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Abstract— This paper explores the problem of forming
connected topologies, in adhoc networks built on the Blue-
tooth technology. Providing connectivity, when feasible, is
the most basic requirement for any system aimed at allow-
ing devices to communicate with each other. In this paper,
we illustrate that this seemingly innocuous goal gives rise to
many significant challenges in the context of the Bluetooth
technology. The paper first provides a brief overview of
Bluetooth and its operation, and then identifies some of the
major problems the technology faces when it is used to build
adhoc networks. The paper’s contributions are in identi-
fying some basic algorithmic problems when building con-
nected Bluetooth networks, and in developing and evaluat-
ing several possible solutions capable of generating ‘“good”
connected topologies.

I. INTRODUCTION

Bluetooth is a recently proposed standard for short
range, low power wireless communication [15]. Initially,
it is being envisioned simply as a wire replacement tech-
nology. Its most commonly described application is that
of a “cordless computer” consisting of several devices in-
cluding a personal computer, possibly a laptop, keyboard,
mouse, joystick, printer, scanner, efc., each equipped with
a Bluetooth card. There are no cable connections between
these devices, and Bluetooth is to enable seamless com-
munication between all them, essentially replacing what
is today achieved through a combination of serial and par-
allel cables, and infrared links. However, Bluetooth has
the potential for being much more than a wire replacement
technology, and the Bluetooth standard was indeed drafted
with such a more ambitious goal in mind. Bluetooth holds
the promise of becoming the technology of choice for ad-
hoc networks of the future. This is in part because its
low power consumption and potential low cost make it an
attractive solution for the typical mobile devices used in
adhoc networks.

This being said, there are multiple major technical hur-
dles to cross before Bluetooth can fulfill its potential of
becoming more than a wire replacement solution. The
most basic challenge that the technology faces, and the
one that is the focus of this paper, is how to organize
nodes into an operational network, while satisfying the

many constraints introduced by Bluetooth. There are ob-
viously multiple possible interpretations of what opera-
tional means, and in this paper we concern ourselves pri-
marily with connectivity. In other words, our goal is to un-
derstand when and how Bluetooth networks can be built
that allow communication between all pairs of nodes. This
is clearly one if not the most basic functionality one ex-
pects from a network, but as we shall see, providing it in
Bluetooth networks gives rises to numerous challenges.
The reasons for those difficulties are at many levels. Al-
though Bluetooth nodes are assumed functionally equiv-
alent, communications proceed according to a “master-
slave” model, with additional constraints on the number of
slaves that a master can support. This introduces a degree
constraint on the graph representing connections between
masters and slaves. As a result, the selection of which
nodes become master or slaves and of how slaves are as-
signed to masters during the topology formation phase,
can have a significant impact on the final connectivity.

Similarly, the synchronization process that allows Blue-
tooth nodes to discover their neighbors influences the or-
der in which topology formation decisions are made, and
therefore also affects the resulting connectivity. This lat-
ter aspect was partially investigated in [18], [8], [20], [13],
and in this paper we concentrate mainly on the former is-
sues, namely, how the basic communication model and
constraints of Bluetooth affect its ability to form con-
nected topologies.

The paper’s contributions are primarily in investigating
the problem from an algorithmic perspective. We view
this as an important first step towards gaining a sound
understanding of fundamental issues, before embarking
into lower-level protocol design and implementation. Tak-
ing those next steps is nevertheless ultimately important,
and is something we have recently started, as we are now
proceeding with a more detailed design, embedded in an
actual Bluetooth stack, of several of the candidate algo-
rithms investigated in this paper. We hope to be able to
report results based on this implementation effort in the
near future.

Our initial investigation was rife with surprises and, for
example, revealed that the seemingly innocuous problem



of deciding whether there exists at least one connected
topology that is consistent with the degree constraint of
the Bluetooth technology is actually NP-hard in the most
general case. However, when node locations are restricted
to a two-dimensional plane, we obtain, under certain sim-
plifying assumptions, a polynomial complexity topology
formation algorithm that attains end-to-end connectivity
whenever it is possible to do so. For the more realistic case
of three-dimensional networks and assuming more com-
plex node configurations, we propose other algorithms
which attain end to end connectivity most of the times,
and demonstrate their efficacy by empirical studies. We
also propose an algorithm which affords greater control
over the topology than mere connectivity. More specifi-
cally, this algorithm has provisions for tuning the degrees
of masters and slaves differentially. Finally, we investi-
gate an algorithm (suggested by Murali Kodialam) that is
both distributed and better suited to a dynamically chang-
ing topology.

The rest of the paper is organized as follows. We re-
view briefly the salient features of the Bluetooth technol-
ogy in Section III, and describe technical challenges that
arise when using the Bluetooth technology in adhoc net-
works, with a focus on topology formation issues. Sec-
tion IV is a brief summary of recent research on the topic.
Section V is devoted to our problem formulation and to
showing that the problem of attaining end to end con-
nectivity is NP-hard in the general case. In Section VI,
we present a polynomial complexity topology formation
algorithm that, under some simplifying assumptions, at-
tains a connected topology whenever one such exists. In
sections VII and VIII we address the cases when these
assumptions do not hold. We present certain heuristic ap-
proaches for these cases and evaluate their performance
via simulation. Finally, in section IX we investigate a fully
distributed algorithm that can also operate in a dynamic
fashion. Its performance is again evaluated via extensive
simulations.

II. A BRIEF OVERVIEW OF BLUETOOTH

In this section, we briefly describe the basic features of
a Bluetooth network. Bluetooth nodes are organized in
small groups called piconets. Every piconet has a lead-
ing node called “master,” and other nodes in a piconet are
referred to as “slaves.” A node may belong to multiple
piconets, and we refer to such a node as a “bridge.” A pi-
conet can have at most 8 members. Refer to figure 1 for
a sample organization. Every communication in a piconet
involves the master, so that slaves do not directly com-
municate with each other but instead rely on the master
as a transit node. The master decides the communication
order (and duration) for the slaves. In other words, Blue-
tooth provides a half-duplex communication channel, and
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Fig. 1.  An example of a Bluetooth topology is illustrated. The
nodes are organized into 3 piconets. The masters of these piconets
are My, M», M3 respectively. The remaining nodes are the slave or
bridge nodes. Slave nodes S1 and S» can communicate via master
M; . Nodes S: and S3 can communicate via master M, bridge B and
master M.

its usage is solely under the responsibility of the master.
Communication between nodes in different piconets re-
lies on bridge nodes. A bridge node cannot be simultane-
ously active in multiple piconets. It is active in one piconet
and “parked” in others. Bluetooth allows different activ-
ity states for the nodes: active, idle, parked, sniffing. Data
exchange takes place between two nodes only when both
are active. Activity states of nodes change periodically.

Bluetooth uses frequency hopping spread spectrum in
the physical layer. Different piconets use different fre-
quency hopping sequences. The frequency hopping se-
quence of a piconet is derived from the node ID and the
clock information of the master. A node thus needs to
know the identities and the clock information of the mas-
ters of all the piconets it participates in. It acquires this in-
formation from the master when it joins the piconet. Syn-
chronization information is also exchanged periodically.
The bandwidth of the Bluetooth communication channel
is currently 1 Mbps. Nodes in different piconets can trans-
mit simultaneously even if they are within transmission
range of each other. This is because they use different
frequency hopping patterns. However, there can be only
one communication at a time within in a piconet and this
communication involves the master and one slave.

Besides the operation and constraints associated with
the Bluetooth communication channel, another key aspect
affecting the formation of Bluetooth topologies is, as men-
tioned earlier, the node discovery process. It involves a
well-known channel or frequency hopping pattern, that is
used by nodes to periodically transmit their identity and
listen for other nodes (see [15] for details). The main im-
pact of this process is through its influence on when nodes
discover each other and, therefore, proceed to form or join



piconets. This was investigated in [8], and in this paper we
instead concentrate on how the basic characteristics of the
Bluetooth communication channel impacts topology for-
mation.

III. CHALLENGES AND OBJECTIVES IN BLUETOOTH
ToPOLOGY FORMATION

As mentioned earlier, communications within a Blue-
tooth piconet follow a master-slave model, while commu-
nications across piconets rely on the presence of nodes be-
longing to multiple piconets. The technology is flexible in
that except for limiting the number of slaves in a piconet
to 7, no other constraints exist regarding the assignment of
roles to nodes. This flexibility, however, raises a number
of questions, and we briefly list below those that are most
relevant to topology formation:

1) How should nodes select their role (master or
slave)?
2) Which piconet(s) should a (slave) node join?
3) How many slaves should a master accept (below the
specified maximum of seven)?
4) How many piconets should a bridge node belong to?
5) Should masters be allowed to be bridge nodes
(slaves in other piconets)?
All the above questions are complex and important in their
own right, and in the context of maximizing the likelihood
of producing a connected topology, their answers should
preferably avoid introducing additional constraints.
Specifically, consider questions 4 and 5. Because a
bridge node can only be active in one piconet at the time,
the greater the number of piconets to which a node be-
longs, the poorer the connectivity it can provide between
them. This impact is compounded when the bridge node
is a master in one piconet. This is because periods dur-
ing which the node acts as a slave in some piconet, cor-
respond to a complete communication blackout for all the
slaves of the piconet for which it serves as a master. Be-
cause of this, it is desirable for a master not to be a slave
in other piconets, provided that such a slave/master role
limitation does not introduce significant constraints when
forming and modifying topologies. Note that this require-
ment was also considered in [18]. Similarly, for question
number 4, we also assume that it is desirable for a bridge
to be involved in as small a number of piconets as possi-
ble, while preserving connectivity. This is a criterion that
will be incorporated in some of the algorithms we present
in the paper. In the rest of this section, we briefly expand
on what achieving those objectives means for our topol-
ogy formation algorithms.
The primary focus of the algorithms we develop will
then be to generate connected topologies, when feasible,
while satisfying the degree constraint to which masters are

subject, i.e., a degree of 7 at most. In that context, the al-
gorithms will aim at answering questions 1 and 2, while
assuming that the answer to question 3 is simply based
on the upper bound that the Bluetooth specification im-
poses. In the rest of this section, we briefly expand on
what achieving those objectives means for our topology
formation algorithms.

Generating a connected topology is a reasonably clear
objective, but there are many cases where it may not be
a feasible objective. For example, if there are two groups
of nodes such that no node in one group is in the trans-
mission range of any node in the other group, then the
topology will be disconnected irrespective of which algo-
rithm one uses. It is, therefore, also important to articulate
the algorithm’s goals in such cases. If global connectivity
is not feasible then the logical topology will consist of “is-
lands” of nodes such that each island includes nodes that
are within transmission range of each other, but nodes in
different islands can not communicate. In this case, the
objective is to minimize the number of islands in the final
topology.

Next, let us examine the implications of our objective
of maximizing connectivity within the Bluetooth design
constraints. Observe first that any Bluetooth topology
must satisfy some basic properties. For one, the partition-
ing of nodes into masters and slaves implies that it is de-
sirable, although not necessary, that the graph associated
with any Bluetooth topology be a bi-partite graph. Sim-
ilarly, as mentioned before, the constraint that a piconet
cannot contain more than 7 slaves implies that all nodes
associated with masters must have a degree less than or
equal to 7. This also implies that if at any time the total
number of masters is less than one eighth of the total num-
ber of nodes, then certain nodes will not belong to any pi-
conet and thus the topology remains disconnected. Both
of these observations provide “hints” towards designing
topology formation algorithms. In particular, focusing on
algorithms that bound or minimize node degrees appears
to be a promising direction, which we explore further in
Sections VI and VII.

In addition, because adhoc networks are inherently dis-
tributed systems, with nodes making individual decisions,
often based on local information, we expect that another
important factor besides the choice of a role (master or
slave) is when is that choice actually made, i.e., the or-
der in which nodes make such decisions. In particular,
because connectivity between piconets is ensured through
bridge nodes and not all (slave) nodes are capable of play-
ing such a role (the node must be able to “hear” the master
of each piconet), connectivity between two piconets may
be precluded if the corresponding node attempts to join
one of the piconets after the piconet has become full, i.e.,
already has 7 slaves. This indicates that efficient algo-



rithms will most likely need to allow for some iterations
that will let nodes modify their earlier decisions, e.g., by
having some slaves relinquish their membership in one pi-
conet and move to another, or by allowing nodes to change
their role altogether (change from slave to master or pos-
sibly vice-versa). Identifying when and how to allow such
changes while preserving or improving connectivity or
degree constraint is a challenging task, especially in the
context of distributed decisions. The approach we will
follow, is to first articulate a centralized algorithm capa-
ble of generating a good/optimal solution, and then de-
scribe how to transform this centralized algorithm into a
distributed one. Techniques for converting centralized al-
gorithms into distributed ones are commonly available for
many standard algorithms, e.g., shortest path or minimum
spanning tree [6], and we will take advantage of this fact.
A second important aspect in the context of adhoc net-
works is to allow for dynamic operation. Dynamic opera-
tion has two major dimensions: the addition and deletion
of nodes as users come and go, and the possible modifica-
tions of the topology (connectivity graph) induced by mo-
bile nodes. Designing algorithms and protocols capable
of efficient dynamic operation is an entire research area in
itself, where meaningful solutions typically need to care-
fully account for operational constraints. The algorithms
we present in the paper are clearly aimed at supporting
dynamic operation, e.g., by relying only on local informa-
tion when attempting to optimize connectivity. However,
there are many aspects of dynamic operation that we do
not explore or consider, and formulating a complete so-
lution for a dynamic environment is a topic of ongoing
work. We believe that the results of this paper provide
essential building blocks for developing such a solution.

IV. RELATED RESEARCH

In this section, we mention very briefly a number of
previous works that have also been motivated by the need
to extend the standard Bluetooth specifications, if the
technology is to be used for building adhoc networks.
Those works span three major areas associated with ad-
hoc networks: routing, resource management or schedul-
ing, and topology formation. The latter being clearly the
area of most relevance to this paper.

In [2] Bhagwat er al. present a source routing mecha-
nism for Bluetooth scatternets, i.e., networks formed from
the interconnection of piconets. Das et al. [S] and Jo-
hanson et al. [12] present distributed scheduling policies
for Bluetooth networks. The topology formation prob-
lem was first investigated in [18] by Salonidis et al. who
presented a distributed topology construction scheme in
Bluetooth networks. A basic assumption in the paper is
that all nodes are within transmission range of each other,

i.e., the underlying connectivity graph is a full mesh. Un-
der this assumption, nodes conduct a leader election algo-
rithm, whose winner knows the identity of all other nodes
in the network and uses this information to design the de-
sired topology. A likely limitation of this approach is that
it may not scale as the number of nodes is large. This
was one of the motivations for investigating alternative
approaches in this paper. In addition, the assumption of
full reachability will often not hold in many scenarios.
The paper also makes a very interesting observation in
that it shows that the average delay involved in synchro-
nizing two nodes (the time spent in the inquiry and the
page sequences before the nodes are able to exchange the
clock information) is infinite if the nodes rely on a deter-
ministic pattern of alternating between paging and paged
modes. This has important implications when design-
ing the synchronization procedure that Bluetooth nodes
will use to discover their neighbors. In [1], Zaruba et
al. present “Bluetrees,” a scatternet formation algorithm
for cases where the full reachability assumption does not
hold. However, the Bluetree algorithm reduces the de-
gree of the nodes by a series of re-arrangements. There
is no guarantee that these re-arrangements actually ter-
minate, and thus the resulting topology may not satisfy
the degree constraints. In [20], Tan ef al. present “Tree
Scatternet Formation,” an online algorithm to build scat-
ternets. However, it is not clear how the degree constraints
and connectivity are satisfied, since only the root nodes of
each fragment are allowed to merge different fragments.
An interesting part of the paper is the proposed model to
evaluate the efficiency of a scatternet by approximating
the average communication latency. In [13], Law and Siu
also present a scatternet formation algorithm. The prob-
lem of topology formation was also the topic of [8], where
we investigated the performance of a few simplistic topol-
ogy formation algorithms from the standpoint of connec-
tivity and convergence time. The investigation was pri-
marily empirical, i.e., relying on a detailed low-level sim-
ulation of the Bluetooth protocol, and showed that those
simple-minded algorithms commonly resulted in discon-
nected topologies, when a connected one was actually
available. This finding was another motivation for a more
systematic investigation of the topology formation prob-
lem, and for identifying algorithms capable of better per-
formance. Finally, in [14], Marsan et al. address the
problem of determining an optimal Bluetooth topology,
based on an integer linear programming formulation de-
rived from the Bluetooth specific constraints. However,
the complexity of the proposed algorithm is fairly high.
Furthermore, their approach leads to a centralized opti-
mization algorithm which raises the question of practical
distributed implementation.



V. NETWORK MODEL AND PROBLEM COMPLEXITY

As a first step towards a systematic investigation of the
connectivity issue, we formulate a mathematical model
for the system objectives and constraints. Observe that
there can be two types of communication links between
any two nodes. One is a physical (layer) link which ex-
ists between any pair of nodes that are in communica-
tion range of each other. The other is a logical Bluetooth
link which exists if the Bluetooth topology establishes a
communication link between the two nodes. This hap-
pens when one node is a master and the other is a slave
in the same piconet. Clearly, a pre-condition for exis-
tence of a logical link between two nodes is the existence
of a physical link between them. The scenario can be
modelled by two graphs, a physical-topology graph and
a logical-topology graph. Vertices in both graphs repre-
sent the nodes in the actual network. The logical topology
graph is thus a sub-graph of the physical topology graph.
The physical topology graph is given, while the logical
topology graph is the output of the topology formation al-
gorithm.

The logical topology graph must have certain proper-
ties. According to the Bluetooth specification, vertices
that will be assigned the role of a master can have a max-
imum degree' of 7. For the vertices that will serve as
slaves, it is desirable that their degree be kept as small
as possible. Regular slave nodes have a degree of only 1
(the link to the master), but bridge nodes have a degree
equal to the number of piconets they participate in. Be-
cause a bridge node with a degree of 7, i.e., participating
in 7 piconets, would represent a major bottleneck in the
system (it would provide very poor connectivity between
those piconets), we assume that the degree constraint of 7
applies to the bridge (slave) nodes as well. Also, although
not necessarily required, it is desirable that it be a bipar-
tite” graph since the vertex set can easily be partitioned in
masters and slaves and the logical links connect masters
to slaves and vice-versa.

Connectivity is then deemed feasible if there exists
a connected® sub-graph of the physical topology graph
which satisfies the degree constraint (maximum degree of
7). The objective is to first detect whether connectivity
is feasible. If connectivity is feasible, then the aim is to
construct a connected logical topology graph which satis-
fies the desired constraint. If connectivity is not feasible,
then any logical topology graph will consist of “islands”
or components®. In this case the objective is to minimize

!The degree of a vertex is the number of edges originating from the
vertex.

2 A bipartite graph is one where the vertex set can be partitioned in
two sets such that there is no edge connecting the vertices in the same
set.

3 A graph is connected if there is a path between any two nodes.

“A component of a graph is a connected sub-graph which can not

the number of components in the logical topology graph.

Note that a connected logical subgraph exists if and
only if the physical topology graph has a spanning tree’,
which satisfies the degree constraints of a logical topol-
ogy graph. This is because a spanning tree of any graph
is connected. Also note that it is bipartite [10]. Thus, if a
spanning tree of the physical topology graph satisfies all
the constraints of a logical topology graph, then it forms
a feasible instance of a logical topology. The converse is
trivially seen to be true. The partition which has a maxi-
mum degree less than or equal to 7 will be chosen as the
master set, while the other with a potentially lower maxi-
mum degree will constitute the slave/bridge set. We focus
on constructing a spanning tree of the physical connectiv-
ity graph, which satisfies the degree constraints.

Let the degree of a spanning tree be the maximum de-
gree of its vertices. The challenge is then to construct a
spanning tree with degree less than or equal to 7, if one
exists. A spanning tree with degree 7 or less exists if
and only if the maximum degree of a spanning tree in a
graph is upper bounded by 7, and deciding this is an NP-
hard problem [7]. It follows that deciding whether con-
nectivity is feasible and constructing a connected logical
topology graph which satisfies the desired constraints is
an NP-hard problem for a general physical topology.

The above result not withstanding, polynomial time
algorithms are available in certain practical scenarios,
where additional constraints are imposed on the underly-
ing network graph (Section VI). Furthermore, we show
how those polynomial time algorithms can be extended
to provide efficient heuristics in general scenarios (Sec-
tions VII and VIII). Many of these algorithms are central-
ized in nature, but the basic intuition behind these moti-
vates a fully distributed and dynamic approximation (Sec-
tion IX).

VI. ToOPOLOGY FORMATION ALGORITHMS FOR
NODES WITH IDENTICAL POWER LEVELS IN A
2—DIMENSIONAL PLANE

In this section, we approach the connectivity problem
under certain simplifying assumptions which we describe
and justify next.

1) Nodes constitute points in a two-dimensional plane.
This assumption is justified if the transceivers are
at similar heights, and applies to several ground
based civilian and military communication net-
works, while ruling out applications which involve
air to ground communication.

be expanded any further while retaining connectivity, i.e., addition of
a node in a component removes the connectivity.

A spanning tree is a connected subgraph which does not have a
cycle and spans all vertices in the graph.
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Fig. 2. We explain intuitively why in a complete graph with edge
weights equaling the Euclidean distance between the corresponding
vertices, the degree of a MST is no more than 6. Consider a com-
plete graph with vertices v, ul,...u7. Assume that vertex v in a
MST has degree 7. Let its neighbors in the MST be {u1, ..., u7}. Note
that the Euclidean distance between pair (u2, u3) is less than the dis-
tance between (v, u2) or (v, u3). Thus the MST will include the edge
(ut, ui + 1) rather than (v, u2) or (v, u3).

2) All nodes have the same transmission range. This
happens if the propagation conditions are largely
similar throughout the network and nodes have the
same maximum transmission power limitation and
similar reception capabilities. Let this transmission
range be d units. Under this assumption, a physi-
cal link exists between any two nodes if and only if
their Euclidean distance is upper bounded by d.

Under these assumptions, the time complexity of the
connectivity problem becomes now polynomial. The fol-
lowing lemma provides the cornerstone for designing a
simple polynomial complexity distributed dynamic algo-
rithm which generates a connected logical topology when-
ever connectivity is feasible.

Lemma 1: Connectivity is feasible if and only if the
physical topology graph is connected. @A minimum
weighted spanning tree (MST) in the physical topology
graph, with the weight of an edge equaling the Euclidean
distance between the nodes, is a connected logical topol-
ogy graph which satisfies all the desired constraints.

We first present the following result obtained by Monma
et. al. [16] which we will use in proving this lemma.

Proposition 1: Consider a complete® graph with nodes
corresponding to points in the 2—dimensional plane and
the weight of the edges being the Euclidean distance be-
tween them. Any minimum weighted spanning tree in
such a graph has degree less than or equal to 6.

Proof of Lemma 1: See Appendix.

An intuition behind this result is provided in figure 2.

Next, we consider the case when connectivity is not
feasible. This happens only when the physical topology
graph is disconnected. The objective in this case is to con-
struct a logical topology graph with the minimum number
of components. The following lemma gives the basis for
the procedure we follow.

A graph is complete if it has edges between any pair of vertices.

Lemma 2: The sub-graph of the physical topology
graph consisting of the minimum weighted spanning trees
in each component of the physical topology graph is a log-
ical topology graph with the minimum number of compo-
nents.

Proof of Lemma 2: See Appendix.

It follows from the results in Lemmas 1 and 2 that con-
structing a minimum weighted spanning tree in the physi-
cal topology graph will provide a logical topology graph
which (a) is connected if connectivity is feasible and (b)
consists of minimum number of components if connectivity
is not feasible. It is interesting to observe that a central-
ized minimum weighted spanning tree construction algo-
rithm has a complexity of only O(ElogV’) if the physical
topology graph has E links and V nodes’, whereas the
construction of the logical topology graph is NP-hard in
the general case (i.e., without the assumptions made in
this section).

The design of a logical topology is not complete
without assigning master/slave/bridge roles to the nodes.
Since a minimum weighted spanning tree is a bipartite
graph, and all nodes have degree less than or equal to 6,
any one partition can be selected as the master set, and
the other partition as the slave set. A piconet consists of
a master and the nodes which have a link with the master
in the spanning tree. Any node in the slave set with de-
gree more than one is a bridge. If a bridge node has links
with nodes n, ..., n, then it serves as a bridge between
the piconets whose masters are nq, . .., n,. As mentioned
before, a node should not serve as a bridge in a large num-
ber of piconets, i.e., the degree of the bridge nodes should
be minimized as far as possible. The slave set can then be
chosen with this objective. More formally, let the degree
of a partition be the maximum degree of any vertex in the
partition. The partition with the smallest degree can be
chosen as the slave set.

We now present a number of experimental evaluations
that were carried out to explore the characteristics of the
topologies created by the MST algorithm, as well as a
couple of other simple algorithms. The motivation for
those experiments and for investigating additional algo-
rithms besides the MST algorithm, was to examine the
actual degrees of nodes in the generated topology. This is
all the more important, as while the MST algorithm guar-
antees that the resulting topology meets the degree con-
straint on a master, it does not explicitly take into account
the need to keep the degree k£ of bridge nodes as small
as possible. The experiments are directed towards deter-
mining whether the degree guarantee is conservative, i.e.,
all nodes typically have a much smaller degree than 6, or
whether bridges end-up belonging to multiple piconets in

"The time complexity of a distributed MST algorithm is O(V1ogV")
and the communication cost is O(V1ogV + E) messages [6].



most cases. We investigate topologies generated by three
different algorithms:

1) The MST algorithm, which gives guarantees on the

maximum degree.

2) A depth first search (DFS) based spanning tree

topology construction algorithm.

3) A breadth first search (BFS) based spanning tree

topology construction algorithm.

The DFS(BFS) based algorithms construct DFS(BFS)
spanning trees, and subsequently the maximum degree
partition is chosen as the master set. Both algorithms cater
to distributed and dynamic operations. However, neither
provides any analytical guarantee on the maximum degree
of a node.

In order to evaluate the performance of these algo-
rithms, we consider networks of two types in our exper-
iments. The first type consists of nodes uniformly dis-
tributed in a square of size 1 unit. The second type con-
sists of a "clustered topology” of three separate clusters
of nodes. The positions of the centers of the clusters are
selected randomly in the square of size 1. A node may
belong to one of the three clusters, or it may not belong
to any cluster at all. These 4 events are taken to be equi-
probable. If a node belongs to a cluster then it is uniformly
distributed in the cluster square (of side 0.4) around the
cluster center, else its position is uniformly distributed in
the original square of size 1 unit. For each of these two
types of networks, we evaluate the performance of the al-
gorithms with different number of nodes (25, 50, 100) and
two different transmission radii (0.4 and 0.6 units). The
results have been tabulated in Table II (uniform distribu-
tion) and Table III (clustered distribution). The symbols
used in all tables in this paper have been explained in Ta-
ble I.

N Number of Nodes

d | transmission radius of each node

M | Maximum degree of the masters
Average degree of the bridges

Maximum degree of the bridges

B
B

S)

3

TABLEI
LEGEND FOR SUBSEQUENT EXPERIMENTAL RESULTS

The MST algorithm generates topologies where the
masters and the bridges have low maximum degrees. We
observe that the maximum degree of bridges is between
2 and 3, which is substantially lower than the analytical
guarantee of 6 for all nodes. As expected, the maximum
degree of both masters and bridges are high in topolo-
gies generated by BFS. This is because the basic con-
struction step of the algorithm is geared towards generat-
ing “bushy” trees, which clearly contributes to generating

d=0.4
N 25 50 100
M | By | Bm | M | By | Bm | M | Bg | Bm
BES || 7 26| 6 |21 (48| 7 [36 | 7.3 | 20
MST || 3| 2 3 3 123 | 4 4 1223|104
DES || 3 | 2 2 3 2 2 3 2 3
d=0.6
N 25 50 100
M | By | Bm | M | Ba | Bm | M | Ba | Bm
BFS ||21 (25| 6 |47 |56 | 7 |67 |74 9
MST | 3 |24 | 3 3 (23| 3 3 123| 3
DFS 3 2 2 2 2 2 3 2 2
TABLE II

NODE DEGREES OF BFS, MST AND DFS FOR THE 2-D CASE
WITH UNIFORM NODE DISTRIBUTION AND ONE POWER LEVEL

d=0.4
N 25 50 100
M | Bg Bm M | Bg B M | Bg Bm
BES | 17 | 4 8§ [32 56| 6 |44 |83 18
MST || 3 |22 3 |3 |23 3|3 |22 3
DES || 3 2 2131223 | 2| 2 2
d=0.6
N 25 50 100
M | Bg Bm M | Bg B M | Bg Bm
BFS |21 25| 6 |47 |56 | 7 |67 |74 | 9
MST || 3 |24 3 |3 (23| 3|3 (23] 3
DES || 3 2 2 | 2 2 2 13| 2 2
TABLE III

NODE DEGREES OF BFS, MST AND DFS FOR THE 2-D CASE
WITH CLUSTERED NODE DISTRIBUTION AND ONE POWER LEVEL

trees of very high degree. Thus the BFS based algorithm
can not be used “as is.” The DFS algorithm in contrast
has a basic construction step that keeps node degrees min-
imal for as long as possible, and we therefore expected
its performance to be much better. Indeed, it actually at-
tains slightly lower degrees than MST for both masters
and slaves, even though it does not provide any analytical
guarantee. Thus, although one can easily construct exam-
ples in which DFS fails to provide a low degree spanning
tree, we expect that in most practical scenarios, the de-
gree of the tree produced by DFS will have lower degree
than that of an MST algorithm. Another advantage of us-
ing the DFS algorithm is that there is no need to perform
any power control in order to calculate (or rank) the Eu-



clidean distances between the communicating nodes. We
also note that the degree in the case of BFS depend heav-
ily on the number of nodes and on the transmission ra-
dius. On the contrary, the degrees obtained by the MST
algorithm and by DFS appear to be robust to the choice of
these parameters.

If all nodes have low degrees, then the end to end path
between certain nodes may be long, and this may not be
desirable from delay considerations. Thus one may wish
to have somewhat larger piconets (desired piconet size can
be a design parameter). This calls for algorithms which
can tune the degree of masters to a certain desired value,
and degree of bridges to a different, and possibly lower
value. None of the algorithms studied in this section al-
low us to distinguish between masters and slaves and se-
lectively decrease the degrees of the bridges further, once
the universal degree constraint of 7 is satisfied. In the next
two sections, we propose algorithms which can accom-
modate such a discriminatory treatment, and more impor-
tantly, are capable of generating connected topologies in
cases where the assumptions of this section do not hold,
i.e., higher dimensionality and relaxed power levels as-
sumptions.

VII. TOPOLOGY FORMATION ALGORITHMS FOR
NETWORKS WITH NODES IN 3—DIMENSIONAL SPACE

In this section, we consider networks with nodes lo-
cated in a 3—dimensional space. We still assume that ev-
ery node has the same communication range. In effect, we
relax the 2—dimensional assumption made in the previous
sections.

We focus on designing a topology where a node does
not have degree more than 7 (i.e., a master can not have
more than 7 slaves and a bridge participates in at most 7
piconets). Robins et. al.[17] showed that the degree of a
minimum weighted spanning tree can be as large as 13.
Thus unlike the 2—dimensional case a MST based algo-
rithm is not guaranteed to satisfy the degree constraint of
the masters. The problem needs to be investigated in the
framework of a minimum degree spanning tree, but as dis-
cussed in Section V this is an instance of an NP-complete
problem. We will investigate heuristics and approxima-
tion algorithms for this purpose.

We first investigate the performance of a minimum
weighted spanning tree in this case. As before, we con-
sider the physical topology graph. The edge weights
are Euclidean distances between the corresponding nodes.
Nodes construct a minimum weighted spanning tree with
the knowledge of a relative ordering of the weights of the
links originating from the nodes. The maximum degree
partition is chosen as the master set. We experimentally
investigate the degrees of the masters and the bridges for

this algorithm. In addition we also study the performance
of DFS and BFS based spanning trees in this regard.

The network in the 3-dimensional scenario is con-
structed as follows: we first distribute the nodes on a
plane exactly as described in the 2-dimensional case.
Then we assign a z-coordinate to each node, which is
uniformly distributed between 0 and 0.3 units. This
leads to two distinct cases: nodes uniformly distributed
in 3—dimensional cuboids (uniform topology) and nodes
distributed in 3—dimensional clusters (clustered topol-
ogy). The results have been tabulated in Table IV (uni-
form distribution) and Table V (clustered distribution).

d=0.4
N 25 50 100
M | Bg Bm M | Bg Bm M | Bg B
BFS | 5 (28| 8 [11 |43 |13 |27 |6.3 | 17
MST (|3 (23] 3 |4 (22| 5 |4 |25 3
DFS |3 213 |3 213 |3 | 2 2
d=0.6
N 25 50 100
M | Bg Bm M | Bg B M | Bg Bm
BFS (|17 (33| 4 |30 |73 | 8 |8 | 5.6 |27
MST || 3 |23 3 | 4|25 3 |5 |22 4
DES || 3 2 21312113 |3 | 2 2
TABLE IV

NODE DEGREES OF BFS, MST AND DFS FOR THE 3-D CASE
WITH UNIFORM NODE DISTRIBUTION AND ONE POWER LEVEL

d=0.4
N 25 50 100
M | Bg Bm M | Ba Bm M | Ba Bm
BFS [[16 | 3 | 7 [20]46]| 7 [42]85] 10
MST | 4 [21] 4|3 |24]3 |4]25] 4
DFS [ 3| 2 |2 |4]21|3[3]2]2
d=0.6
N 25 50 100
M | Bg Bm M | Ba Bm M | Ba Bm
BFS [[24 /39| 4 [38]34]| 5 [66]51]9
MST [ 4 [21] 3 |4 |24]3 |4]24] 4
DFS [ 3|2 |2 |22 |2]2]2]2
TABLE V

NODE DEGREES OF BFS, MST AND DFS FOR THE 3-D CASE
WITH CLUSTERED NODE DISTRIBUTION AND ONE POWER LEVEL

The interesting thing to note is that although one could
expect that the algorithms would result in spanning trees



of much larger degree than they did in the 2-dimensional
scenario, this is not the case. Although neither DFS nor
the MST algorithm provide reasonable analytical guaran-
tees on the maximum degree of the resulting spanning
tree, in both cases the degree is much less than 7 (the Blue-
tooth degree constraint). BFS produces topologies with
higher degrees. We also note that as in the 2-dimensional
case, the degrees in the case of BFS depend heavily on the
number of nodes and on the transmission radius, while the
degrees obtained by the MST and DFS algorithms remain
similar for different numbers of nodes.

None of the algorithms presented so far gives any an-
alytical guarantee on the degrees of the nodes in the 3—
dimensional case. In addition, none of these has the po-
tential of controlling the degrees of the masters and the
bridges differentially (even for the 2—dimensional case).
As discussed before, this will be essential if we are not
satisfied with “any” connected topology which satisfies
the degree constraints, but need to impose other perfor-
mance considerations like delay efc. Now we present a
topology design procedure based on an approximation al-
gorithm which is guaranteed to generate a spanning tree
with degree at most one more than the minimum possi-
ble value in any arbitrary graph[11], and which provides a
“knob” to tune the degrees of masters and bridges differ-
entially. We explain the analytical guarantees in this case
more formally. Let the degree of the spanning tree gener-
ated by this algorithm be d. Then any other spanning tree
will have a maximum degree of d—1 or more. In the Blue-
tooth context, this means that if d > 9 then any connected
logical topology will have at least one master with more
than 7 slaves or one bridge participating in more than 7 pi-
conets which violates the degree constraints, and as such
connectivity is not feasible. If d < 7, then connectivity
is feasible, and the spanning tree generated by this algo-
rithm is a valid logical topology. If d = 8, then connectiv-
ity may or may not be feasible, and any connected logical
topology will have at least one piconet with 7 slaves. Thus
the “gray area” where this algorithm may fail, and yet con-
nectivity be feasible is for only one value of d, d = 8.
We denote this algorithm as the “MDST” algorithm. We
present an example illustrating MDST in Figure 3. We de-
scribe it next, assuming that the physical topology graph
is connected. Otherwise, connectivity is not feasible and
the algorithm operates on each component of the physical
topology graph. The basic approach[11] is to start with
any spanning tree, and replace edges from vertices of high
degree with those from vertices of low degree.

1) Find any spanning tree 7' of the physical topology
graph.

2) Determine the maximum degree d of spanning tree
T.

3) Mark all vertices of degree d and d — 1 as “bad.”

Fig. 3. We explain the operation of the MDST algorithm in this figure.
Let MDST algorithm start with the spanning tree shown in the figure.
Node v has degree 8 while all other nodes have degree less than 5. So,
node v is marked as ’bad’, and all other nodes are marked as ’good’
(since their degree is less thatd —1 = 8 — 1 = 7). Now the algorithm
considers the cycle generated when edge (u,z) is added to the tree.
The degree of node v can now be reduced by including edge (u, z) in
the tree and deleting one of the edges (u, v) or (v, w).

Consider a ‘forest” F' = T'\ { bad vertices } (a for-
est is a collection of disconnected trees). The ver-
tices in F' are marked “good.”
4) While there is an edge e connecting two different
components of F
a) Consider the cycle C' generated by spanning
tree 1" together with e. If C has a vertex w of
degree d, denote the edge in C' incident on w
as [, update T as follows: T — T\ {l} U {e}
and go to step (2).
b) Mark all “bad” vertices in C' as good. Update
F by combining the components along the cy-
cle C' and these newly marked vertices into a
single component.
5) Output the final tree 7.

MDST runs in polynomial time[11], O (V ElogV )
it“almost” identifies whether connectivity is feasible and
generates a connected logical topology if connectivity is
feasible in most of the cases. We use the word “almost”
because as mentioned before if the MDST output tree has
degree 8 then connectivity may be feasible, while the out-
put tree violates the Bluetooth degree constraint on mas-
ters. Next, we experimentally study how often the output
tree has degree 8, and we also consider the effect of de-
gree constraints on the slaves. For this purpose we first
examine the performance of MDST in this regard. Re-
calling, MDST chooses the spanning tree partition with
lower degree as the slave/bridge set. We examine the de-
gree of nodes in this set. We consider the uniform and the
clustered topologies described before in this section. The
results have been tabulated in Table VI (uniform distribu-

¥More precisely, the run time is O (V Ea(V, E)logV) , where « is
the inverse of Ackermann’s function, and grows slowly. For all practi-
cal purposes, a(V, E) can be treated as a constant.



tion) and Table VII (clustered distribution). The results
show that all nodes have degrees between 2 and 3 (closer
to 2 than 3).

Now we discuss how one can extend MDST to con-
trol the degrees of the masters and bridges differentially.
Observe that the MDST algorithm reduces the maximum
degree of the nodes as much as possible. However, the
objective is somewhat different now. The goal is to first
satisfy a degree constraint of say p for all vertices (where
p is the desired maximum number of slaves in a piconet),
and subsequently preferentially reduce the maximum de-
gree of the bridges to the desired value (k). Reducing the
degree of all nodes uniformly need not attain this. MDST
decreases the degrees of all vertices uniformly, and both
masters and bridges have degrees close to 2 in the result-
ing topology.

We proceed as follows: MDST starts with the spanning
tree generated by BFS, which generates spanning trees of
large degrees. Note that the trees generated by DFS or
MST can not be used as starting points as these provide
low degrees (2 or 3) for both masters and slaves. MDST
is allowed to terminate when the maximum degree is re-
duced to p (the desired piconet size). Imposition of the
following terminating condition in step 2 will serve the
purpose: If d < p terminate. We denote this minor modifi-
cation of MDST as "M-MDST.” Its performance is shown
in Tables VI and VIIL.

Now we propose an extension of MDST, which we call
E-MDST for reducing the degrees of the bridges selec-
tively. This algorithm starts with the spanning tree gen-
erated by the M-MDST algorithm, and subsequently re-
duces the degrees of the bridges without increasing that
of the masters beyond the degree constraint of p. The ba-
sic difference between MDST and E-MDST is that in E-
MDST the degree considerations used for marking slave
nodes “bad” are different from those for marking master
nodes “bad,” and the edge replacement is used to decrease
the degrees of bridges only, once the overall degree con-
straint of p is satisfied by the M-MDST algorithm. The
pseudocode for E-MDST is shown below:

1) Start with the output of the M-MDST algorithm, 7.
The partition with a larger maximum degree is the
master set and the other partition is the slave/bridge
set. Consider the physical topology graph with
edges between the master and slave sets only (i.e.,
eliminate all master to master and slave to slave
links).

2) Determine the maximum degree ds of nodes in the
slave set of spanning tree T If d; < k terminate.

3) Mark all master nodes of degree 7 and slave nodes
of degree ds; and ds; — 1 as “bad.” Consider a ‘forest”
F = T\ { bad vertices }. The vertices in F' are
marked “good.”

d=0.4
N 25 50 100
M | By | Bm | M | By | Bm | M | B Bom
MDST 312113 (3|21] 3|3 2 2
M-MDST 71347 | 7|38 7 |7[29]6.8
empst7y || 7 |26 | 4 | 7129 4 | 7|24 3
EMDSTG3) || O | 2.4 3 5|25 3 5125 3
d=0.6
N 25 50 100
M | By | Bm | M | By | Bm | M | Ba | Bm
MDST 2] 2 2 2] 2 2 12 2 2
M-MDST 7145 7T | T|27 | 7 | 7247
empstay || 7125 4 | 7|25 3 |7 ]28]| 4
Empstsy) || © |25 3 | 5|21 3 | 5|23 3
TABLE VI

NODE DEGREES OF MDST, M-MDST AND E-MDST FOR THE
3-D CASE WITH UNIFORM NODE DISTRIBUTION AND ONE
POWER LEVEL

4) While there is an edge e connecting two different
components of F,
a) Consider the cycle C' generated by spanning
tree 1" together with e. If C has a slave node w
of degree d,, denote the edge in C incident on
w as [, update T as follows: T — T\ {l}U{e},
and go to step (2).
b) Mark all “bad” vertices in C' as good. Update
F by combining the components along the cy-
cle C' and these newly marked vertices into a
single component.
5) Output the final tree 7.

We investigate the performance of E-MDST experi-
mentally in order to judge its efficiency in fine tuning
the topology. The experimental evaluation is necessary
as there is no analytical guarantee that the desired master
and bridge degrees will indeed be attained. We consider
the uniform and the clustered topologies described before
in this section. We first set p = 7, k = 3 and next consider
p = 5,k = 3. The results have been tabulated in Table VI
(uniform distribution) and Table VII (clustered distribu-
tion). The results for p = 7 and £k = 3 show that the
maximum degree of masters is exactly 7. The maximum
degrees of bridges is between 3 and 4, and the average de-
grees of bridges are between 2 and 3. The results forp = 5
and £ = 3 show that the maximum degree of masters is
exactly 5. The maximum degrees of bridges is exactly 3,
and the average degree of bridges is between 2 and 3. We
conclude that the algorithm is approximating its objective
fairly well.



d=0.4
N 25 50 100
M | Ba | Bm | M | B, | Bm | M | B, | B
MDST 3121 3 3| 2 2 13| 2 2
M-MDST 7128167 | 7|34 7 | 7|28 7
E-MDST(7,3) 71 2.3 3 7|24 3 7126 3
E-MDST(5,3) 5123 3 5124 3 5125 3
d=0.6
N 25 50 100
M | Bg | Bm M | Bg | B, M | Baq | Bm
MDST 21 2 2 12| 2 2 12| 2 2
M-MDST 7| 4 7T 7|56 7T 7617
E-MDST(7,3) 7 3 3 7129 3 7 3 4
Empstsy) || 0 |26 | 3 | 5|25 3 | 5|25 3
TABLE VII

NODE DEGREES OF MDST, M-MDST AND E-MDST FOR THE
3-D CASE WITH CLUSTERED NODE DISTRIBUTION AND ONE
POWER LEVEL

The operation of both MDST and E-MDST indicates
that the computations essentially rely on local informa-
tion, and as such we envision a relatively simple extension
for operation in a distributed scenario. However, the exact
message exchange scenario need to be designed for this
purpose. Also, examining the efficiency of the algorithm
in a dynamic scenario, where topology changes continu-
ously remains an interesting topic for future investigation.

VIII. TOPOLOGY FORMATION ALGORITHMS FOR
NETWORKS WITH NODES WITH MULTIPLE POWER
LEVELS

Now we assume that different nodes have different
transmission/reception ranges. As specified by the Blue-
tooth specification, devices are classified in three power
classes. These correspond to maximum output powers of
100mW, 2.5mW and 1mW, and translate to transmission
ranges of approximately 100m, 10m and 10cm respec-
tively. We do not expect that power class 3 (i.e. ImW or
10cm range) will prove to be particularly useful in practi-
cal applications. Therefore we will focus on the problem
of having two different transmission ranges, namely 10
meters and 100 meters.

First consider the simple case where the nodes are
points in 2—dimensional plane. We furnish a counter-
example in Figure 4 to show that nodes in a minimum
weighted tree in the physical topology graph, where the
weight of an edge is the Euclidean distance between the
corresponding nodes can have degree 8 or more. Thus
a MST-based logical topology design algorithm need not
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satisfy the degree constraints on the master. As in Sec-
tion VII, we need to revert to the minimum degree span-
ning tree framework, which is an NP-complete problem.
Thus, we examine the performance of heuristics and ap-
proximation algorithms in this case. The network topol-
ogy is generated in the same way as in the previous parts,
with the following difference. Now a node is assigned a
transmission radius of d with probability 0.5 and a trans-
mission radius of 10d with probability 0.5. We investigate
for two different values of d.

(@]

m©00)  w (50

¢ (=3.20)

Fig. 4. 'We provide a counter example to establish that a MST in a
physical topology graph can have degree more than 6 if nodes have
two different power levels. The figure shows certain nodes in a two
dimensional plane and indicates their coordinates. Suppose the trans-
mission range of nodes m, v and u is 100 meters, while that of all other
nodes is 10 meters. Thus edges (w, v) and (x, u) are not included in
the physical topology graph since the vertices v, w (u, x) have a dis-
tance greater than 10 meters. Similarly nodes » and v have a distance
of more than 100 meters and thus edge (u, v) is not in the physical
topology graph. The figure (solid lines) shows the MST in this case.
Node m has a degree 8.

We examine the performance of MST, DFS based
spanning tree, BFS based spanning tree, MDST and E-
MDST. Incidentally, the analytical guarantees described
for MDST in the previous section, hold for arbitrary
graphs, and as such apply in this case as well. Thus, the
maximum degree of the output spanning tree of MDST
is at most one more than the minimum possible value.
Hence, MDST satisfies the master degree constraints most
of the times (provided connectivity is feasible). The re-
sults have been tabulated in Tables VIII and IX. The ta-
bles demonstrate that MST, DFS and MDST satisfy the
degree constraint of the masters. In fact the degrees of
masters are well below 7 for all three algorithms. Bridges
have degrees between 2 and 3 in all three algorithms. De-
grees of nodes are somewhat less for DFS and MDST as
compared to MST.

E-MDST is directed towards attaining topologies where
the maximum degree of masters is 7 (p = 7) and the max-
imum degree of bridges is 3 (k = 3). Tables VIII and IX
show that the degree of the masters is, as desired, exactly
7, while bridges have degrees between 2 and 3. Consid-



d=0.4
N 25 50 100
M | Bg Bm M | Bg Bm M | Bg B d=04
BFS 20| 3 6 [ 18| 77|10 | 68| 6.2 | 21 N 25 50 100
MST |3 [23] 3 |3 [21] 3 |4 23]3 W [ Ba | B | M | Ba | B | M | Ba | B
DFS 312123123322 BFS 19[36] 5 [33]38] 12 [52]88] 19
MDST || 2|2 |2 |2 ]2 ]2 ]|2]2]2 MST 3 (24 3 [ 3|24 33|23 3
E-MDST 7127 3 7124 3 7127 3 DES 3 2 ) 3 ) 2 2 2 2
=06 MDST 3 2 2 3 2 2 2 2 2
N 75 30 100 E-MDST 7124 3 7 |28 3 7122 3
M | Bg | Bm M | Bg | Bm M | Bg | Bm d=06
BFS 16 2 5 32 1 6.7 |20 | 72|45 | 13 N 25 50 100
MST 4 | 2.1 3 3 |21 3 3123 3 M | B, | B | M | Be | Bm | M | Bos | Bm
DFS 3121232 ]2 ]2]2]2 BFS 10471240 10| 18 | 8244 8
MDST || 3 |2 |2 |2 ]2 ]2 ]|2]2]2 MST 3243 [3[23] 3[4 [23] 3
E-MDST 7128 3 7 3 4 7124 3 DES 2 2 2 2 ) 2 3 2 2
MDST 2 2 2 2 2 2 3 2 2
TABLE VIII EMDST | 7 |26 3 | 7 |23 3 |7 |25] 3
NODE DEGREES OF BFS, MST, DFS MDST AND E-MDST FOR
THE 2-D CASE WITH UNIFORM NODE DISTRIBUTION AND TWO TABLE IX
POWER LEVELS NODE DEGREES OF BFS, MST, DFS MDST AND E-MDST FOR

THE 2-D CASE WITH CLUSTERED NODE DISTRIBUTION AND TWO
POWER LEVELS

ering that the algorithm has a two-fold objective (reduc-
ing the degree of the bridges and fine-tuning the degrees
of masters and bridges around specified numbers) it per-
forms reasonably well. The maximum desired degree of

bridges was set to 3 and it was well approximated by E- N 35 d_S(())A 100
MDST. Also, the maximum degree of the masters was set " | - | - > | - | - " | - | -
to 7, a constraint that was easily satisfied. == = L=
BFS 16| 4 | 5 |30]61| 7 |67]|58]11
Now, we consider the more general case where nodes MsT 4 12313 141243 41263
are points in 3—dimensional space. Clearly determining DFS 3| 2 2 1212 2 1312 2
connectivity and designing a logical topology is a harder | MDST 3 2 2 |2 2 2 |2 2 2
problem in this case, and subsequently the previous com- | Evost | 7 | 2.6 | 3 | 7 |25 3 | 7 29| 4
plexity result applies. We study the performance of all =06
the previously mentioned algorithms below. The results N 73 50’ 100
have been tabulated in Table X (uniform distribution) and
Table XI (clustered distribution). v | e [on [0 ] B [ B v ] 5 [5n
BFS 18] 4 | 6 |26]| 10 |12 |63 | 71|16
The performance of the algorithms in this more general MST 412 |3 |4 |22|3 4125 4
2-power-level 3-dimensional scenario is similar to that of DFS 3|2 |2 (3|2 2|22 |2
previous cases. Again, DFS and MST succeed in reducing MDST 2 2 2 | 2 2 2 12 2 2
the degrees of both masters and slaves to values between | emost || 7 [ 2.8 3 | 7 {29 4 | 7 |27 | 3

2 and 4 (with DFS attaining slightly lower degrees), while
MDST achieves even lower degrees (equal to 2 in most TABLE X

cases). In this case the objective of the E-MDST was to ~ NODE DEGREES OF BFS, MST, DFS MDST AND E-MDST FOR
attain topologies where the maximum degree of masters  THE 3-D CASE WITH UNIFORM NODE DISTRIBUTION AND TWO
is 7 (p = 7) and the maximum degree of bridges is 3 POWER LEVELS

(k = 3). The results show that this objective is mostly

attained, with one exception where the maximum degree

of the bridges is 4.



d=0.4
N 25 50 100
M | Ba | Bm | M | By | Bm | M | Ba | Bm
BFS 10| 4 5 42145 8 |50 (6.9 | 15
MST 3123 3 4 1231 3 4 124 4
DFS 3 2 2 3 2 2 3 2 2
MDST 3 2 2 2 2 2 2 2 2
empst || 7 | 2.5 | 3 7125 3 7129 4
d=0.6
N 25 50 100
M | Ba | Bm | M | By | Bm | M | Ba | Bm
BFS 22| 2 5 129| 6 |12 |501]99 | 21
MST 3 125| 3 4 1241 3 4 122 4
DFS 3 2 2 3 2 2 2 2 2
MDST 2 2 2 2 2 2 2 2 2
emost || 7 | 2.8 | 3 7124 3 7129 4
TABLE XI

NODE DEGREES OF BFS, MST, DFS MDST AND E-MDST FOR
THE 3-D CASE WITH CLUSTERED NODE DISTRIBUTION AND TWO
POWER LEVELS

IX. A FULLY DISTRIBUTED AND DYNAMIC
ALGORITHM

In this section, we extend the previous approaches to a
distributed and dynamic setting.

A minimum weighted spanning tree can be constructed
by distributed computation at the nodes, e.g., Prim’s al-
gorithm [4] for constructing minimum weight spanning
trees can be distributized [6]. A node only needs to know
an ordering of the weights of its incident edges. In the
Bluetooth setting, a node acquires this knowledge while
synchronizing with its neighbors. During this time, a
node can measure the signal strength of the synchroniza-
tion messages sent by its neighbors. If all nodes transmit
these messages at the same power level, the signal will be
stronger for a neighbor which is closer.

The same observation holds for addressing a dynamic
scenario. For example, new nodes may join and existing
nodes may leave the system. Nodes may be continuously
on the move, and thus the neighbor set and the Euclidean
distances between neighbors change. Thus the spanning
tree needs to be updated in response to these topology al-
terations. There are efficient algorithms for dynamic up-
date of spanning trees [3], [19].

However, the complexity of a distributed and dynamic
version of the MST algorithm can be fairly high. In the
distributed implementation, nodes are initially singletons,
and they gradually merge to form fragments which again
merge so as to yield a MST. The merger can be through
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inclusion of certain edges in a given sequence, SO as
to avoid cyclicity, and preserve the MST property. As
a result, nodes need to maintain and broadcast a frag-
ment ID, and information on their outgoing edges, in or-
der to enable a distributed decision of which edges to se-
lect (see [3], [6] for additional implementation details).
This motivates the consideration of simpler distributed al-
gorithms that rely on heuristics. In other words, we inves-
tigate solutions that may not be guaranteed to generate a
MST, but may offer a favorable trade-off between perfor-
mance and complexity.

The algorithm we investigate is based on the following
local information based heuristic for selecting edges: Start
with an empty logical topology. Consider two nodes A
and B and the edge AB joining them. Draw a circle with
A as its center and radius AB. Also, draw another circle
with B as its center and radius BA. If there is no other
node in the intersection of the two circles, then add the
edge AB. If some node C lies in the intersection of the
circles, then edge AB is not added (see figure 5).

Fig. 5. Edge AB will be added to the graph only if no other node lies
in the shaded area. In this case, since node C lies in the intersection of
the 2 circles, edge AB will not be added to the graph.

Note that a node C is in the intersection of the two cir-
cles if and only if AB > maz{AC, BC'}. In other words,
a node C lies in the intersection only when its Euclidean
distances to both A and B are smaller than AB. This can
be determined by power measurements and subsequent in-
formation interchange. If such a node C is discovered af-
ter the edge AB has been added to the graph, then this
edge can be dropped. Observe that this doesn’t affect any
other edge additions or deletions in the rest of the graph.
Therefore, the decision of whether to add an edge or not
is based solely on local information. Hence, there is no
need to broadcast any information throughout the graph
and there is no need to maintain edge or node states. This
clearly reduces the number of exchanged messages as well
as the complexity of this algorithm when compared to the
distributed MST algorithm. This algorithm tries to ap-
proximate the MST, and in that context it is worth noting
that the resulting graph will be a superset of the MST.

Lemma 3: The graph generated by the above men-
tioned heuristic generates a topology that is a superset



of the Minimum Weight Spanning Tree (i.e. the topology
generated by the MST algorithm).
Proof of Lemma 3: See Appendix.

Since the application of the above mentioned heuristic
will result in inclusion of more edges than in the MST,
the resulting graph will not necessarily have a degree of
less than 7. But as we will see later on, it only contains
a few more edges than the MST, and as a result, a node
will usually not have a degree exceeding 5. Note also that
since the resulting graph need not be bipartite, this algo-
rithm might also lead to nodes that have to assume both
the role of a master (of their piconet) and of a slave (of
some other piconet), which may not be desirable, though
not precluded by the standards.

The overall algorithm works as follows: First the two
nodes decide (based on the above mentioned heuristic
and on their degrees’) whether to form a connection or
not. Then, they have to decide on their roles as masters
and/or slaves, according to the following rules (similar to
[8]):

1) If both nodes are unassigned, then the one with the
highest ID becomes the master, and the other be-
comes the slave.

2) If both nodes are masters, then the node with the
lowest ID becomes the slave of the node with the
highest ID (i.e. the node with the lowest ID is now
both a master and a slave).

3) If both nodes are slaves, then the node with the
highest ID becomes the master of the node with the
smallest ID (i.e. the node with the highest ID is now
both a master and a slave).

4) If both nodes are both masters and slaves (noted as
M/S nodes) then the node with the lowest ID joins
the other node’s piconet as a slave.

5) Finally, if one node is a master and the other is a
slave, then the slave simply joins the master’s pi-
conet.

We use three different metrics to evaluate the perfor-
mance of this algorithm via simulation. The first one is the
number of edges in the resulting graph (which is a mea-
sure of how close it is to a MST!?). The second measure
is the average degree of the nodes and the third measure
is the number of nodes that assume a dual role (i.e. nodes
that are both masters and slaves). In all subsequent simu-
lations, the scaling factor was set to 0.25, meaning that the
simulation area is 40m by 40m. The results for five differ-
ent topologies are tabulated as shown below. In the tables,
N stands for the number of Nodes, E for the number of
edges, D; for the number of nodes with degree equal to i,
M/S for the number of dual role nodes and Dy, for the

9 A link is not added if one of the incident nodes has a degree of 7.
10Recall that for an arbitrary connected graph of N nodes, the MST
contains exactly N-1 edges.

average degree of dual role nodes.

Topology | Num. of | Cluster | Cluster || Table

clusters prob. | radius(m)

Uniform 0 0 [000] XII
Clustered 1 3 0.75 [8 8 8] XIII
Clustered 2 3 0.75 [4 6 8] X1V
Clustered 3 3 0.25 [8 8 8] XV
Clustered 4 3 0.25 [468] XVI

N[ E [ Dy [ Dy [ D3| Dy| Ds || MIS [ Dyys |
100 1185 8.2 49.7 38.9 3.2 0.004 17.3 2.7
500 619.3 239 2335 222.7 19.9 0.03 94.7 2.7
1000 1250.2 39.8 461.1 458.0 41.0 0.06 193.6 2.7
TABLE XII
UNIFORM TOPOLOGY
N[ E [ Dy [ Dy [ D3| Dy| Ds || MIS [ Dyys |
100 1149 10.8 50.1 36.3 2.5 0.003 16.0 2.6
500 613.8 26.1 238.7 216.8 184 0.02 933 2.7
1000 1242.5 433 467.7 449.6 39.3 0.07 190.8 2.7
TABLE XIII
CLUSTERED TOPOLOGY 1
N[ E [[Di[Do[ D3| Di| Ds | MIS] Dyys |
100 113.8 11.8 50.8 34.7 2.6 0.007 15.6 2.6
500 610.4 27.6 241.6 212.9 17.7 0.2 91.8 2.7
1000 1237.7 45.8 471.6 4439 38.5 0.05 189.1 2.7
TABLE XIV
CLUSTERED TOPOLOGY 2
N[ E [ Dy [ Dy [ D3| Dy| Ds || MIS [ Dyys |
100 118.1 8.8 49.6 38.4 3.2 0.001 16.9 2.7
500 618.3 24.1 234.6 221.9 19.3 0.03 94.8 2.7
1000 1249.1 40.4 461.8 457.2 40.6 0.05 193.1 2.7
TABLE XV

CLUSTERED TOPOLOGY 3

From the simulation results we conclude that as far as
the degree constraint is concerned, the algorithm performs
very well. Approximately 4% of the nodes have degree
equal to 4, less than 0.01% have degree equal to 5 and no
nodes have degree of more than 5. As for the number of



[NJ E [Di[Ds| Ds| D Ds || MS| Dyys |

100

117.3 9.1 50.2 37.8 29 0.002 16.9 2.6

500 616.4 24.8 236.5 219.7 18.9 0.02 93.7 2.7

1000 1246.9 41.2 464.1 454.4 40.2 0.05 192.2 2.7

TABLE XVI
CLUSTERED TOPOLOGY 4

edges, for graphs of 100 nodes, there are about 16% more
edges than in the MST, and for graphs of 500 and 1000
nodes we see that the number of additional edges satu-
rates at about 25% more edges than in the MST. Finally,
for graphs of 100 nodes about 17% of those nodes have
a dual role (master and slave) and this number seems to
saturate at about 19% for graphs of 500 and 1000 nodes.
It is worth noting that the degree of those ’dual role’ nodes
is about 2.7, meaning that they are masters of one pi-
conet and slaves in either one or two more piconets. Cases
where they are slaves in more than two piconets are fairly
rare.

Given the results mentioned above, the simplicity of
this algorithm makes it appealing for practical implemen-
tations. It remains to evaluate the tradeoff between a sim-
pler topology formation algorithm and the performance
(throughput, delay, efc.) of the resulting topology. Specif-
ically, we plan to investigate the impact on performance of
having nodes with a dual role in a Bluetooth setting. The
performance of the resulting topology will then be com-
pared to that of a topology generated by the more complex
MST-based algorithms.

X. CONCLUSION

To summarize, this paper has presented a number of
algorithmic results aimed at the problem of topology for-
mation in Bluetooth networks. We have shown that the
MST algorithm is the only one that is guaranteed to au-
tomatically satisfy all degree constraints in the 2-D sce-
nario with one power level. However, as simulations have
shown, even though no analytical guarantees are available,
in practice the degree constraint is also easily met by the
DFS algorithm in the 2 — D, 3 — D and the two power
level scenarios. From a simple connectivity standpoint
DFS satisfies the degree constraints for both masters and
bridges. In addition, it has certain benefits not provided by
other algorithms. It does not use the Euclidean distances
and therefore does not require any power control. DFS
running time is also smaller than that of MST or MDST,
and finally it is very easy to implement. However, from a
delay/throughput point of view it need not always be the
case that minimal degrees for both masters and slaves is
desirable. This motivated the introduction of the E-MDST
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algorithm, which provided us with the means for tuning
the degrees of both masters and bridges, and therefore
controlling the structure of the resulting network. Given
the likely difficulty of constructing distributed versions
of the above algorithms, we also investigated a heuristic-
based distributed algorithm that performs very well as far
as the constraints of the Bluetooth technology are con-
cerned. In future work, we plan to further explore the
trade-off offered by the different algorithms studied in this
paper. This will carried out using a detailed simulation of
the Bluetooth stack, which will allow us to precisely em-
ulate the operation of various algorithms in an operational
Bluetooth environment.

APPENDIX

Proof of Lemma 1: Clearly a necessary condition for
connectivity to be feasible is that the physical topology
graph is connected. We will show that this condition is
sufficient as well. Assume that the physical connectiv-
ity graph is connected. Consider a new graph formed by
adding edges between all pairs of nodes in the physical
connectivity graph. This graph is referred to as the com-
pletion of the physical connectivity graph. The weights
of the new edges equal the Euclidean distance between
the nodes. The physical topology graph is a sub-graph
of this completion graph consisting of all edges of the
completion graph with weight less than d. Clearly this
graph satisfies the conditions of Proposition 1 and thus
the degree of any minimum spanning tree in this graph is
less than or equal to 6 by Proposition 1. Any minimum
weighted spanning tree in the physical topology graph is
also a minimum weighted spanning tree in the completion
graph. This follows from the following facts: (a) all edges
in the completion graph with weight less than a certain
real number d belong to the physical topology graph and
(b) the physical topology graph is connected. Thus any
minimum weighted spanning tree in the physical topology
graph has degree less than or equal to 6. Thus such a min-
imum weighted spanning tree satisfies the desired degree
constraints, and is a bipartite graph by virtue of being a
tree. Hence, any minimum weighted spanning tree in the
physical topology graph is a connected logical topology
graph which satisfies all the desired constraints.

Proof of Lemma 2: Since a logical topology graph is a
sub-graph of the physical topology graph, the former has
at least as many components as the latter. Thus the log-
ical topology graph has at least as many components as
the sub-graph consisting of minimum weighted spanning
trees in each component of the physical topology graph.
It is thus sufficient to show that this sub-graph satisfies
all the constraints of a logical topology graph. Now, con-
sider each component of the physical topology graph sep-
arately. Since each component is connected, by Lemma 1



the minimum weighted spanning tree in the component
satisfies all the constraints of a logical topology graph. It
follows that a collection of such disjoint minimum span-
ning trees satisfy the constraints of a logical topology
graph as well.

Proof of Lemma 3: For simplicity assume that there ex-
ists a unique MST.

Let AB belong to the MST, but not chosen in this ap-
proach. This means there exists a node C such that AC
and BC are less than or equal to AB. Note that in the MST
at least one of the paths, A to C, or B to C must use the
link AB (else there is a cycle). Let B to C be the path that
uses it, meaning that edge BC does not exist (else there is
a cycle).

Thus add edge BC to the MST. The earlier path from
C to B forms a cycle with edge BC, and this cycle con-
tains edge AB (as AB lies on the path C to B path by as-
sumption). Remove edge AB from the MST, to construct
a spanning tree whose weight is not more than that of the
earlier MST (since AB > B(C)).

Note that the Euclidean or two dimensional plane as-
sumption is not made here, so this lemma holds for any
arbitrary graph.
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