . . , n}, Y = {1, . . . ,m}, I denotes both the matrix and the
relation between X and Y .

Theorem (universality of concept-factorizability)

Each I is concept-factorizable. I.e., for each I there is F s.t. I = AF ◦ BF .

Proof.

Very easy proof is the following:
Take F = B(X ,Y , I ) (all formal concepts). Such F is usually not optimal
(might be very large) but it serves the proof. Denote k = |B(X ,Y , I )|.
We need to show AF ◦ BF = I , i.e., need to show

(AF ◦ BF )ij = 1 iff Iij = 1. We have:
(AF ◦ BF )ij = 1 iff
maxkl=1 min((AF )il , (BF )lj) = 1 iff
exists l s.t. (AF )il = 1 and (BF )lj = 1 iff
exists 〈Al ,Bl〉 ∈ B(X ,Y , I ) s.t. i ∈ Al and j ∈ Bl iff
Iij = 1.
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Concept-factorizability – revisited with proofs

Proof of optimality theorem gives us insight about what it means to find a
set F of factor concepts. The proof is a “proof by pictures”-type.

Theorem (optimality of concept-factorizability)

If I is k-factorizable then I is concept-factorizable using F (factor
concepts) s.t. |F| ≤ k.

First, consider the meaning of I = A ◦ B. By definition,
Iij = maxkl=1 min(Ail ,Blj),

i.e.
Iij = min(Ai1,B1j) OR · · · OR min(Aik ,Bkj),

which can be rewritten as
I = A 1 ◦ B1 OR · · · OR A k ◦ Bk

where
–A l is the l-th column of A,
–Bl is the l-th row of B.
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Concept-factorizability – revisited with proofs

Example: I = A ◦ B written as I = A 1 ◦ B1 OR · · · OR A k ◦ Bk(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 0 0 1
1 0 1 0
1 1 0 0
0 0 1 0

)
◦

(
1 1 0 0 0
0 0 1 1 0
1 0 0 0 1
0 1 0 0 0

)
.

can be written as(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1
1
1
0

)
◦ ( 1 1 0 0 0 ) OR

(
0
0
1
0

)
◦ ( 0 0 1 1 0 ) OR

OR

(
0
1
0
1

)
◦ ( 1 0 0 0 1 ) OR

(
1
0
0
0

)
◦ ( 0 1 0 0 0 ) , which gives

(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0

)
OR

(
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0

)
OR

(
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1

)
OR

(
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
.
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Concept-factorizability – revisited with proofs

now look at

(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
=

(
1 1 0 0 0
1 1 0 0 0
1 1 0 0 0
0 0 0 0 0

)
OR

(
0 0 0 0 0
0 0 0 0 0
0 0 1 1 0
0 0 0 0 0

)
OR

(
0 0 0 0 0
1 0 0 0 1
0 0 0 0 0
1 0 0 0 1

)
OR

(
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
.

All the matrices connected by OR correspond to rectangles filled with 1’s.

Therefore:
I = A ◦ B with k being the inner dimension (as above) means that I =
OR-composition of k rectangles filled with 1’s!
Each rectangle can be represented by an n × 1 column A l of A, and a
1×m row Bl of B.
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Now, proof of optimality theorem is easy. Let I = A ◦ B. Since formal
concepts of B(X ,Y , I ) are just the maximal rectangles contained in I ,
each rectangle represented by column A l of A and row Bl of B is
contained in some maximal rectangle, i.e., in some concept
〈C ,D〉 ∈ B(X ,Y , I ) (in that A l ⊆ C and Bl ⊆ D).
Denote by F the set of all formal concepts 〈C ,D〉 ∈ B(X ,Y , I ) which we
need for all rectangles A l , Bl (l = 1 . . . k). Obviously, we need at most k
formal concepts but may need less than k (since two different rectangles
may be covered by a single formal concept). This gives:

|F| ≤ k .

�



Concept-factorizability – revisited with proofs

From the insight given by the proof of optimality theorem:
Finding a set F of factor concepts = finding a set of maximal rectangles
in I which cover I . As an example:(

1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
.

Possible solution: 〈A1,B1〉 = 〈{x1, x2, x3}, {y1, y2}〉,
〈A2,B2〉 = 〈{x3}, {y1, y2, y3, y4}〉, 〈A3,B3〉 = 〈{x2, x4}, {y1, y5}〉
correspond to maximal rectangles(

1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
,

(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
, and

(
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
.

⇒ Looking for a minimal set of factor concepts is a particular instance of
set-covering problem.
Algorithms exist for solving set-covering problem!
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Concept-factorizability – set-covering problem

set-covering problem:

INPUT: set U, subset V ⊆ U, collection P ⊆ 2U .
OUTPUT: minimal (w.r.t. number of its elements) covering C ⊆ P of V
(i.e., we require

⋃
Q∈C Q = V ).

Example

U = {1, 2, . . . , 10}, V = {2, 4, 6, 8, 10}, P =
{{1, 2}, {2, 3}, {4, 5}, {6, 7, 8}, {9, 10}, {1, 3, 5}, {2, 4}, {4, 6}, {8, 9, 10}}.

C = {{1, 2}, {8, 9, 10}} is not a covering of V because
⋃

C 6= V .

C = {{1, 2}, {2, 3}, {4, 5}, {6, 7, 8}, {9, 10}} is a covering of V
because

⋃
C = V . But C is not minimal because there exist

coverings of V which contain smaller number of sets.

C = {{2, 4}, {6, 7, 8}, {8, 9, 10}} is a minimal covering of V because⋃
C = V and no other covering has a smaller number of sets than 3.

C = {{2, 4}, {4, 6}, {8, 9, 10}} is another minimal covering of V .
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Concept-factorizability – set-covering problem

reducing the problem of finding a minimal set of factor-concepts to
set-covering problem:

Theorem

Given 〈X ,Y , I 〉 (input table, input binary matrix), F ⊆ B(X ,Y , I ) is a
minimal set of factor-concepts iff F is a solution to a minimal set-covering
problem where:
U = X × Y , V = I , P = {A× B | 〈A,B〉 ∈ B(X ,Y , I )}.

Proof.

Immediately from previous considerations.
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Concept-factorizability – set-covering problem

Example (translating search for factor-concepts to set-covering
problem)

For (
1 1 0 0 0
1 1 0 0 1
1 1 1 1 0
1 0 0 0 1

)
,

all formal concepts are: 〈A1,B1〉 = 〈{x1, x2, x3}, {y1, y2}〉,
〈A2,B2〉 = 〈{x3}, {y1, y2, y3, y4}〉, 〈A3,B3〉 = 〈{x2, x4}, {y1, y5}〉,
〈A4,B4〉 = 〈{x2}, {y1, y2, y5}〉, 〈A5,B5〉 = 〈{x1, x2, x3, x4}, {y1}〉,
〈A6,B6〉 = 〈∅,Y 〉.
I = {〈x1, y1〉, 〈x1, y2〉, 〈x2, y1〉, . . . , 〈x4, y5〉}, P = {A1 × B1, . . . ,A6 × B6},
and

A1 × B1 = {〈x1, y1〉, 〈x1, y2〉, 〈x2, y1〉, 〈x2, y2〉, 〈x3, y1〉, 〈x3, y2〉}.
. . .

A6 × B6 = ∅.
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Applications of FCA and software for FCA

– useful links can be found at
http://www.upriss.org.uk/fca/fca.html (“FCA Homepage”)

– bibliography
– conferences (past and upcoming)
– mailing list
– software
– websites, websites of related disciplines
– introductory material

– Wikipedia link
http://en.wikipedia.org/wiki/Formal_concept_analysis

– papers available on the web
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Software for FCA

– software for computing concept lattices,

– software for computing attribute implications,

– software for drawing concept lattices,

– interface to databases and other software,

– links from http://www.upriss.org.uk/fca/fca.html,

– ToscanaJ
– best developed, at sourceforge: http://tockit.sourceforge.net/
– part of software for Conceptual Knowledge Processing,
– consists of

– ToscanaJ (“viewer/browser component”),
– Elba (“editor for conceptual schemas on relational databases”),
– Lucca (“experimental editor, makes use of implication analysis of SQL

clauses to allow very explorative and intuitive creation of
database-connected systems”).

– can be downloaded from
http://toscanaj.sourceforge.net/downloads/index.html
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FCA in Information Retrieval

pioneering work of R. Godin; C. Carpineto, G. Romano

detailed treatment in Carpineto C., Romano G.: Concept Data Analysis.
Wiley, 2004 (Chap. 3, 4).

Information Retrieval (IR) = iterative and interactive process, retrieval
of required information from data (example: search by keywords, retrieval
of documents):

– submitting query,
– looking at the documents returned,
– submitting a refined query until appropriate documents are found.

rationale behind using FCA in IR:
– current search engines (Google, Yahoo, etc.) provide a ranked list of

retrieved documents (provide “simplistic” linear view on retrieved
information),

– FCA enables structured view of retrieved information,
– user is supplied with a (part of a) concept lattice of retrieved

documents.
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FCA in Information Retrieval

basic ideas (taken from CREDO architecture):

– submitting query,by a user,

– transforming query to to a format (such as SOAP) which can be sent
to a Web search engine (Google, Yahoo),

– submitting query to Web search engine, receiving results (typically in
XML format),

– parsing results and indexing the document terms,

– establishing formal context (objects=documents, attributes=index
terms),

– computing concept lattice and displaying it to the user
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FCA in Information Retrieval

CREDO

– system for Conceptual REorganization of DOcuments (developed by
Carpineto and Romano at Fondazione Ugo Bordoni, Italy)

– Carpineto C., Romano G.: Exploiting the Potential of Concept
Lattices for Information Retrieval with CREDO. J. Universal
Computer Science 10(2004), 985–1013
http://www.fub.it/repository/riviste/JUCS04.pdf

– Search tool available at http://credo.fub.it.

– CREDINO (mobile version, http://credino.dimi.uniud.it/),

Illustration:

– search for “jaguar” (Carpineto and Romano’s example, ambiguous
term), Credo vs. Yahoo or Google,

– search for “xml”,

– search for “formal concept analysis”,

– search for “radim belohlavek”
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FCA in Information Retrieval

FooCA

– developed by Bjoern Koester at (Webstrategy GmbH, Darmstadt; TU
Dresden, Germany), http://www.bjoern-koester.de/

– B. Koester: FooCA - Web Information Retrieval with Formal Concept
Analysis. Verlag Allgemeine Wissenschaft, Mhltal, 2006, ISBN
9783-935924-06-1.

– presents search results directly in a form of labeled Hasse diagram
(clicking on the nodes opens a browser window with URLs),

– http://fooca.webstrategy.de/ - requires username and password,

– overview in: B. Koester: Conceptual Knowledge Retrieval with
FooCA: Improving Web Search Engine Results with Contexts and
Concept Hierarchies at
http://www.bjoern-koester.de/bjoern_koester_conceptual_

knowledge_retrieval_springer_icdm_2006.pdf
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FCA in Software Engineering and Web Ontologies

– various software engineering constructions resemble concept
hierarchies,

– examples: object-oriented design (class hierarchy=hierarchy of
concepts), hierarchical organization of software modules, etc.,

– rationale behind using FCA in SWEng: hierarchical constructions =
(parts of) concept lattices.

sample papers:

– G. Snelting, F. Tip: Understanding Class Hierarchies Using Concept
Analysis. ACM Transactions on Programming Languages and
Systems, May 2000, pp. 540-582. (available in ACM digital library)

– analyzing and re-engineering class hierarchies,
– objects=program variables used to access classes, attributes=class

members,
– resulting concept lattice shows how class members are used and

suggests a new (non-redundant, more efficient) class hierarchy;
concepts intents are groups of class members which “belong together”
(are accessed used by common variables),
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quote from G. Snelting, F. Tip: Understanding Class Hierarchies Using
Concept Analysis. ACM Transactions on Programming Languages and
Systems, May 2000, pp. 540-582:
“In our approach, a class hierarchy is processed along with a set of
applications that use it, and a fine-grained analysis of the access and
subtype relationships between objects, variables, and class members is
performed. The result of this analysis is again a class hierarchy, which is
guaranteed to be behaviorally equivalent to the original hierarchy, but in
which each object only contains the members that are required. Our
method is semantically well-founded in concept analysis: the new class
hierarchy is a minimal and maximally factorized concept lattice that
reflects the access and subtype relationships between variables, objects and
class members. The method is primarily intended as a tool for finding
imperfections in the design of class hierarchies, and can be used as the
basis for tools that largely automate the process of reengineering such
hierarchies. The method can also be used as a space-optimizing
source-to-source transformation that removes redundant fields from
objects. A prototype implementation for Java has been constructed, and
used to conduct several case studies.”



FCA in Software Engineering and Web Ontologies
– Tonella, P.: Formal concept analysis in software engineering. Proc.

ICSE 2004. (available in IEEE Explore)
– survey,
– quote: “Given a binary relationship between objects and attributes,

concept analysis is a powerful technique to organize pairs of related
sets of objects and attributes into a concept lattice, where higher level
concepts represent general features shared by many objects, while lower
level concepts represent the object-specific features. Concept analysis
was recently applied to several software engineering problems, such as:
restructuring the code into more cohesive components, identifying class
candidates, locating features in the code by means of dynamic analysis,
reengineering class hierarchies. This paper provides the background
knowledge required by such applications. Moreover, the methodological
issues involved in the different applications of this technique are
considered by giving a detailed presentation of three of them: module
restructuring, design pattern inference and impact analysis based on
decomposition slicing. The paper is concluded by an overview on other
kinds of applications.”
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FCA in Software Engineering and Web Ontologies

– Snelting, G.: Concept analysisa new framework for program
understanding Proc. 1998 ACM SIGPLAN-SIGSOFT, pp. 1–10.
(available in ACM digital library).

– Pfaltz J. L.: Using Concept Lattices to Uncover Causal Dependencies
in Software. Proc. ICFCA 2006, Springer, pp. 233–247 (avaiable at
http://www.cs.virginia.edu/~jlp/06.FCA.pdf).

– Lindig C., Snelting G.: Assessing modular structure of legacy code
based on mathematical concept analysis. Proc. of the 19th
international conference on Software engineering, Boston,
Massachusetts, pp. 349–359, 1997 (http://www.st.cs.uni-sb.
de/publications/files/lindig-icse-1997.pdf).

– Vinod Ganapathy, David King and Trent Jaeger, Somesh Jha. Mining
Security-Sensitive Operations in Legacy Code using Concept Analysis.
Proc. 29th Int. Conf. on Software Engineering, Minneapolis,
Minnesota, May 2007, (http:
//www.cs.wisc.edu/~vg/papers/icse2007/icse2007.pdf).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 39 / 40

http://www.cs.virginia.edu/~jlp/06.FCA.pdf
http://www.st.cs.uni-sb.de/publications/files/lindig-icse-1997.pdf
http://www.st.cs.uni-sb.de/publications/files/lindig-icse-1997.pdf
http://www.cs.wisc.edu/~vg/papers/icse2007/icse2007.pdf
http://www.cs.wisc.edu/~vg/papers/icse2007/icse2007.pdf


FCA in Homeland Security

– quite recent topic,

– New York Times 2006 and San Francisco Chronicle 2006 papers
(http://www.sfgate.com/cgi-bin/article.cgi?file=
/chronicle/archive/2006/07/09/INGIVJQ75N1.DTL)

– started in Los Alamos National Lab,

– Voss, Susan and Cliff Joslyn: Advanced Knowledge Integration in
Assessing Terrorist Threats, LANL Technical Report LAUR 02-7867.

– Joslyn, Cliff and Mniszewski, Susan: Relational Analytical Tools:
DataDelver and Formal Concept Analysis, LANL Technical Report
02-7697. (ftp://ftp.c3.lanl.gov/pub/users/joslyn/hl1.pdf).

– Conference: Mathematical Methods in Counterterrorism (2005, 2006).
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