
Formal Concept Analysis

Part III

Radim BĚLOHLÁVEK

Dept. Computer Science
Palacky University, Olomouc
radim.belohlavek@acm.org

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 1 / 107

Attribute Implications and Related Topics

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 2 / 107

Introducing attribute implications

Attribute implications (AIs) are expressions describing particular
dependencies among attributes in relational data.

Examples:
{prime, > 2} ⇒ {odd}, {flight No.} ⇒ {depart. time, arriv. time}.

AIs used in
– formal concept analysis

– interpreted in formal contexts (tables with yes/no-attributes)
– knowledge extraction

– relational databases (called functional dependencies)
– interpreted in DB relations (tables with general attributes)
– data redundancy, normalization, DB design
– knowledge extraction

– data mining (called association rules)
– interpreted in formal contexts (tables with yes/no-attributes)
– validity modified by confidence, support (interestingness)
– knowledge extraction

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 3 / 107

Introducing attribute implications

basic literature:

– formal concept analysis
– Ganter, Wille: Formal Concept Analysis. Mathematical Foundations.

Springer, 1999.
– Carpineto C., Romano G.: Concept Data Analysis. Wiley, 2004.

– relational databases
– Any textbook on databases.
– Maier D.: The Theory of Relational Databases. Computer Science

Press, 1983.

– data mining (association rules)
– Any textbook on Data Mining.
– Zhang , Zhang: Association Rule Mining. Springer, 2002.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 4 / 107

Introducing attribute implications

AIs are interpreted in tables (formal contexts) T = 〈X ,Y , I 〉 such as

table T

y1 y2 y3 y4

x1 × × × ×
x2 × × ×
x3 × × ×
x4 × × ×
x5 × ×

X = {x1, . . . } . . . objects (rows)

Y = {y1, . . . } . . . attributes (columns)

×. . . incidence (object has attribute)

attribute implication . . . A⇒ B where A,B ⊆ Y (sets of attributes)

A⇒ B is true in table T means
for each object x :

IF x has all attributes from A THEN x has all attr. from B

Example: {y1} ⇒ {y3}, {y2, y3} ⇒ {y4} are true in T ,
{y1} ⇒ {y2} is not (x2 as a counterexample)

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 5 / 107

Introducing attribute implications

What are we going to do with attribute implications?

– define validity, entailment and related basic notions,

– complete systems for reasoning with attribute implications (deriving
mechanically new AIs from established AIs),

– non-redundant bases: how to extract minimal fully informative set of
AIs from data?

– relationships to concept lattices,

– algorithms for AIs.

Our approach to attribute implications: logical approach

– AIs are formulas (statements about data),

– AIs can be evaluated in formal contexts, formal contexts (and rows of
formal contexts) are our semantical structures,

– this brings us to ordinary logical framework where we can address
entailment and further standard logical notions.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 6 / 107

AIs – basic notions

Definition (attribute implication)

Let Y be a non-empty set (of attributes). An attribute implication over Y
is an expression

A⇒ B
where A ⊆ Y and B ⊆ Y (A and B are sets of attributes).

Example
Let Y = {y1, y2, y3, y4}. Then {y2, y3} ⇒ {y1, y4},
{y2, y3} ⇒ {y1, y2, y3}, ∅ ⇒ {y1, y2}, {y2, y4} ⇒ ∅ are AIs over Y .

Let Y = {watches-TV, eats-unhealthy-food, runs-regularly,
normal-blood-pressure, high-blood-pressure}. Then
{watches-TV, eats-unhealthy-food} ⇒ {high-blood-pressure},
{runs-regularly} ⇒ {normal-blood-pressure} are attribute implications
over Y .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 7 / 107

AIs – validity

– Basic semantic structures in which we evaluate attribute implications
are rows of tables (of formal contexts).

– Table rows can be regarded as sets of attributes. In table
y1 y2 y3 y4

x1 × × × ×
x2 × ×
x3

, rows corresponding to x1, x2, and x3 can be

regarded as sets M1 = {y1, y2, y3, y4}, M2 = {y1, y4}, and M3 = ∅.
– Therefore, we need to define a notion of a validity of an AI in a set M

of attributes.

Definition (validity of attribute implication)

An attribute implication A⇒ B over Y is true (valid) in a set M ⊆ Y iff
A ⊆ M implies B ⊆ M.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 8 / 107

AIs – validity

– We write

||A⇒ B||M =

{
1 if A⇒ B is true in M,
0 if A⇒ B is not true in M.

– Let M be a set of attributes of some object x . ||A⇒ B||M = 1 says
“if x has all attributes from A then x has all attributes from B”,
because “if x has all attributes from C ” is equivalent to C ⊆ M.

Example
Let Y = {y1, y2, y3, y4}.

A⇒ B M ||A⇒ B||M why
{y2, y3} ⇒ {y1} {y2} 1 A 6⊆ M
{y2, y3} ⇒ {y1} {y1, y2} 1 A 6⊆ M
{y2, y3} ⇒ {y1} {y1, y2, y3} 1 A ⊆ M and B ⊆ M
{y2, y3} ⇒ {y1} {y2, y3, y4} 0 A ⊆ M but B 6⊆ M
{y2, y3} ⇒ {y1} ∅ 1 A 6⊆ ∅
∅ ⇒ {y1} {y1, y4} 1 ∅ ⊆ M and B ⊆ M.
∅ ⇒ {y1} {y3, y4} 0 ∅ ⊆ M but B 6⊆ M.
{y2, y3} ⇒ ∅ any M 1 ∅ ⊆ M

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 9 / 107

AIs – validity

– extend validity of A⇒ B to collections M of M’s (collections of
subsets of attributes), i.e. define validity of A⇒ B in M⊆ 2Y .

Definition

Let M⊆ 2Y (elements of M are subsets of attributes). An attribute
implication A⇒ B over Y is true (valid) in M if A⇒ B is true in each
M ∈M.

– Again,

||A⇒ B||M =

{
1 if A⇒ B is true in M,
0 if A⇒ B is not true in M.

Therefore, ||A⇒ B||M = minM∈M ||A⇒ B||M .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 10 / 107

AIs – validity

Definition (validity of attribute implications in formal contexts)

An attribute implication A⇒ B over Y is true in a table (formal context)
〈X ,Y , I 〉 iff A⇒ B is true in

M = {{x}↑ | x ∈ X}.

– We write ||A⇒ B||〈X ,Y ,I 〉 = 1 if A⇒ B is true in 〈X ,Y , I 〉.
– Note that, {x}↑ is the set of attributes of x (row corresponding to x).

Hence, M = {{x}↑ | x ∈ X} is the collection whose members are just
sets of attributes of objects (i.e., rows) of 〈X ,Y , I 〉. Therefore,
||A⇒ B||〈X ,Y ,I 〉 = 1 iff A⇒ B is true in each row of 〈X ,Y , I 〉 iff
for each x ∈ X :

if x has all attributes from A then x has all attributes from B.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 11 / 107

AIs – validity

Example

Consider attributes normal blood pressure (nbp), high blood pressure
(hbp), watches TV (TV), eats unhealthy food (uf), runs regularly (r), and
table

I nbp hbp TV uf r
a × ×
b × × ×
c × × ×
d × ×
e ×

Then
A⇒ B ||A⇒ B||〈X ,Y ,I〉 why

{r} ⇒ {nbp} 1
{TV,uf} ⇒ {hbp} 1
{TV} ⇒ {hbp} 1
{uf} ⇒ {hbp} 0 b counterexample
{nbp} ⇒ {r} 0 e counterexample

{nbp,hbp} ⇒ {r,TV} 1 A never satisfied
{uf,r} ⇒ {r} 1

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 12 / 107

AIs – theory, models, semantic consequence

– Previous example: {TV,uf} ⇒ {hbp} intuitively follows from
{TV} ⇒ {hbp}. Therefore, provided we establish validity of
{TV} ⇒ {hbp}, AI {TV,uf} ⇒ {hbp} is redundant.
Another example: A⇒ C follows from A⇒ B and B ⇒ C (for any
A,B,C).

– Need to capture intuitive notion of entailment of attribute
implications. We use standard notions of a theory and model.

– Eventually, we want to have a small set T of AIs which are valid in
〈X ,Y , I 〉 such that all other AIs which are true in 〈X ,Y , I 〉 follow
from T .

Definition (theory, model)

A theory (over Y) is any set T of attribute implications (over Y).
A model of a theory T is any M ⊆ Y such that every A⇒ B from T is
true in M.

– Mod(T) denotes all models of a theory T , i.e.
Mod(T) = {M ⊆ Y | for each A⇒ B ∈ T : A⇒ B is true in M}.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 13 / 107

– Intuitively, a theory is some “important” set of attribute implications.
For instance, T may contain AIs established to be true in data
(extracted from data).

– Intuitively, a model of T is (a set of attributes of some) object which
satisfies every AI from T .

– Notions of theory and model do not depend on some particular
〈X ,Y , I 〉.

Example (theories over {y1, y2, y3})
T1 = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}.
T2 = {{y3} ⇒ {y1, y2}}.
T3 = {{y1, y3} ⇒ {y2}}.
T4 = {{y1} ⇒ {y3}, {y3} ⇒ {y1}, {y2} ⇒ {y2}}.
T5 = ∅.
T6 = {∅ ⇒ {y1}, ∅ ⇒ {y3}}.
T7 = {{y1} ⇒ ∅, {y2} ⇒ ∅, {y3} ⇒ ∅}.
T8 = {{y1} ⇒ {y2}, {y2} ⇒ {y3}, {y3} ⇒ {y1}}.

Example (models of theories over {y1, y2, y3})
Determine Mod(T) of the following theories over {y1, y2, y3}.

T1 = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}.
Mod(T1) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}},
T2 = {{y3} ⇒ {y1, y2}}.
Mod(T2) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}} (note: T2 ⊂ T1 but
Mod(T1) = Mod(T2)),

T3 = {{y1, y3} ⇒ {y2}}.
Mod(T3) = {∅, {y1}, {y2}, {y3}, {y1, y2}, {y2, y3}, {y1, y2, y3}} (note:
T3 ⊂ T1, Mod(T1) ⊂ Mod(T2)),

T4 = {{y1} ⇒ {y3}, {y3} ⇒ {y1}, {y2} ⇒ {y2}}.
Mod(T4) = {∅, {y2}, {y1, y3}, {y1, y2, y3}}
T5 = ∅. Mod(T5) = 2{y1,y2,y3}. Why: M ∈ Mod(T) iff
for each A⇒ B: if A⇒ B ∈ T then ||A⇒ B||M = 1.

T6 = {∅ ⇒ {y1}, ∅ ⇒ {y3}}. Mod(T6) = {{y1, y3}, {y1, y2, y3}}.
T7 = {{y1} ⇒ ∅, {y2} ⇒ ∅, {y3} ⇒ ∅}. Mod(T7) = 2{y1,y2,y3}.

T8 = {{y1} ⇒ {y2}, {y2} ⇒ {y3}, {y3} ⇒ {y1}}.
Mod(T8) = {∅, {y1, y2, y3}}.

AIs – theory, models, semantic consequence

Definition (semantic consequence)

An attribute implication A⇒ B follows semantically from a theory T ,
which is denoted by

T |= A⇒ B,
iff A⇒ B is true in every model M of T ,

– Therefore, T |= A⇒ B iff for each M ⊆ Y : if M ∈ Mod(T) then
||A⇒ B||M = 1.

– Intuitively, T |= A⇒ B iff A⇒ B is true in every situation where
every AI from T is true (replace “situation” by “model”).

– Later on, we will see how to efficiently check whether T |= A⇒ B.

– Terminology: T |= A⇒ B . . . A⇒ B follows semantically from T
. . . A⇒ B is semantically entailed by T . . . A⇒ B is a semantic
consequence of T .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 16 / 107

How to decide by definition whether T |= A⇒ B?

1. Determine Mod(T).

2. Check whether A⇒ B is true in every M ∈ Mod(T); if yes then
T |= A⇒ B; if not then T 6|= A⇒ B.

Example (semantic entailment)

Let Y = {y1, y2, y3}. Determine whether T |= A⇒ B.

T = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}, A⇒ B is {y2, y3} ⇒ {y1}.
1. Mod(T) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.
2. ||{y2, y3} ⇒ {y1}||∅ = 1, ||{y2, y3} ⇒ {y1}||{y1} = 1,
||{y2, y3} ⇒ {y1}||{y2} = 1, ||{y2, y3} ⇒ {y1}||{y1,y2} = 1,
||{y2, y3} ⇒ {y1}||{y1,y2,y3} = 1.
Therefore, T |= A⇒ B.

T = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}, A⇒ B is {y2} ⇒ {y1}.
1. Mod(T) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.
2. ||{y2} ⇒ {y1}||∅ = 1, ||{y2} ⇒ {y1}||{y1} = 1,
||{y2} ⇒ {y1}||{y2} = 0, we can stop.
Therefore, T 6|= A⇒ B.

exercise

Let Y = {y1, y2, y3}. Determine whether T |= A⇒ B.

T1 = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}.
A⇒ B: {y1, y2} ⇒ {y3}, ∅ ⇒ {y1}.
T2 = {{y3} ⇒ {y1, y2}}.
A⇒ B: {y3} ⇒ {y2}, {y3, y2} ⇒ ∅.
T3 = {{y1, y3} ⇒ {y2}}.
A⇒ B: {y3} ⇒ {y1, y2}, ⇒ ∅.
T4 = {{y1} ⇒ {y3}, {y3} ⇒ {y2}, }.
A⇒ B: {y1} ⇒ {y2}, {y1} ⇒ {y1, y2, y3}.
T5 = ∅.
A⇒ B: {y1} ⇒ {y2}, {y1} ⇒ {y1, y2, y3}.
T6 = {∅ ⇒ {y1}, ∅ ⇒ {y3}}.
A⇒ B: {y1} ⇒ {y3}, ∅ ⇒ {y1, y3} {y1} ⇒ {y2}.
T7 = {{y1} ⇒ ∅, {y2} ⇒ ∅, {y3} ⇒ ∅}.
A⇒ B: {y1, y2} ⇒ {y3}, {y1, y2} ⇒ ∅.
T8 = {{y1} ⇒ {y2}, {y2} ⇒ {y3}, {y3} ⇒ {y1}}.
A⇒ B: {y1} ⇒ {y3}, {y1, y3} ⇒ {y2}.

Armstrong rules and reasoning with AIs

– some attribute implications semantically follow from others,
– example: A⇒ C follows from A⇒ B and B ⇒ C (for every

A,B,C ⊆ Y), i.e. {A⇒ B,B ⇒ C} |= A⇒ C .
– therefore, we can introduce a deduction rule

(Tra) from A⇒ B and B ⇒ C infer A⇒ C ,
– we can use such rule to derive new AI such as

– start from T = {{y1} ⇒ {y2, y5}, {y2, y5} ⇒ {y3}, {y3} ⇒ {y2, y4}},
– apply (Tra) to the first and the second AI in T to infer {y1} ⇒ {y3},
– apply (Tra) to {y1} ⇒ {y3} and the second AI in T to infer
{y1} ⇒ {y2, y4}.

question:

– Is there a collection of simple deduction rules which allow us to
determine whether T |= A⇒ B?, i.e., rules such that

– 1. if A⇒ B semantically follows from T then one can derive A⇒ B
from T using those rules (like above) and

– 2. if one can derive A⇒ B from T then A⇒ B semantically follows
from T .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 19 / 107

Armstrong rules and reasoning with AIs

Armstrong rules for reasoning with AIs

Our system for reasoning about attribute implications consists of the
following (schemes of) deduction rules:

(Ax) infer A ∪ B ⇒ A,

(Cut) from A⇒ B and B ∪ C ⇒ D infer A ∪ C ⇒ D,

for every A,B,C ,D ⊆ Y .

– (Ax) is a rule without the input part “from . . . ”, i.e. A ∪ B ⇒ A can
be inferred from any AIs.

– (Cut) has both the input and the output part.
– Rules for reasoning about AIs go back to Armstrong’s research on

reasoning about functional dependencies in databases:
Armstrong W. W.: Dependency structures in data base relationships.
IFIP Congress, Geneva, Switzerland, 1974, pp. 580–583.

– There are several systems of deduction rules which are equivalent to
(Ax), (Cut), see later.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 20 / 107

Armstrong rules and reasoning with AIs

Example (how to use deduction rules)

(Cut)
If we have two rules which are of the form A⇒ B and B ∪ C ⇒ D, we
can derive (in a single step, using deduction rule (Cut)) a new AI of the
form A ∪ C ⇒ D.
Consider AIs {r , s} ⇒ {t, u} and {t, u, v} ⇒ {w}.
Putting A = {r , s}, B = {t, u}, C = {v}, D = {w}, {r , s} ⇒ {t, u} is of
the form A⇒ B, {t, u, v} ⇒ {w} is of the form A ∪ C ⇒ D,
and we can infer A ∪ C ⇒ D which is {r , s, v} ⇒ {w}.

(Ax)
We can derive (in a single step, using deduction rule (Ax), with no
assumptions) a new AI of the form A ∪ B ⇒ A.
For instance, we can infer {y1, y3, y4, y5} ⇒ {y3, y5}. Namely, putting
A = {y3, y5} and B = {y1, y4}, A ∪ B ⇒ A becomes
{y1, y3, y4, y5} ⇒ {y3, y5}.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 21 / 107

Armstrong rules and reasoning with AIs

How to formalize the concept of a derivation of new AIs using our rules?

Definition (proof)

A proof of A⇒ B from a set T of AIs is a sequence
A1 ⇒ B1, . . . ,An ⇒ Bn

of AIs satisfying:

1. An ⇒ Bn is just A⇒ B,
2. for every i = 1, 2, . . . , n:

– either Ai ⇒ Bi is from T (“assumption”),
– or Ai ⇒ Bi results by application of (Ax) or (Cut) to some of preceding

AIs Aj ⇒ Bj ’s (“deduction”).

In such case, we write T ` A⇒ B and say that A⇒ B is provable
(derivable) from T using (Ax) and (Cut).

– proof as a sequence?: makes sense: informally, we understand a proof
to be a sequence of our arguments which we take from 1. assumptions
(from T) of 2. infer pro previous arguments by deduction steps.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 22 / 107

Armstrong rules and reasoning with AIs

Example (simple proof)

Proof of P ⇒ R from T = {P ⇒ Q,Q ⇒ R} is a sequence:
P ⇒ Q,Q ⇒ R,P ⇒ R

because: P ⇒ Q ∈ T ; Q ⇒ R ∈ T ; P ⇒ R can be inferred from P ⇒ Q
and Q ⇒ R using (Cut). Namely, put A = P, B = Q, C = Q, D = R;
then A⇒ B becomes P ⇒ Q, B ∪ C ⇒ D becomes Q ⇒ R, and
A ∪ C ⇒ D becomes P ⇒ R.
Note that this works for any particular sets P,Q,R. For instance for
P = {y1, y3}, Q = {y3, y4, y5}, R = {y2, y4}, or
P = {watches-TV,unhealthy-food}, Q = {high-blood-pressure},
R = {often-visits-doctor}.

In the latter case, we inferred:
{watches-TV,unhealthy-food} ⇒ {often-visits-doctor} from
{watches-TV,unhealthy-food} ⇒ {high-blood-pressure} and
{high-blood-pressure} ⇒ {often-visits-doctor}.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 23 / 107

Armstrong rules and reasoning with AIs

remark

The notions of a deduction rule and proof are syntactic notions. Proof
results by “manipulation of symbols” according to deduction rules. We do
not refer to any data table when deriving new AIs using deduction rules.
A typical scenario: (1) We extract a set T of AIs from data table and then
(2) infer further AIs from T using deduction rules. In (2), we do not use
the data table.

Next:

– Soundness: Is our inference using (Ax) and (Cut) sound? That is, is
it the case that IF T ` A⇒ B (A⇒ B can be inferred from T)
THEN T |= A⇒ B (A⇒ B semantically follows from T , i.e., A⇒ B
is true in every table in which all AIs from T are true)?

– Completeness: Is our inference using (Ax) and (Cut) complete? That
is, is it the case that IF T |= A⇒ B THEN T ` A⇒ B?

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 24 / 107

Armstrong rules and reasoning with AIs

Definition (derivable rule)

Deduction rule
from A1 ⇒ B1, . . . ,An ⇒ Bn infer A⇒ B

is derivable from (Ax) and (Cut) if {A1 ⇒ B1, . . . ,An ⇒ Bn} ` A⇒ B.

– Derivable rule = new deduction rule = shorthand for a derivation
using the basic rules (Ax) and (Cut).

– Why derivable rules: They are natural rules which can speed up
proofs.

– Derivable rules can be used in proofs (in addition to the basic rules
(Ax) and (Cut)). Why: By definition, a single deduction step using a
derivable rule can be replaced by a sequence of deduction steps using
the original deduction rules (Ax) and (Cut) only.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 25 / 107

Theorem (derivable rules)

The following rules are derivable from (Ax) and (Cut):

(Ref) infer A⇒ A,

(Wea) from A⇒ B infer A ∪ C ⇒ B,

(Add) from A⇒ B and A⇒ C infer A⇒ B ∪ C ,

(Pro) from A⇒ B ∪ C infer A⇒ B,

(Tra) from A⇒ B and B ⇒ C infer A⇒ C ,

for every A,B,C ,D ⊆ Y .

Proof.

In order to avoid confusion with symbols A,B,C ,D used in (Ax) and
(Cut), we use P,Q,R, S instead of A,B,C ,D in (Ref)–(Tra).

(Ref): We need to show {} ` P ⇒ P, i.e. that P ⇒ P is derivable using
(Ax) and (Cut) from the empty set of assumptions.
Easy, just put A = P and B = P in (Ax). Then A ∪ B ⇒ A becomes
P ⇒ P. Therefore, P ⇒ P can be inferred (in a single step) using (Ax),
i.e., a one-element sequence P ⇒ P is a proof of P ⇒ P. This shows
{} ` P ⇒ P.

cntd.

(Wea): We need to show {P ⇒ Q} ` P ∪ R ⇒ Q.
A proof (there may be several proofs, this is one of them) is:

P ∪ R ⇒ P,P ⇒ Q,P ∪ R ⇒ Q.
Namely, 1. P ∪ R ⇒ P is derived using (Ax), 2. P ⇒ Q is an assumption,
P ∪ R ⇒ Q is derived from P ∪ R ⇒ P and P ⇒ Q using (Cut) (put
A = P ∪ R, B = P, C = P, D = Q).

(Add): EXERCISE.

(Pro): We need to show {P ⇒ Q ∪ R} ` P ⇒ Q.
A proof is:

P ⇒ Q ∪ R,Q ∪ R ⇒ Q,P ⇒ Q.
Namely, 1. P ⇒ Q ∪ R is an assumption, 2. Q ∪ R ⇒ Q by application of
(Ax), 3. P ⇒ Q by application of (Cut) to P ⇒ Q ∪ R,Q ∪ R ⇒ Q (put
A = P, B = C = Q ∪ R, D = Q).

(Tra): We need to show {P ⇒ Q,Q ⇒ R} ` P ⇒ R. This was checked
earlier.

Armstrong rules and reasoning with AIs

– (Ax) . . . “axiom”, and (Cut) . . . “rule of cut”,

– (Ref) . . . “rule of reflexivity”, (Wea) . . . “rule of weakening”, (Add)
. . . “rule of additivity”, (Pro) . . . “rule of projectivity”, (Ref) . . . “rule
of transitivity”.

Alternative notation for deduction rules: rule “from
A1 ⇒ B1, . . . ,An ⇒ Bn infer A⇒ B” displayed as

A1 ⇒ B1, . . . ,An ⇒ Bn

A⇒ B
.

So, (Ax) and (Cut) displayed as

A ∪ B ⇒ A
and

A⇒ B,B ∪ C ⇒ D

A ∪ C ⇒ D
.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 28 / 107

Armstrong rules and reasoning with AIs

Definition (sound deduction rules)

Deduction rule “from A1 ⇒ B1, . . . ,An ⇒ Bn infer A⇒ B” is sound if
{A1 ⇒ B1, . . . ,An ⇒ Bn} |= A⇒ B.

– Soundness of a rule: if A1 ⇒ B1, . . . ,An ⇒ Bn are true in a data
table, then A⇒ B needs to be true in that data table, too.

– Meaning: Sound deduction rules do not allow us to infer “untrue” AIs
from true AIs.

Theorem

(Ax) and (Cut) are sound.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 29 / 107

Proof.

(Ax): We need to check {} |= A ∪ B ⇒ A, i.e. that A ∪ B ⇒ A
semantically follows from an empty set T of assumptions. That is, we
need to check that A ∪ B ⇒ A is true in any M ⊆ Y (notice: any M ⊆ Y
is a model of the empty set of AIs). This amounts to verifying

A ∪ B ⊆ M implies A ⊆ M,
which is evidently true.

(Cut): We need to check {A⇒ B,B ∪ C ⇒ D} |= A ∪ C ⇒ D. Let M be
a model of {A⇒ B,B ∪ C ⇒ D}. We need to show that M is a model of
A ∪ C ⇒ D, i.e. that

A ∪ D ⊆ M implies D ⊆ M.
Let thus A ∪ C ⊆ M. Then A ⊆ M, and since we assume M is a model of
A⇒ B, we need to have B ⊆ M. Furthermore, A ∪ C ⊆ M yields C ⊆ M.
That is, we have B ⊆ M and C ⊆ M, i.e. B ∪ C ⊆ M. Now, taking
B ∪ C ⊆ M and invoking the assumption that M is a model of
B ∪ C ⇒ D gives D ⊆ M.

Armstrong rules and reasoning with AIs

Corollary (soundness of inference using (Ax) and (Cut))

If T ` A⇒ B then T |= A⇒ B.

Proof.

Direct consequence of previous theorem: Let
A1 ⇒ B1, . . . ,An ⇒ Bn

be a proof from T . It suffices to check that every model M of T is a
model of Ai ⇒ Bi for i = 1, . . . , n. We check this by induction over i , i.e.,
we assume that M is a model of Aj ⇒ Bj ’s for j < i and check that M is a
model of Ai ⇒ Bi . There are two options:
1. Either Ai ⇒ Bi if from T . Then, trivially, M is a model of Ai ⇒ Bi

(our assumption).
2. Or, Ai ⇒ Bi results by (Ax) or (Cut) to some Aj ⇒ Bj ’s for j < i .
Then, since we assume that M is a model of Aj ⇒ Bj ’s, we get that M is
a model of Ai ⇒ Bi by soundness of (Ax) and (Cut).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 31 / 107

Armstrong rules and reasoning with AIs

Corollary (soundness of derived rules)

(Ref), (Wea), (Add), (Pro), (Tra) are sound.

Proof.

As an example, take (Wea). Note that (Wea) is a derived rule. This
means that {A⇒ B} ` A ∪ C ⇒ B. Applying previous corollary yields
{A⇒ B} |= A ∪ C ⇒ B which means, by definition, that (Wea) is
sound.

– We have two notions of consequence, semantic and syntactic.
– Semantic: T |= A⇒ B . . . A⇒ B semantically follows from T .
– Syntactic: T ` A⇒ B . . . A⇒ B syntactically follows from T (is

provable from T).
– We know (previous corollary on soundness) that T ` A⇒ B implies

T |= A⇒ B.
– Next, we are going to check completeness, i.e. T |= A⇒ B implies

T ` A⇒ B.
Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 32 / 107

Armstrong rules and reasoning with AIs

Definition (semantic closure, syntactic closure)
– Semantic closure of T is the set

sem(T) = {A⇒ B |T |= A⇒ B}
of all AIs which semantically follow from T .

– Syntactic closure of T is the set
syn(T) = {A⇒ B |T ` A⇒ B}

of all AIs which syntactically follow from T (i.e., are provable from T
using (Ax) and (Cut)).

– T is semantically closed if T = sem(T).

– T is syntactically closed if T = syn(T).

– It can be checked that sem(T) is the least set of AIs which is
semantically closed and which contains T .

– It can be checked that syn(T) is the least set of AIs which is
syntactically closed and which contains T .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 33 / 107

Armstrong rules and reasoning with AIs

Lemma

T is syntactically closed iff for any A,B,C ,D ⊆ Y

1. A ∪ B ⇒ B ∈ T ,

2. if A⇒ B ∈ T and B ∪ C ⇒ D ∈ T implies A ∪ C ⇒ D ∈ T .

Proof.

“⇒”: If T is syntactically closed then any AI which is provable from T
needs to be in T . In particular, A ∪ B ⇒ B is provable from T , therefore
A ∪ B ⇒ B ∈ T ; if A⇒ B ∈ T and B ∪ C ⇒ D ∈ T then, obviously,
A ∪ C ⇒ D is provable from T (by using (Cut)), therefore
A ∪ C ⇒ D ∈ T .
“⇐”: If 1. and 2. are satisfied then, obviously, any AI which is provable
from T needs to belong to T , i.e. T is syntactically closed.

This says that T is syntactically closed iff T is closed under deduction
rules (Ax) and (Cut).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 34 / 107

Armstrong rules and reasoning with AIs

Lemma

If T is semantically closed then T is syntactically closed.

Proof.

Let T be semantically closed. In order to see that T is syntactically
closed, it suffices to verify 1. and 2. of previous Lemma.
1.: We have T |= A ∪ B ⇒ B (we even have {} |= A ∪ B ⇒ B). Since T
is semantically closed, we get A ∪ B ⇒ B ∈ T .
2.: Let A⇒ B ∈ T and B ∪ C ⇒ D ∈ T . Since
{A⇒ B,B ∪ C ⇒ D} |= A ∪ C ⇒ D (cf. soundness of (Cut)), we have
T |= A ∪ C ⇒ D. Now, since T is semantically closed, we get
A ∪ C ⇒ D ∈ T , verifying 2.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 35 / 107

Armstrong rules and reasoning with AIs

Lemma

If T is syntactically closed then T is semantically closed.

Proof.

Let T be syntactically closed. In order to show that T is semantically
closed, it suffices to show sem(T) ⊆ T . We prove this by showing that if
A⇒ B 6∈ T then A⇒ B 6∈ sem(T). Recall that since T is syntactically
closed, T is closed under all (Ref)–(Tra).

Let thus A⇒ B 6∈ T . To see A⇒ B 6∈ sem(T), we show that there is
M ∈ Mod(T) which is not a model of A⇒ B. For this purpose, consider
M = A+ where A+ is the largest one such that A⇒ A+ ∈ T . A+ exists.
Namely, consider all AIs A⇒ C1, . . . ,A⇒ Cn ∈ T . Note that at least one
such AI exists. Namely, A⇒ A ∈ T by (Ref). Now, repeated application
of (Add) yields A⇒

⋃n
i=1 Ci ∈ T and we have A+ =

⋃n
i=1 Ci .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 36 / 107

cntd.

Now, we need to check that (a) ||A⇒ B||A+ = 0 (i.e., A+ is not a model
of A⇒ B) and (b) for every C ⇒ D ∈ T we have ||C ⇒ D||A+ = 1 (i.e.,
A+ is a model of T).

(a): We need to show ||A⇒ B||A+ = 0. By contradiction, suppose
||A⇒ B||A+ = 1. Since A ⊆ A+, ||A⇒ B||A+ = 1 yields B ⊆ A+. Since
A⇒ A+ ∈ T , (Pro) would give A⇒ B ∈ T , a contradiction to
A⇒ B 6∈ T .

(b): Let C ⇒ D ∈ T . We need to show ||C ⇒ D||A+ = 1, i.e.
if C ⊆ A+ then D ⊆ A+.

To see this, it is sufficient to verify that
if C ⊆ A+ then A⇒ D ∈ T .

Namely, since A+ is the largest one for which A⇒ A+ ∈ T , A⇒ D ∈ T
implies D ⊆ A+. So let C ⊆ A+. We have
(b1) A⇒ A+ ∈ T (by definition of A+),
(b2) A+ ⇒ C ∈ T (this follows by (Pro) from C ⊆ A+),
(b3) C ⇒ D ∈ T (our assumption).
Therefore, applying (Tra) to (b1), (b2), (b3) twice gives A⇒ D ∈ T .

Theorem (soundness and completeness)

T ` A⇒ B iff T |= A⇒ B.

Proof.

Clearly, it suffices to check syn(T) = sem(T). Recall: A⇒ B ∈ syn(T)
means T ` A⇒ B, A⇒ B ∈ sem(T) means T |= A⇒ B.

“sem(T) ⊆ syn(T)”: Since syn(T) is syntactically closed, it is also
semantically closed (previous lemma). Therefore, sem(syn(T)) = syn(T)
(semantic closure of syn(T) is just syn(T) because syn(T) is semantically
closed). Furthermore, since T ⊆ syn(T), we have
sem(T) ⊆ sem(syn(T)). Putting this together gives

sem(T) ⊆ sem(syn(T)) = syn(T).

“syn(T) ⊆ sem(T)”: Since sem(T) is semantically closed, it is also
syntactically closed (previous lemma). Therefore, syn(sem(T)) = sem(T).
Furthermore, since T ⊆ sem(T), we have syn(T) ⊆ syn(sem(T)). Putting
this together gives

syn(T) ⊆ syn(sem(T)) = sem(T).

Armstrong rules and reasoning with AIs

Summary
– (Ax) and (Cut) are elementary deduction rules.
– Proof . . . formalizes derivation process of new AIs from other AIs.
– We have two notions of consequence:

– T |= A⇒ B . . . semantic consequence (A⇒ B is true in every model
of T).

– T ` A⇒ B . . . syntactic consequence (A⇒ B is provable T , i.e. can
be derived from T using deduction rules).

– Note: proof = syntactic manipulation, no reference to semantic
notions; in order to know what T ` A⇒ B means, we do not have to
know what it means that an AI A⇒ B is true in M.

– Derivable rules (Ref)–(Tra) . . . derivable rule = shorthand, inference
of new AIs using derivable rules can be replaced by inference using
original rules (Ax) and (Cut).

– Sound rule . . . derives true conclusions from true premises; (Ax) and
(Cut) are sound; in detail, for (Cut): soundness of (Cut) means that
for every M in which both A⇒ B and B ∪ C ⇒ D are true,
A ∪ C ⇒ D needs to be true, too.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 39 / 107

Armstrong rules and reasoning with AIs

– Soundness of inference using sound rules: if T ` A⇒ B (A⇒ B is
provable from T) then T |= A⇒ B (A⇒ B semantically follows
from T), i.e. if A⇒ B is provable from T then A⇒ B is true in
every M in which every AI from T is true. Therefore, soundness of
inference means that if we take an arbitrary M and take a set T of
AIs which are true in M, then evey AI A⇒ B which we can infer
(prove) from T using our inference rules needs to be true in M.

– Consequence: rules, such as (Ref)–(Tra), which can be derived from
sound rules are sound.

– sem(T) . . . set of all AIs which are semantic consequences of T ,
syn(T) . . . set of all AIs which are syntactic consequences of T
(provable from T).

– T is syntactically closed iff T is closed under (Ax) and (Cut).

– (Syntactico-semantical) completeness of rules (Ax) and (Cut):
T ` A⇒ B iff T |= A⇒ B.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 40 / 107

Armstrong rules and reasoning with AIs

Example
Explain why {} |= A⇒ B means that (1) A⇒ B is true in every
M ⊆ Y , (2) A⇒ B is true in every formal context 〈X ,Y , I 〉.
Explain why soundness of inference implies that if we take an
arbitrary formal context 〈X ,Y , I 〉 and take a set T of AIs which are
true in 〈X ,Y , I 〉, then evey AI A⇒ B which we can infer (prove)
from T using our inference rules needs to be true in 〈X ,Y , I 〉.
Let R1 and R2 be two sets of deduction rules, e.g. R1 = {(Ax),
(Cut)}. Call R1 and R2 equivalent if every rule from R2 is a derived
rule in terms of rules from R1 and, vice versa, every rule from R1 is a
derived rule in terms of rules from R2.
For instance, we know that taking R1 = {(Ax), (Cut)}, every rule
from R2 = {(Ref),. . . , (Tra)} is a derived rule in terms of rules of R1.
Verify that R1 = {(Ax), (Cut)} and R2 = {(Ref),(Wea), (Cut)} are
equivalent.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 41 / 107

Armstrong rules and reasoning with AIs

Example
Explain: If R1 and R2 are equivalent sets of inference rules then
A⇒ B is provable from T using rules from R1 iff A⇒ B is provable
from T using rules from R2.

Explain: Let R2 be a set of inference rules equivalent to R1 = {(Ax),
(Cut)}. Then A⇒ B is provable from T using rules from R2 iff
T |= A⇒ B.

Verify that sem(· · ·) is a closure operator, i.e. that T ⊆ sem(T),
T1 ⊆ T2 implies sem(T1) ⊆ sem(T2), and sem(T) = sem(sem(T)).

Verify that syn(· · ·) is a closure operator, i.e. that T ⊆ syn(T),
T1 ⊆ T2 implies syn(T1) ⊆ syn(T2), and syn(T) = syn(syn(T)).

Verify that for any T , sem(T) is the least semantically closed set
which contains T .

Verify that for any T , syn(T) is the least syntactically closed set
which contains T .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 42 / 107

Models of attribute implications

For a set T of attribute implications, denote

Mod(T) = {M ⊆ Y | ||A⇒ B||M = 1 for every A⇒ B ∈ T}

That is, Mod(T) is the set of all models of T .

Definition (closure system)

A closure system in a set Y is any system S of subsets of Y which
contains Y and is closed under arbitrary intersections.

That is, Y ∈ S and
⋂
R ∈ S for every R ⊆ S (intersection of every

subsystem R of S belongs to S).
{{a}, {a, b}, {a, d}, {a, b, c , d}} is a closure system in {a, b, c , d} while
{{a, b}, {c , d}, {a, b, c , d}} is not.
There is a one-to-one relationship between closure systems in Y and
closure operators in Y . Given a closure operator C in Y ,
SC = {A ∈ 2X | A = C (A)} = fix(C) is a closure system in Y .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 43 / 107

Models of attribute implications

Given a closure system in Y , putting

CS(A) =
⋂
{B ∈ S | A ⊆ B}

for any A ⊆ X , CS is a closure operator on Y . This is a one-to-one
relationship, i.e. C = CSC and S = SCS (we omit proofs).

Lemma

For a set T of attribute implications, Mod(T) is a closure system in Y .

Proof.

First, Y ∈ Mod(T) because Y is a model of any attribute implication.
Second, let Mj ∈ Mod(T) (j ∈ J). For any A⇒ B ∈ T , if A ⊆

⋂
j Mj

then for each j ∈ J: A ⊆ Mj , and so B ⊆ Mj (since Mj ∈ Mod(T), thus in
particular Mj |= A⇒ B), from which we have B ⊆

⋂
j Mj .

We showed that Mod(T) contains Y and is closed under intersections, i.e.
Mod(T) is a closure system.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 44 / 107

Models of attribute implications

remark

(1) If T is the set of all attribute implications valid in a formal context
〈X ,Y , I 〉, then Mod(T) = Int(X ,Y , I), i.e. models of T are just all the
intents of the concept lattice B(X ,Y , I) (see later).
(2) Another connection to concept lattices is: A⇒ B is valid in 〈X ,Y , I 〉
iff A↓ ⊆ B↓ iff B ⊆ A↓↑ (see later).

Since Mod(T) is a closure system, we can consider the corresponing
closure operator CMod(T) (i.e., the fixed points of CMod(T) are just models
of T). Therefore, for every A ⊆ Y there exist the least model of Mod(T)
which contains A, namely, such least model is just CMod(T)(A).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 45 / 107

Theorem (testing entailment via least model)

For any A⇒ B and any T , we have

T |= A⇒ B iff ||A⇒ B||CMod(T)(A) = 1,

i.e., A⇒ B semantically follows from T iff A⇒ B is true in the least
model CMod(T)(A) of T which contains A.

Proof.

“⇒”: If T |= A⇒ B then, by definition, A⇒ B is true in every model of
T . Therefore, in particular, A⇒ B is true in CMod(T)(A).
“⇐”: Let A⇒ B be true in CMod(T)(A). Since A ⊆ CMod(T)(A), we have
B ⊆ CMod(T)(A). We need to check that A⇒ B is true in every model of
T . Let thus M ∈ Mod(T). If A 6⊆ M then, clearly, A⇒ B is true in M. If
A ⊆ M then, since M is a model of T containing A, we have
CMod(T)(A) ⊆ M. Putting together with B ⊆ CMod(T)(A), we get B ⊆ M,
i.e. A⇒ B is true in M.

Models of attribute implications

– Previous theorem ⇒ testing T |= A⇒ B by checking whether
A⇒ B is true in a single particular model of T . This is much better
than going by definition |= (definition says: T |= A⇒ B iff A⇒ B is
true in every model of T).

– How can we obtain CMod(T)(A)?

Definition

For Z ⊆ Y , T a set of implications, put

1. ZT = Z ∪
⋃
{B | A⇒ B ∈ T ,A ⊆ Z},

2. ZT0 = Z ,

3. ZTn = (ZTn−1)T (for n ≥ 1).

Define define operator C : 2Y → 2Y by

C (Z) =
⋃∞

n=0 ZTn

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 47 / 107

Models of attribute implications

Theorem

Given T , C (defined on previous slide) is a closure operator in Y such that
C (Z) = CMod(T)(Z).

Proof.

First, check that C is a closure operator.
Z = ZT0 yields Z ⊆ C (Z).
Evidently, Z1 ⊆ Z2 implies ZT

1 ⊆ ZT
2 which implies ZT1

1 ⊆ ZT1
2 which

implies ZT2
1 ⊆ ZT2

2 which implies . . . ZTn
1 ⊆ ZTn

2 for any n. That is,
Z1 ⊆ Z2 implies C (Z1) =

⋃∞
n=0 ZTn

1 ⊆
⋃∞

n=0 ZTn
2 = C (Z2).

C (Z) = C (C (Z)): Clearly,
ZT0 ⊆ ZT1 ⊆ · · ·ZTn ⊆ · · · .

Since Y is finite, the above sequence terminates after a finite number n0

of steps, i.e. there is n0 such that
C (Z) =

⋃∞
n=0 ZTn = ZTn0 .

This means (ZTn0)T = ZTn0 = C (Z) which gives C (Z) = C (C (Z)).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 48 / 107

cntd.

Next, we check C (Z) = CMod(T)(Z).
1. C (Z) is a model of T containing Z :
Above, we checked thatC (Z) contains Z . Take any A⇒ B ∈ T and verify
that A⇒ B is valid in C (Z) (i.e., C (Z) is a model of A⇒ B). Let
A ⊆ C (Z). We need to check B ⊆ C (Z). A ⊆ C (Z) means that for some
n, A ⊆ ZTn . But then, by definition, B ⊆ (ZTn)T which gives
B ⊆ ZTn+1 ⊆ C (Z).
2. C (Z) is the least model of T containing Z :
Let M be a model of T containing Z , i.e. ZT0 = Z ⊆ M. Then
ZT ⊆ MT (just check definition of (· · ·)T). Evidently, M = MT .
Therefore, ZT1 = ZT ⊆ M. Applying this inductively gives ZT2 ⊆ M,
ZT3 ⊆ M, Putting together yields C (Z) =

⋃∞
n=0 ZTn ⊆ M. That is,

C (Z) is contained in every model M of T and is thus the least one.

Models of attribute implications

– Therefore, C is the closure operator which computes, given Z ⊆ Y ,
the least model of T containing Z .

– As argued in the proof, since Y is finite,
⋃∞

n=0 ZTn “stops” after a
finite number of steps. Namely, there is n0 such that ZTn = ZTn0 for
n > n0.

– The least such n0 is the smallest n with ZTn = ZTn+1 .

– Given T , C (Z) can be computed: Use definition and stop whenever
ZTn = ZTn+1 . That is, put

C (Z) = Z ∪ ZT1 ∪ ZT2 ∪ · · · ∪ ZTn .

– There is a more efficient algorithm (called LinClosure) for computing
C (Z). See Maier D.: The Theory of Relational Databases. CS Press,
1983.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 50 / 107

Models of attribute implications

Example

Back to one of our previous examples: Let Y = {y1, y2, y3}. Determine
whether T |= A⇒ B.

T = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}, A⇒ B is {y2, y3} ⇒ {y1}.
1. Mod(T) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.
2. By definition: ||{y2, y3} ⇒ {y1}||∅ = 1,
||{y2, y3} ⇒ {y1}||{y1} = 1, ||{y2, y3} ⇒ {y1}||{y2} = 1,
||{y2, y3} ⇒ {y1}||{y1,y2} = 1, ||{y2, y3} ⇒ {y1}||{y1,y2,y3} = 1.
Therefore, T |= A⇒ B.
3. Now, using our theorem: The least model of T containing
A = {y2, y3} is CMod(T)(A) = {y1, y2, y3}. Therefore, to verify
T |= A⇒ B, we just need to check whether A⇒ B is true in
{y1, y2, y3}. Since ||{y2, y3} ⇒ {y1}||{y1,y2,y3} = 1, we conclude
T |= A⇒ B.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 51 / 107

Models of attribute implications

Example (cntd.)

T = {{y3} ⇒ {y1, y2}, {y1, y3} ⇒ {y2}}, A⇒ B is {y2} ⇒ {y1}.
1. Mod(T) = {∅, {y1}, {y2}, {y1, y2}, {y1, y2, y3}}.
2. By definition: ||{y2} ⇒ {y1}||∅ = 1, ||{y2} ⇒ {y1}||{y1} = 1,
||{y2} ⇒ {y1}||{y2} = 0, we can stop.
Therefore, T 6|= A⇒ B.
3. Now, using our theorem: The least model of T containing
A = {y2} is CMod(T)(A) = {y2}. Therefore, to verify T |= A⇒ B, we
need to check whether A⇒ B is true in {y2}. Since
||{y2} ⇒ {y1}||{y2} = 0, we conclude T 6|= A⇒ B.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 52 / 107

Example

Let Y = {y1, . . . , y10},
T = {{y1, y4} ⇒ {y3}, {y2, y4} ⇒ {y1}, {y1, y2} ⇒ {y4, y7}, {y2, y7} ⇒
{y3}, {y6} ⇒ {y4}, {y2, y8} ⇒ {y3}, {y9} ⇒ {y1, y2, y7}}

1. Decide whether T |= A⇒ B for A⇒ B being {y2, y5, y6} ⇒ {y3, y7}.
We need to check whether ||A⇒ B||CMod(T)(A) = 1. First, we compute

CMod(T)(A) =
⋃∞

n=0 ATn . Recall:

ATn = ATn−1 ∪
⋃
{D |C ⇒ D ∈ T ,C ⊆ ATn}.

– AT0 = A = {y2, y5, y6}.
– AT1 = AT0 ∪

⋃
{{y4}} = {y2, y4, y5, y6}.

Note: {y4} added because for C ⇒ D being {y6} ⇒ {y4} we have
{y6} ⊆ AT0 .

– AT2 = AT1 ∪
⋃
{{y1}, {y4}} = {y1, y2, y4, y5, y6}.

– AT3 = AT2 ∪
⋃
{{y3}, {y1}, {y4}} = {y1, y2, y3, y4, y5, y6}.

– AT4 = AT3 ∪
⋃
{{y3}, {y1}, {y4, y7}, {y4}} = {y1, y2, y3, y4, y5, y6, y7}.

Example (cntd.)

– AT5 = AT4 ∪
⋃
{{y3}, {y1}, {y4, y7}, {y4}} =

{y1, y2, y3, y4, y5, y6, y7} = AT4 , STOP.

Therefore, CMod(T)(A) = {y1, y2, y3, y4, y5, y6, y7}. Now, we need to check
if ||A⇒ B||CMod(T)(A) = 1, i.e. if

||{y2, y5, y6} ⇒ {y3, y7}||{y1,y2,y3,y4,y5,y6,y7} = 1.
Since this is true, we conclude T |= A⇒ B.

2. Decide whether T |= A⇒ B for A⇒ B being {y1, y2, y8} ⇒ {y4, y7}.
We need to check whether ||A⇒ B||CMod(T)(A) = 1. First, we compute

CMod(T)(A) =
⋃∞

n=0 ATn .

– AT0 = A = {y1, y2, y8}.
– AT1 = AT0 ∪

⋃
{{y3}} = {y1, y2, y3, y8}.

– AT2 = AT1 ∪
⋃
{{y7}, {y3}} = {y1, y2, y3, y7, y8}.

– AT3 = AT2 ∪
⋃
{{y7}, {y3}} = {y1, y2, y3, y7, y8} = AT2 , STOP.

Thus, CMod(T)(A) = {y1, y2, y3, y7, y8}. Now, we need to check if
||A⇒ B||CMod(T)(A) = 1, i.e. if ||{y1, y2, y8} ⇒ {y4, y7}||{y1,y2,y3,y7,y8} = 1.

Since this is not true, we conclude T 6|= A⇒ B.

Non-redundant bases of attribute implications

Definition (non-redundant set of AIs)

A set T of attribute implications is called non-redundant if for any
A⇒ B ∈ T we have

T − {A⇒ B} 6|= A⇒ B.

That is, if T ′ results from T be removing an arbitrary A⇒ B from T , then
A⇒ B does not semantically follow from T ′, i.e. T ′ is weaker than T .
How to check if T is redundant or not? Pseudo-code:

1. for A⇒ B ∈ T do

2. T ′ := T − {A⇒ B};
3. if T ′ |= A⇒ B then

3. output(‘‘REDUNDANT’’);

4. stop;

5. endif;

6. endfor;

7. output(‘‘NONREDUNDANT’’).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 55 / 107

Non-redundant bases of attribute implications

– Checking T ′ |= A⇒ B: as described above, i.e. test whether
||A⇒ B||CMod(T ′)(A) = 1.

– Modification of this algorithm gives an algorithm which, given T ,
returns a non-redundant subset nrT of T which is equally strong as
T , i.e. for any C ⇒ D,

T |= C ⇒ D iff nrT |= C ⇒ D.
Pseudo-code:

1. nrT := T;

2. for A⇒ B ∈ nrT do

3. T ′ := nrT − {A⇒ B};
4. if T ′ |= A⇒ B then

5. nrT := T ′;
6. endif;

7. endfor;

8. output(nrT).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 56 / 107

Non-redundant bases of attribute implications

Definition (complete set of AIs)

Let 〈X ,Y , I 〉 be a formal context, T be a set of attribute implications over
Y . T is called complete in 〈X ,Y , I 〉 if for any attribute implication
C ⇒ D we have

C ⇒ D is true in 〈X ,Y , I 〉 IFF T |= C ⇒ D.

– This is a different notion of completeness (different from
syntactico-semantical completeness of system (Ax) and (Cut) of
Armstrong rules).

– Meaning: T is complete iff validity of any AI C ⇒ D in data
〈X ,Y , I 〉 is encoded in T via entailment: C ⇒ D is true in 〈X ,Y , I 〉
iff C ⇒ D follows from T . That is, T gives complete information
about which AIs are true in data.

– Definition directly yields: If T is complete in 〈X ,Y , I 〉 then every
A⇒ B from T is true in 〈X ,Y , I 〉. Why: because T |= A⇒ B for
every A⇒ B from T .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 57 / 107

Non-redundant bases of attribute implications

Theorem (criterion for T being complete in 〈X ,Y , I 〉)
T is complete in 〈X ,Y , I 〉 iff Mod(T) = Int(X ,Y , I), i.e. models of T
are just intents of formal concepts from B(X ,Y , I).

Proof.

Omitted.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 58 / 107

Non-redundant bases of attribute implications

Definition (non-redundant basis of 〈X ,Y , I 〉)
Let 〈X ,Y , I 〉 be a formal context. A set T of attribute implications over
Y is called a non-redundant basis of 〈X ,Y , I 〉 iff

1. T is complete in 〈X ,Y , I 〉,
2. T is non-redundant.

– Another way to say that T is a non-redundant basis of 〈X ,Y , I 〉:
(a) every AI from T is true in 〈X ,Y , I 〉;
(b) for any other AI C ⇒ D: C ⇒ D is true in 〈X ,Y , I 〉 iff C ⇒ D
follows from T ;
(c) no proper subset T ′ ⊆ T satisfies (a) and (b).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 59 / 107

Non-redundant bases of attribute implications

Example (testing non-redundancy of T)

Let Y = {ab2, ab6, abs, ac , cru, ebd} with the following meaning of
attributes: ab2 . . . has 2 or more airbags, ab6 . . . has 6 or more airbags,
abs . . . has ABS, ac . . . has air-conditioning, ebd . . . has EBD.
Let T consist of the following attribute implications: {ab6} ⇒ {abs, ac},
{} ⇒ {ab2}, {ebd} ⇒ {ab6, cru}, {ab6} ⇒ {ab2}.
Determine whether T is non-redundant.
We can use the above algorithm, and proceed as follows: We go over all
A⇒ B from T and test whether T ′ |= A⇒ B where T ′ = T − {A⇒ B}.

A⇒ B = {ab6} ⇒ {abs, ac}. Then,
T ′ = {{} ⇒ {ab2}, {ebd} ⇒ {ab6, cru}, {ab6} ⇒ {ab2}}. In order
to decide whether T ′ |= {ab6} ⇒ {abs, ac}, we need to compute
CMod(T ′)({ab6}) and check ||{ab6} ⇒ {abs, ac}||CMod(T ′)({ab6}).

Putting Z = {ab6}, and denoting ZT ′i by Z i ,

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 60 / 107

Example (testing non-redundancy of T , cntd.)

we get Z 0 = {ab6}, Z 1 = {ab2, ab6}, Z 2 = {ab2, ab6}, we can stop
and we have CMod(T ′)({ab6}) =

⋃
i=01 Z i = {ab2, ab6}. Now,

||{ab6} ⇒ {abs, ac}||CMod(T ′)({ab6}) = ||{ab6} ⇒
{abs, ac}||{ab2,ab6} = 0, i.e. T ′ 6|= {ab6} ⇒ {abs, ac}. That is, we
need to go further.

A⇒ B = {} ⇒ {ab2}. Then,
T ′ = {{ab6} ⇒ {abs, ac}, {ebd} ⇒ {ab6, cru}, {ab6} ⇒ {ab2}}. In
order to decide whether T ′ |= {} ⇒ {ab2}, we need to compute
CMod(T ′)({}) and check ||{} ⇒ {ab2}||CMod(T ′)({}). Putting Z = {},
and denoting ZT ′i by Z i , we get Z 0 = {}, Z 1 = {} (because there is
no A⇒ B ∈ T ′ such that A ⊆ {}), we can stop and we have
CMod(T ′)({}) = Z 0 = {}. Now,
||{} ⇒ {ab2}||CMod(T ′)({}) = ||{} ⇒ {ab2}||{} = 0, i.e.

T ′ 6|= {} ⇒ {ab2}. That is, we need to go further.

A⇒ B = {ebd} ⇒ {ab6, cru}. Then,
T ′ = {{ab6} ⇒ {abs, ac}, {} ⇒ {ab2}, {ab6} ⇒ {ab2}}. In order to
decide whether T ′ |= {ebd} ⇒ {ab6, cru}, we need to compute

Example (testing non-redundancy of T , cntd.)

CMod(T ′)({ebd}) and check ||{ebd} ⇒ {ab6, cru}||CMod(T ′)({ebd}).

Putting Z = {ebd}, and denoting ZT ′i by Z i , we get Z 0 = {ebd},
Z 1 = {ab2, ebd}, Z 2 = {ab2, ebd}, we can stop and we have
CMod(T ′)({ebd}) = Z 0 = {ab2, ebd}. Now, ||{ebd} ⇒
{ab6, cru}||CMod(T ′)({ab2,ebd}) = ||{ebd} ⇒ {ab6, cru}||{ab2,ebd} = 0,

i.e. T ′ 6|= {ebd} ⇒ {ab6, cru}. That is, we need to go further.

A⇒ B = {ab6} ⇒ {ab2}. Then,
T ′ = {{ab6} ⇒ {abs, ac}, {} ⇒ {ab2}, {ebd} ⇒ {ab6, cru}}. In
order to decide whether T ′ |= {ab6} ⇒ {ab2}, we need to compute
CMod(T ′)({ab6}) and check ||{ab6} ⇒ {ab2}||CMod(T ′)({ab6}). Putting

Z = {ab6}, and denoting ZT ′i by Z i , we get Z 0 = {ab6},
Z 1 = {ab2, ab6, abs, ac}, Z 2 = {ab2, ab6, abs, ac}, we can stop and
we have CMod(T ′)({ab6}) =

⋃
i=01 Z i = {ab2, ab6, abs, ac}. Now,

||{ab6} ⇒ {ab2}||CMod(T ′)({ab6}) = ||{ab6} ⇒ {ab2}||{ab2,ab6,abs,ac} =

1, i.e. T ′ |= {ab6} ⇒ {ab2}. Therefore, T is redundant (we can
remove {ab6} ⇒ {ab2}).

Example (testing non-redundancy of T , cntd.)

We can see that T is redundant by observing that T ′ ` {ab6} ⇒ {ab2}
where T ′ = T − {{ab6} ⇒ {ab2}}. Namely, we can infer {ab6} ⇒ {ab2}
from {} ⇒ {ab2} by (Wea). Syntactico-semantical completeness yields
T ′ |= {ab6} ⇒ {ab2}, hence T is redundant.

Non-redundant bases of attribute implications

Example (deciding whether T is complete w.r.t 〈X ,Y , I 〉)
Consider attributes normal blood pressure (nbp), high blood pressure
(hbp), watches TV (TV), eats unhealthy food (uf), runs regularly (r),
persons a, . . . , e, and formal context (table) 〈X ,Y , I 〉

I nbp hbp TV uf r
a × ×
b × × ×
c × × ×
d × ×
e ×

Decide whether T is complete w.r.t. 〈X ,Y , I 〉 for sets T described below.

Due to the above theorem, we need to check Mod(T) = Int(X ,Y , I).
That is, we need to compute Int(X ,Y , I) and Mod(T) and compare.

We have Int(X ,Y , I) = {{}, {nbp}, {uf }, {uf , hbp},
{nbp, r}, {uf , hbp,TV }, {nbp, r , uf }, {hbp, nbp, r ,TV , uf }}

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 64 / 107

Example (deciding whether T is complete w.r.t 〈X ,Y , I 〉, cntd.)

1. T consists of {r} ⇒ {nbp}, {TV , uf } ⇒ {hbp}, {r , uf } ⇒ {TV }.
T is not complete w.r.t. 〈X ,Y , I 〉 because {r , uf } ⇒ {TV } is not
true in 〈X ,Y , I 〉 (person b is a counterexample). Recall that if T is
complete, every AI from T is true in 〈X ,Y , I 〉.

2. T consists of {r} ⇒ {nbp}, {TV , uf } ⇒ {hbp}, {TV } ⇒ {hbp}.
In this case, every AI from T is true in 〈X ,Y , I 〉. But still, T is not
complete. Namely, Mod(T) 6⊆ Int(X ,Y , I). For instance,
{hbp,TV } ∈ Mod(T) but {hbp,TV } 6∈ Int(X ,Y , I).

In this case, T is too weak. T does not entail all attribute
implications which are true in 〈X ,Y , I 〉. For instance
{hbp,TV } ⇒ {uf } is true in 〈X ,Y , I 〉 but T 6|= {hbp,TV } ⇒ {uf }.
Indeed, {hbp,TV } is a model of T but
||{hbp,TV } ⇒ {uf }||{hbp,TV } = 0.

Example (deciding whether T is complete w.r.t 〈X ,Y , I 〉, cntd.)

3. T consists of {r} ⇒ {nbp}, {TV , uf } ⇒ {hbp}, {TV } ⇒ {uf },
{TV } ⇒ {hbp}, {hbp,TV } ⇒ {uf }, {nbp, uf } ⇒ {r},
{hbp} ⇒ {uf }, {uf , r} ⇒ {nbp}, {nbp,TV } ⇒ {r},
{hbp, nbp} ⇒ {r ,TV }.
One can check that Mod(T) consists of {}, {nbp}, {uf }, {uf , hbp},
{nbp, r}, {uf , hbp,TV }, {nbp, r , uf }, {hbp, nbp, r ,TV , uf }}.
Therefore, Mod(T) = Int(X ,Y , I). This implies that T is complete
in 〈X ,Y , I 〉.
(An easy way to check it is to check that every intent from
Int(X ,Y , I) is a model of T (there are 8 intents in our case), and
that no other subset of Y is a model of T (there are 25 − 8 = 24
such subsets in our case). As an example, take
{hbp, uf , r} 6∈ Int(X ,Y , I). {hbp, uf , r} is not a model of T because
{hbp, uf , r} is not a model of {r} ⇒ {nbp}.)

Example (reducing T to a non-redundant set)

Continuing our previous example, consider again T consisting of
{r} ⇒ {nbp}, {TV , uf } ⇒ {hbp}, {TV } ⇒ {uf }, {TV } ⇒ {hbp},
{hbp,TV } ⇒ {uf }, {nbp, uf } ⇒ {r}, {hbp} ⇒ {uf }, {uf , r} ⇒ {nbp},
{nbp,TV } ⇒ {r}, {hbp, nbp} ⇒ {r ,TV }.
From the previous example we know that T is complete in 〈X ,Y , I 〉.
Check whether T is non-redundant. If not, transform T into a
non-redundant set nrT . (Note: nrT is then a non-redundant basis of
〈X ,Y , I 〉.)

Using the above algorithm, we put nrT := T and go through all
A⇒ B ∈ nrT and perform: If for T ′ := nrT − {A⇒ B} we find out that
T ′ |= A⇒ B, we remove A⇒ B from nrT , i.e. we put nrT := T ′.
Checking T ′ |= A⇒ B is done by verifying whether ||A⇒ B||CMod(T ′)(A).

For A⇒ B = {r} ⇒ {nbp}: T ′ := nrT − {{r} ⇒ {nbp}},
CMod(T ′)(A) = {r} and ||A⇒ B||{r} = 0, thus T ′ 6|= A⇒ B, and
nrT does not change.

Example (reducing T to a non-redundant set, cntd.)

For A⇒ B = {TV , uf } ⇒ {hbp}:
T ′ := nrT − {{TV , uf } ⇒ {hbp}}, CMod(T ′)(A) = {TV , uf , hbp}
and ||A⇒ B||{TV ,uf ,hbp} = 1, thus T ′ |= A⇒ B, and we remove
{TV , uf } ⇒ {hbp} from nrT . That is,
nrT = T − {{TV , uf } ⇒ {hbp}}.
For A⇒ B = {TV } ⇒ {uf }: T ′ := nrT − {{TV } ⇒ {uf }},
CMod(T ′)(A) = {TV , hbp, uf } and ||A⇒ B||{TV ,hbp,uf } = 1, thus
T ′ |= A⇒ B, and we remove {TV } ⇒ {uf } from nrT . That is,
nrT = T − {{TV , uf } ⇒ {hbp}, {TV } ⇒ {uf }}.
For A⇒ B = {TV } ⇒ {hbp}: T ′ := nrT − {{TV } ⇒ {hbp}},
CMod(T ′)(A) = {TV } and ||A⇒ B||{TV } = 0, thus T ′ 6|= A⇒ B,
nrT does not change. That is,
nrT = T − {{TV , uf } ⇒ {hbp}, {TV } ⇒ {uf }}.
For A⇒ B = {hbp,TV } ⇒ {uf }:
T ′ := nrT − {{hbp,TV } ⇒ {uhf }}, CMod(T ′)(A) = {hbp,TV , uf }
and ||A⇒ B||{hbp,TV ,uf } = 1, thus T ′ |= A⇒ B, we remove
{hbp,TV } ⇒ {uf } from nrT . That is,
nrT = T − {{TV , uf } ⇒ {hbp}, {TV } ⇒ {uf },
{hbp,TV } ⇒ {uf }}.

Example (reducing T to a non-redundant set, cntd.)

For A⇒ B = {nbp, uf } ⇒ {r}: T ′ := nrT − {{nbp, uf } ⇒ {r}},
CMod(T ′)(A) = {nbp, uf } and ||A⇒ B||{nbp,uf } = 0, thus
T ′ 6|= A⇒ B and nrT does not change. That is,
nrT = T − {{TV , uf } ⇒ {hbp}, {TV } ⇒ {uf },
{hbp,TV } ⇒ {uf }}.
For A⇒ B = {hbp} ⇒ {uf }: T ′ := nrT − {{hbp} ⇒ {uf }},
CMod(T ′)(A) = {hbp} and ||A⇒ B||{hbp} = 0, thus T ′ 6|= A⇒ B and
nrT does not change. That is, nrT = T − {{TV , uf } ⇒ {hbp},
{TV } ⇒ {uf }, {hbp,TV } ⇒ {uf }}.
For A⇒ B = {uf , r} ⇒ {nbp}: T ′ := nrT − {{uf , r} ⇒ {nbp}},
CMod(T ′)(A) = {uf , r , nbp} and ||A⇒ B||{uf ,r ,nbp} = 1, thus
T ′ |= A⇒ B and we remove {uf , r} ⇒ {nbp} from nrT . That is,
nrT = T − {{TV , uf } ⇒ {hbp}, {TV } ⇒ {uf },
{hbp,TV } ⇒ {uf }, {uf , r} ⇒ {nbp}}.

Example (reducing T to a non-redundant set, cntd.)

For A⇒ B = {nbp,TV } ⇒ {r}: T ′ := nrT − {{nbp,TV } ⇒ {r}},
CMod(T ′)(A) = {nbp,TV , hbp, uf , r} and
||A⇒ B||{nbp,TV ,hbp,uf ,r} = 1, thus T ′ |= A⇒ B and we remove
{nbp,TV } ⇒ {r} from nrT . That is,
nrT = T − {{TV , uf } ⇒ {hbp}, {TV } ⇒ {uf },
{hbp,TV } ⇒ {uf }, {uf , r} ⇒ {nbp}, {nbp,TV } ⇒ {r}}.
For A⇒ B = {hbp, hbp} ⇒ {r ,TV }:
T ′ := nrT − {{hbp, nbp} ⇒ {r ,TV }},
CMod(T ′)(A) = {hbp, nbp, uf , r} and ||A⇒ B||{hbp,nbp,uf ,r} = 0, thus
T ′ 6|= A⇒ B and nrT does not change. That is,
nrT = T − {{TV , uf } ⇒ {hbp}, {TV } ⇒ {uf },
{hbp,TV } ⇒ {uf }, {uf , r} ⇒ {nbp}, {nbp,TV } ⇒ {r}}.

We obtained nrT = {{r} ⇒ {nbp}, {TV } ⇒ {hbp}, {nbp, uf } ⇒
{r}, {hbp} ⇒ {uf }, {hbp, nbp} ⇒ {r ,TV }}. nrT is a non-redundant set
of AIs.
Since T is complete in 〈X ,Y , I 〉, nrT is complete in 〈X ,Y , I 〉, too
(why?). Therefore, nrT is a non-redundant basis of 〈X ,Y , I 〉.

Non-redundant bases of attribute implications

In the last example, we obtained a non-redundant basis nrT of 〈X ,Y , I 〉,
nrT = {{r} ⇒ {nbp}, {TV } ⇒ {hbp}, {nbp, uf } ⇒ {r}, {hbp} ⇒
{uf }, {hbp, nbp} ⇒ {r ,TV }}.
How to compute non-redundant bases from data?

We are going to present an approach based on the notion of a
pseudo-intent. This approach is due to Guigues and Duquenne. The
resulting non-redundant basis is called a Guigues-Duquenne basis.

Two main features of Guigues-Duquenne basis are

– it is computationally tractable,

– it is optimal in terms of its size (no other non-redundant basis has is
smaller in terms of the number of AIs it contains).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 71 / 107

Non-redundant bases of attribute implications

Definition (pseudo-intents)

A pseudo-intent of 〈X ,Y , I 〉 is a subset A ⊆ Y for which

1. A 6= A↓↑,

2. B↓↑ ⊆ A for each pseudo-intent B ⊂ A.

–

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 72 / 107

Theorem (Guigues-Duquenne basis)

The set T = {A⇒ A↓↑ | A is a pseudointent of (X ,Y , I)} of implications
is a non-redundant basis of 〈X ,Y , I 〉.

Proof.

We show that T is complete and non-redundant.
Complete: It suffices to show that Mod(T) ⊆ Int(X ,Y , I). Let
C ∈ Mod(T). Assume C 6= C ↓↑. Then C is a pseudo-intent (indeed, if
P ⊂ C is a pseudo-intent then since ||P ⇒ P↓↑||C = 1, we get P↓↑ ⊆ C).
But then C ⇒ C ↓↑ ∈ T and so ||C ⇒ C ↓↑||C = 1. But the last fact
means that if C ⊆ C (which is true) then C ↓↑ ⊆ C which would give
C ↓↑ = C , a contradiction with the assumption C ↓↑ 6= C . Therefore,
C ↓↑ = C , i.e. C ∈ Int(X ,Y , I).
Non-redundant: Take any P ⇒ P↓↑. We show that
T − {P ⇒ P↓↑} 6|= P ⇒ P↓↑. Since ||P ⇒ P↓↑||P = 0 (obvious, check), it
suffices to show that ||T − {P ⇒ P↓↑}||P = 1. That is, we need to show
that for each Q ⇒ Q↓↑ ∈ T − {P ⇒ P↓↑} we have ||Q ⇒ Q↓↑||P = 1, i.e.
that if Q ⊆ P then Q↓↑ ⊆ P. But this follows from the definition of a
pseudo-intent (apply to P).

Lemma

If P,Q are intents or pseudo-intents and P 6⊆ Q, Q 6⊆ P, then P ∩Q is an
intent.

Proof.

Let T = {R ⇒ R↓↑ | R a pseudo-intent} be the G.-D. basis. Since T is
complete, it is sufficient to show that P ∩Q ∈ Mod(T) (since then, P ∩Q
is a model of any implication which is true in 〈X ,Y , I 〉, and so P ∩Q is an
intent).
Obviously, P,Q are models of T − {P ⇒ P↓↑,Q ⇒ Q↓↑}, whence P ∩ Q
is a model of T − {P ⇒ P↓↑,Q ⇒ Q↓↑} (since the set of models is a
closure system, i.e. closed under intersections).
Therefore, to show that P ∩ Q is a model of T , it is sufficient to show
that P ∩ Q is a model of {P ⇒ P↓↑,Q ⇒ Q↓↑}. Due to symmetry, we
only verify that P ∩ Q is a model of {P ⇒ P↓↑: But this is trivial: since
P 6⊆ Q, the condition “if P ⊆ P ∩ Q implies P↓↑ ⊆ P ∩ Q” is satisfied for
free. The proof is complete.

Lemma

If T is complete, then for each pseudo-intent P, T contains A⇒ B with
A↓↑ = P↓↑

Proof.

For pseudointent P, P 6= P↓↑, i.e. P is not an intent. Therefore, P cannot
be a model of T (since models of a complete T are intents). Therefore,
there is A⇒ B ∈ T such that ||A⇒ B||P = 0, i.e. A ⊆ P but B 6⊆ P. As
||A⇒ B||〈X ,Y ,I 〉 = 1, we have B ⊆ A↓↑ (Thm. on basic connections . . .).

Therefore, A↓↑ 6⊆ P (otherwise B ⊆ P, a contradiction). Therefore,
A↓↑ ∩P is not an intent (). By the foregoing Lemma, P ⊆ A↓↑ which gives
P↓↑ ⊆ A↓↑. On the other hand, A ⊆ P gives A↓↑ ⊆ P↓↑. Altogether,
A↓↑ = P↓↑, proving the claim.

Theorem (Guigues-Duquenne basis is the smalest one)

If T is the Guigues-Duquenne base and T ′ is complete then |T | ≤ |T ′|.

Proof.

Direct corollary of the above Lemma.

Non-redundant bases of attribute implications

P ... set of all pseudointents of 〈X ,Y , I 〉
THE base we need to compute: {A⇒ A↓↑ | A ∈ P}

Q: What do we need? A: Compute all pseudointents.

We will see that the set of all P ⊆ Y which are intents or pseudo-intents is
a closure system.

Q: How to compute the fixed points (closed sets)?

For Z ⊆ Y , T a set of implications, put
ZT = Z ∪

⋃
{B | A⇒ B ∈ T ,A ⊂ Z}

ZT0 = Z
ZTn = (ZTn−1)T (n ≥ 1)

define CT : 2Y → 2Y by
CT (Z) =

⋃∞
n=0 ZTn (note: terminates, Y finite)

Note: this is different from the operator computing the least model
CMod(T)(A) of T containing A (instead of A ⊆ Z , we have A ⊂ Z here).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 76 / 107

Non-redundant bases of attribute implications

Theorem

Let T = {A⇒ A↓↑ | A ∈ P} (G.-D. base). Then

1. CT is a closure operator,

2. P is a fixed point of CT iff P ∈ P (P is a pseudo-intent) or
P ∈ Int(X ,Y , I) (P is an intent).

Proof.

1. easy (analogous to the proof concerning the closure operator for
CMod(T)(A)).

2. P ∪ Int(X ,Y , I) ⊆ fix(CT): easy. fix(CT) ⊆ P ∪ Int(X ,Y , I): It
suffices to show that if P ∈ fix(CT) is not an intent (P 6= P↓↑) then P is
an pseudo-intent. So take P ∈ fix(CT), i.e. P = CT (P), which is not an
intent. Take any pseudointent Q ⊂ P. By definition (notice that
Q ⇒ Q↓↑ ∈ T), Q↓↑ ⊆ CT (P) = P which means that P is a
pseudo-intent.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 77 / 107

So: fix(CT) = P ∪ Int(X ,Y , I)

Therefore, to compute P, we can compute fix(CT) and exclude
Int(X ,Y , I), i.e. P = fix(CT)− Int(X ,Y , I).

computing fix(CT): by Ganter’s NextClosure algorithm.

Caution! In order to compute CT , we need T , i.e. we need P, which we
do not know in advance. Namely, recall what we are doing:

– Given input data 〈X ,Y , I 〉, we need to compute G.-D. basis
T = {A⇒ A↓↑ |A ∈ P}.

– For this, we need to compute P (pseudo-intents of 〈X ,Y , I 〉).

– P can be obtained from zfix(CT) (fixed points of CT).

– But to compute CT , we need T (actually, we need only a part of T).

But we are not in circulus vitiosus: The part of T (or P) which is needed
at a given point is already available (computed) at that point.

Non-redundant bases of attribute implications

Computing G.-D. basis manually is tedious.

Algorithms available, e.g. Peter Burmeister’s ConImp (see the course web
page).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 79 / 107

Association rules

– classic topic in mining relational data

– available in most data mining software tools

– association rules = attribute implications + criteria of interestingness
(support, confidence)

– introduced in 1993 (Agrawal R., Imielinski T., Swami A. N.: Mining
association rules between sets of items in large databases. Proc.
ACM Int. Conf. of management of data, pp. 207–216, 1993)

– but see GUHA method (in fact, association rules with elaborated
statistics):

– developed in 1960s by P. Hájek et al.
– GUHA book available at
http://www.cs.cas.cz/∼hajek/guhabook/: Hájek P., Havránek
T.: Mechanizing Hypothesis Formation. Mathematical Foundations for
General Theory. Springer, 1978.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 80 / 107

Association rules

– Good book: Adamo J.-M.: Data Mining for Association Rules and
Sequential Patterns. Sequential and Parallel Algorithms. Springer,
New York, 2001.

– Good overview: Dunham M. H.: Data Mining. Introductory and
Advanced Topics. Prentice Hall, Upper Saddle River, NJ, 2003.

– Overview in almost any textbook on data mining.

Main point where association rules (ARs) differ from attribute implications
(AIs): ARs consider statistical relevance. Therefore, ARs are appropriate
when analyzing large data collections.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 81 / 107

Association rules – basic terminology

Definition (association rule)

An association rule (over set Y of attributes) is an expression A⇒ B
where A,B ⊆ Y (sometimes one assumes A ∩ B = ∅).

Note: Association rules are just attribute implications in sense of FCA.

Data for ARs (terminology in DM community): a set Y of items, a
database D of transactions, D = {t1, . . . , tn} where ti ⊆ Y , i.e.,
transaction ti is a set of (some) items.

Note: one-to-one correspondence between databases D (over Y) and
formal contexts (with attributes from Y):
Given D, the corresponding 〈X ,Y , I 〉D is given by

〈X ,Y , I 〉D . . .X = D, 〈t1, y〉 ∈ I ⇔ y ∈ t1;

given 〈X ,Y , I 〉, the corresponding D〈X ,Y ,I 〉 is given by

D〈X ,Y ,I 〉 = {{x}↑ | x ∈ X}.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 82 / 107

Association rules – why items and transactions?

original motivation:
item = product in a store
transaction = cash register transaction (set of items purchased)
association rule = says: when all items from A are purchased then also all
items from B are purchased
Example transactions X = {x1, . . . , x8}, items Y = {be, br , je,mi , pb}
(beer, bread, jelly, milk, peanut butter)

I be br je mi pb

x1 X X X

x2 X X

x3 X X X

x4 X X

x5 X X

x6 X X X

x7 X X X

x8 X X X

For instance: a customer realizing transaction x3 bought bread, milk, and
peanut butter.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 83 / 107

Association rules – support

Definition (support of AR)

Support of A⇒ B is denoted by supp(A⇒ B) and defined by

supp(A⇒ B) =
|{x ∈ X | for each y ∈ A ∪ B : 〈x , y〉 ∈ I}|

|X |
,

i.e. supp(A⇒ B) · 100% of transactions contain A ∪ B (percentage of
transactions where customers bought items from A ∪ B).

Note that (in terms of FCA)

supp(A⇒ B) =
|(A ∪ B)↓|
|X |

.

We use both “support is 0.3” and “support is 30%”.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 84 / 107

Association rules – confidence

Definition (confidence of AR)

Confidence of A⇒ B is denoted by conf(A⇒ B) and defined by

conf(A⇒ B) =
|{x ∈ X | for each y ∈ A ∪ B : 〈x , y〉 ∈ I}|
|{x ∈ X | for each y ∈ A : 〈x , y〉 ∈ I}|

,

i.e. conf(A⇒ B) · 100% of transactions containing all items from A
contain also all items from B (percentage of customers which by also (all
from) B if they buy (all from) A.

Note that (in terms of FCA)

conf(A⇒ B) =
|(A ∪ B)↓|

A↓
.

We use both “confidence is 0.3” and “confidence is 30%”.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 85 / 107

Lemma

supp(A⇒ B) ≤ conf(A⇒ B).

Proof.

Directly from definition observing that |X | ≥ |A↓|

Lemma (relating confidence and validity of AIs)

conf(A⇒ B) = 1 iff ||A⇒ B||〈X ,Y ,I 〉 = 1. That is, attribute implications
which are true in 〈X ,Y , I 〉 are those which are fully confident.

Proof.

conf(A⇒ B) = 1 iff |(A ∪ B)↓| = |A↓|. Since (A ∪ B)↓ ⊆ A↓ is always the
case, |(A ∪ B)↓| = |A↓| is equivalent to (A ∪ B)↓ ⊇ A↓ which any object
which has all attributes from A (object from A↓) has also all attributes
from A ∪ B (object from (A ∪ B)↓), thus, in particular, all attributes from
B which is equivalent to ||A⇒ B||〈X ,Y ,I 〉 = 1.

Example (support and confidence)

Consider data table fro previous example (be, br , je,mi , pb denote beer,
bread, jelly, milk, peanut butter).

I be br je mi pb

x1 X X X

x2 X X

x3 X X X

x4 X X

x5 X X

x6 X X X

x7 X X X

x8 X X X

Determine support and confidence of the following association rules:

A⇒ B is {br} ⇒ {pb}:
supp(A⇒ B) = |(A∪B)↓|

|X | = |{br ,pb}↓|
8 = |{x1,x2,x3,x6,x7,x8}↓|

8 = 6
8 = 0.75.

conf(A⇒ B) = |(A∪B)↓|
|A↓| = |{br ,pb}↓|

|{br}↓| = |{x1,x2,x3,x6,x7,x8}|
|{x1,x2,x3,x4,x6,x7,x8}| = 6

7 =
0.857.

Example (support and confidence, cntd.)

I be br je mi pb

x1 X X X

x2 X X

x3 X X X

x4 X X

x5 X X

x6 X X X

x7 X X X

x8 X X X

A⇒ B is {mi , pb} ⇒ {br}:
supp(A⇒ B) = |(A∪B)↓|

|X | = |{mi ,pb,br}↓|
8 = |{x3,x8}|

8 = 2
8 = 0.25.

conf(A⇒ B) = |(A∪B)↓|
|A↓| = |{mi ,pb,br}↓|

|{mi ,pb}↓| = |{x3,x8}|
|{x3,x8}| = 2

2 = 1.0.

A⇒ B is {br , je} ⇒ {pb}:
supp(A⇒ B) = |(A∪B)↓|

|X | = |{br ,je,pb}↓|
8 = |{x1,x6,x7}|

8 = 3
8 = 0.375.

conf(A⇒ B) = |(A∪B)↓|
|A↓| = |{br ,je,pb}↓|

|{br ,je}↓| = |{x1,x6,x7}|
|{x1,x6,x7}| = 3

3 = 1.0.

Both {mi , pb} ⇒ {br} and {br , je} ⇒ {pb} are fully confident (true)
but {br , je} ⇒ {pb} is supported more by the data (occurred more
frequently).

Association rules

Definition (association rule problem)

For prescribed values s and c , list all association rules of 〈X ,Y , I 〉 with
supp(A⇒ B) ≥ s and conf(A⇒ B) ≥ c .

– such rules = interesting rules
– common technique to solve AR problem: via frequent itemsets

1. find all frequent itemsets (see later),
2. generate rules from frequent itemsets

Definition (support of itemset, frequent itemset)

– Support supp(B) of B ⊆ Y in table 〈X ,Y , I 〉 is defined by

supp(B) =
|B↓|
|X |

.

– For given s, an itemset (set of attributes) B ⊆ Y is called frequent
(large) itemset if supp(B) ≥ s.

Example For s = 0.3 (30%),

L = {{be}, {br}, {mi}, {pb}, {br , pb}, }

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 89 / 107

Association rules

Note: supp(A⇒ B) = supp(A ∪ B).

Example

List the set L of all frequent itemsets of the following table 〈X ,Y , I 〉 for
s = 0.3 (30%).

I be br je mi pb
x1 X X X
x2 X X
x3 X X X
x4 X X
x5 X X

L = {{be}, {br}, {mi}, {pb}, {br , pb}}.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 90 / 107

step 2.: from frequent itemsets to confident ARs

"input" <X,Y,I>, L (set of all frequent itemsets), s

(support), c (confidence)

"output" R (set of all asociation rules satisfying s and c)

"algorithm (ARGen)"

1. R:=O; //empty set

2. for each l in L do

3. for each nonempty proper subset k of l do

4. if supp(l)/supp(k) >= c then

5. add rule k=>(l-k) to R

Observe: supp(l)/supp(k) = conf(k ⇒ l − k) (verify)

Note: k is a proper subset of l if k ⊂ l , i.e. k ⊆ l and there exists y ∈ l
such that y 6∈ k .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 91 / 107

step 2.: from frequent itemsets to confident ARs

Example

Consider the following table and parameters s = 0.3 (support) and c = 0.8
(confidence).

I be br je mi pb
x1 X X X
x2 X X
x3 X X X
x4 X X
x5 X X

From previous example we know that the set L of all frequent itemsets is
L = {{be}, {br}, {mi}, {pb}, {br , pb}}.

Take l = {br , pb}; there are two nonempty subsets k of l : k = {br} and
k = {pb}.
Rule br ⇒ pb IS NOT interesting since

supp({br , pb})/supp({br}) = 0.6/0.8 = 0.75 6≥ c
while pb ⇒ br IS interesting since

supp({pb, br})/supp({pb}) = 0.6/0.6 = 1.0 ≥ c .

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 92 / 107

step 1.: generating frequent itemsets

Generating frequent itemsets is based on

Theorem (apriori principle)

Any subset of a frequent itemset is frequent. If an itemset is not frequent
then no of its supersets is frequent.

Proof.

Obvious.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 93 / 107

step 1.: generating frequent itemsets

basic idea of apriori algorithm:

– Given 〈X ,Y , I 〉 and s (support), we want to generate the set L of all
frequent itemsets, i.e. L = {B ⊆ Y | supp(B) ≥ s}.

– Think of L as
L = L1 ∪ L2 ∪ · · · ∪ L|Y |

where Li = {B ⊆ Y | supp(B) ≥ s and |B| = i}, i.e. Li is the set of
all frequent itemsets of size i .

– Apriori generates L1, then L2, then . . . L|Y |.

– Generating Li from Li−1 – using set Ci of all itemsets of size i which
are candidates for being frequent (see later):

1. in step i , compute Ci from Li−1 (if i = 1, put C1 = {{y} | y ∈ Y });
2. scanning 〈X ,Y , I 〉, generate Li , the set of all those candidates from Ci

which are frequent.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 94 / 107

step 1.: generating frequent itemsets

How to get candidates Ci from frequent items Li−1?

– what means “a candidate”: candidates are constructed by union of
two frequent sets; the underlying idea: proper subsets of candidate
shall be frequent,

– this is drawn from the above apriori principle (all subsets of a frequent
itemset are frequent),

Getting Ci from Li−1:
find all B1,B2 ∈ Li−1 such that |B1 − B2| = 1 and |B2 − B1| = 1 (i.e.
|B1 ∩ B2| = i − 2), and add B1 ∪ B2 to Ci .

Is this correct? Next lemma says that Ci is guaranteed to contain Li (all
frequent subsets of size i).

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 95 / 107

Lemma (getting Ci from Li)

If Li−1 is the set of all frequent itemsets of size i − 1 then for every B ∈ Li

we have B = B1 ∪ B2 for some B1,B2 ∈ Li−1 such that |B1 − B2| = 1 and
|B2 − B1| = 1. Moreover, |B1 − B2| = 1 and |B2 − B1| = 1 iff
|B1 ∩ B2| = i − 2.

Proof.

First, check |B1 − B2| = 1 and |B2 − B1| = 1 iff |B1 ∩ B2| = i − 2: We
have |B1| = |B2| = i − 1. |B1 − B2| = 1 means exactly on element from
B1 is not in B2 (all other i − 2 elements of B1 are in B2). |B2 − B1| = 1
means exactly on element from B2 is not in B1 (all other i − 2 elements of
B2 are in B1). As a result B1 and B2 need to have i − 2 elements in
common, i.e. |B1 ∩ B2| = i − 2.

Second: Let B ∈ Li (B is frequent and |B| = i). Pick distinct y , z ∈ B
and consider B1 = B − {y} and B2 = B − {z}. Evidently, B1,B2 ∈ Li−1

(B1 and B2 are frequent itemsets of size i − 1) satisfying |B1 − B2| = 1
and |B2 − B1| = 1, and B = B1 ∪ B2.

Association rules

the resulting algorithm:
"input" L(i-1) //all frequent itemsets of size i-1

"output" C(i) //candidates of size i

"algorithm (Apriori-Gen)"

1. C(i):=O; //empty set

2. for each B1 from L(i-1) do

3. for each B2 from L(i-1) different from B1 do

4. if intersection of B1 and B2 has just i-2

elements then

5. add union of B1 and B2 to C(i)

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 97 / 107

Example

Consider the following table 〈X ,Y , I 〉 and s = 0.3, c = 0.5.

I be br je mi pb
x1 X X X
x2 X X
x3 X X X
x4 X X
x5 X X

Construct L using algorithm Apriori-Gen.

step 1:
C1 = {{be}, {br}, {je}, {mi}, {pb}}
L1 = {{be}, {br}, {mi}, {pb}}
step 2:
C2 = {{be, br}, {be,mi}, {be, pb}, {br ,mi}, {br , pb}, {mi , pb}}
L2 = {{br , pb}}
stop (not itemset of size 3 can be frequent).

Association rules - apriori algorithm

down(B) means B⇓

"input" <X,Y,I> //data table, s //prescribed support

"output" L //set of all frequent itemsets

1. "algorithm (Apriori)"

2. k:=0; //scan (step) number

3. L:=O; //emptyset

4. C(0):={{y} | y from Y }
5. repeat

6. k:=k+1;

7. L(k):=O;

8. for each B from C(k) do

9. if |down(B)| >= s x |X| do // B is frequent

A. add B to L(k)

B. add all B from L(k) to L;

C. C(k+1):=Apriori-Gen(L(k))

D. until C(k+1)=O; //empty set

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 99 / 107

Association rules and maximal and closed itemsets

– frequent itemsets are crucial for mining association rules,

– restricting attention to particular frequent itemsets is usefull,
– two main particular cases (both connected to FCA):

– maximal frequent itemsets,
– closed frequent itemsets.

– next: brief overview of maximal and closed frequent itemsets.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 100 / 107

Definition (maximal frequent itemset)

A frequent itemset is called a maximal frequent itemset (MFI) if none of
its proper supersets is frequent.

– Main advantage: MFIs provide small representation of all frequent
itemsets because

A is a frequent itemset iff A ⊆ M for some MFI M.
– Representing all frequent itemsets is useful in various data mining

tasks, including mining of association rules.
– Algorithms exist to compute all MFIs from data (directly, without

computing all frequent itemsets first), e.g. Gouda K., Zaki M.:
GenMax: An Efficient Algorithm for Mining Maximal Frequent
Itemsets. Data Mining and Knowledge Discovery, 2005, 1–20.
http://www.cs.rpi.edu/~zaki/PS/DMKD05.pdf

– Disadvantage of representation using MFIs: MFIs do not contain
information about support of their subsets. Consequently, a scan
through data is needed to compute a support of an itemset which is
not maximal.

– Drawback disappears with closed frequent itemsets, see next.

http://www.cs.rpi.edu/~zaki/PS/DMKD05.pdf

Definition (closed frequent itemset)

An itemset A is called a closed itemset (CI) if A = A↓↑. An itemset A is
called a closed frequent itemset (CFI) if it is closed and frequent.

Remark (alternative definition)

In data mining literature, the following definition is often used: An itemset
A is called closed if non of its supersets has the same support as A.

Lemma

Both definitions of a closed itemset are equivalent.

Proof.

A = A↓↑ means that A is the set of all items which share all objects from
A↓. This is equivalent to: for any B ⊃ A, B↓ has less objects than A↓, i.e.
supp(B) < supp(A).

Association rules and closed itemsets

Lemma (maximal frequent implies closed frequent)

If A is a maximal frequent itemset then A is a closed frequent itemset.

Proof.

Let A be maximal frequent. Suppose A is not closed. Then A ⊂ A↓↑ but
since supp(A) = supp(A↓↑), A↓↑ is frequent too. Hence, A is not maximal
frequent, a contradiction with the assumption.

– Algorithms exist to compute closed frequent itemsets from data (see
references later).

– Support of non-closed frequent itemsets can be determined from
supports of closed frequent itemsets.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 103 / 107

Association rules and closed itemsets

Zaki’s result:

– closed frequent itemsets can be used for mining non-redundant
association rules,

– Zaki M.: Mining non-redundant association rules. Data Mining and
Knowledge Discovery, 2004.
http://www.cs.rpi.edu/~zaki/PS/DMKD04.pdf

– quote from Zaki’s paper: “The traditional association rule mining
framework produces many redundant rules. The extent of redundancy
is a lot larger than previously suspected. We present a new framework
for associations based on the concept of closed frequent itemsets.
The number of non-redundant rules produced by the new approach is
exponentially (in the length of the longest frequent itemset) smaller
than the rule set from the traditional approach. Experiments using
several hard as well as easy real and synthetic databases confirm the
utility of our framework in terms of reduction in the number of rules
presented to the user, and in terms of time.”

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 104 / 107

http://www.cs.rpi.edu/~zaki/PS/DMKD04.pdf

Association rules and closed itemsets

– An association rule A⇒ B is called redundant if there is another
association rule A1 ⇒ B1 with the same support and confidence as
A⇒ B such that A1 ⊆ A and B1 ⊆ B.

– Example:
{watches-TV, unhealthy-food, does-not-move} ⇒

{high-blood-pressure}
is redundant if there is rule

{ unhealthy-food, does-not-move } ⇒ { high-blood-pressure}
with the same support and confidence.

– Main result: if we use closed frequent itemsets instead of all frequent
itemsets, redundant rules are not generated. That is, the output set
of association rules contains only non-redundant rules. Moreover, all
interesting association rules can be generated from non-redundant
ones.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 105 / 107

Association rules and closed itemsets

Some references on closed and maximal itemsets.

– Pasquier et al.: Discovering frequent closed itemsets for association
rules. ICDT 1999, 398–416.

– Zaki M.: Mining non-redundant association rules. Data Mining and
Knowledge Discovery, 2004.
http://www.cs.rpi.edu/~zaki/PS/DMKD04.pdf

– M. Zaki’s web page

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 106 / 107

http://www.cs.rpi.edu/~zaki/PS/DMKD04.pdf

Association rules and closed itemsets

Useful sources on association rules.

– referential data (testing):
Machine Learning Repository
http://www.ics.uci.edu/~mlearn/MLRepository.html,
UCI KDD Archive
http://kdd.ics.uci.edu,

– software:
overview at
http://www.kdnuggets.com/software/associations.html,
free (GNU General Public License): ARTool,
http://www.cs.umb.edu/~laur/ARtool/.

Radim Belohlavek (UP Olomouc) Formal Concept Analysis 2011 107 / 107

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://kdd.ics.uci.edu
http://www.kdnuggets.com/software/associations.html
http://www.cs.umb.edu/~laur/ARtool/

