Modern C

Jens Gustedt

INRIA, FRANCE

ICUBE, STRASBOURG, FRANCE

This is the 2" edition of this book as of Sep. 18, 2019.
The free version, sample code, links to Manning’s print edition and much more is available at
http://modernc.gforge.inria.fr/

Special thanks go to the people that encouraged the writing of this book by providing me with constructive
feedback, such as

colleagues and other interested readers, Cédric Bastoul, Lucas Nussbaum, Vincent Loechner, Kliment Yanev,
Szabolcs Nagy, Marcin Kowalczuk, Ali Asad Lotia, Richard Palme, Yann Barsamian, Fernando Oleo, Robert
Kohdnyi, ...

Manning’s staff Jennifer Stout, Nitin Gode and Tiffany Taylor, ...

... and probably a lot that I missed to mention.

©2016-2019 Jens Gustedt, Strasbourg, France.

This work is licensed under a |Creative Commons_“Attribution-NonCommercial- @@@
NoDerivatives 4.0 International’| license.

http://modernc.gforge.inria.fr/
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en

About this book

The C programming language has been around for a long time — the canonical refer-
ence for it is the book written by its creators, Kernighan and Ritchie [1978]. Since then,
C has been used in an incredible number of applications. Programs and systems written in
C are all around us: in personal computers, phones, cameras, set-top boxes, refrigerators,
cars, mainframes, satellites ... basically in any modern device that has a programmable
interface.

In contrast to the ubiquitous presence of C programs and systems, good knowledge
of and about C is much more scarce. Even experienced C programmers often appear to
be stuck in some degree of self-inflicted ignorance about the modern evolution of the C
language. A likely reason for this is that C is seen as an "easy to learn" language, allowing
a programmer with little experience to quickly write or copy snippets of code that at least
appear to do what it’s supposed to. In a way, C fails to motivate its users to climb to higher
levels of knowledge.

This book is intended to change that general attitude, so it is organized in levels that
reflect familiarity with the C language and programming in general. This structure may
go against some habits of the book’s readers; in particular, it splits some difficult subjects
(such as pointers) across levels in order to not swamp readers too early with the wrong
information. We’ll explain the book’s organization in more detail shortly.

Generally, although many universally applicable ideas will be presented, that would
also be valid for other programming languages (such as Java, Python, Ruby, C# or C++)
the book primarily addresses concepts and practices that are unique to C or are of particular
value when programming in the C language.

C versions. As the title of this book suggests, today’s C is not the same language
as the one originally designed by its creators, Kernighan and Ritchie (usually referred to
as K&R C). In particular, it has undergone an important standardization and extension
process, now driven by ISO, the International Standards Organization. This led to the pub-
lication of a series of C standards in 1989, 1999, 2011, and 2018, commonly referred to as
C89, C99, C11, and C17. The C standards committee puts a lot of effort into guarantee-
ing backward compatibility such that code written for earlier versions of the language, say
C89, should compile to a semantically equivalent executable with a compiler that imple-
ments a newer version. Unfortunately, this backward compatibility has had the unwanted
side effect of not motivating projects that could benefit greatly from the new features to
update their code base.

In this book, we will mainly refer to C17, as defined in JTC1/SC22/WG14] [2018],
but at the time of this writing some compilers don’t implement this standard completely.
If you want to compile the examples in this book, you will need at least a compiler that
implements most of C99. For the changes that C11 added to C99, using an emulation
layer such as my macro package P99 might suffice; the package is available at http:
//p99.gforge.inria.fr.

http://p99.gforge.inria.fr
http://p99.gforge.inria.fr

C and C++. Programming has become a very important cultural and economic ac-
tivity, and C remains an important element in the programming world. As in all human
activities, progress in C is driven by many factors: corporate or individual interest, pol-
itics, beauty, logic, luck, ignorance, selfishness, ego, sectarianism, ... (add your primary
motivation here). Thus the development of C has not been and cannot be ideal. It has flaws
and artifacts that can only be understood with their historical and societal context.

An important part of the context in which C developed was the early appearance of its
sister language, C++. One common misconception is that C++ evolved from C by adding
its particular features. Although this is historically correct (C++ evolved from a very early
C), it is not particularly relevant today. In fact, C and C++ separated from a common
ancestor more than 30 years ago and have evolved separately ever since. But this evolution
of the two languages has not taken place in isolation; they have exchanged and adopted
each other’s concepts over the years. Some new features, such as the recent addition of
atomics and threads, have been designed in close collaboration between the C and C++
standard committees.

Nevertheless, many differences remain, and generally all that is said in this book is
about C, not C++. Many code examples that are given will not even compile with a C++
compiler. So we should not mix sources of both languages.

Takeaway A C and C++ are different: don’t mix them, and don’t mix them up.

Note that when you are working through this book, you will encounter many lines
marked like that one. These are takeaways that summarize features, rules, recommenda-
tions, and so on. There is a list of these takeaways toward the end of the book, which you
might use as a cheat sheet.

Requirements. To be able to profit from this book, you need to fulfill some minimal
requirements. If you are uncertain about any of these, please obtain or learn them first;
otherwise, you might waste a lot of time.

First, you can’t learn a programming language without practicing it, so you must have
a decent programming environment at your disposal (usually on a PC or laptop), and you
must master it to some extent. This environment can be integrated (an IDE) or a collection
of separate utilities. Platforms vary widely in what they offer, so it is difficult to advise
on specifics. On Unix-like environments such as Linux and Apple’s macOS, you will find
editors such as emacs and vim, and compilers such as c99, gcc, and clang.

You must be able to do the following:

(1) Navigate your file system. File systems on computers are usually organized hier-
archically in directories. You must be able to navigate through these to find and
manipulate files.

(2) Edit programming text. This is different from editing a letter in a word pro-
cessing environment. Your environment, editor, or whatever it is called should
have a basic understanding of the programming language C. You will see that if
you open a C file (which usually has the file extension .c). It might highlight
some keywords or help you indent your code according to the nestedness of {3}
brackets.

(3) Execute a program. The programs you will see here are very basic at first and will
not offer you any graphical features. They need to be launched in the command
line. An example of such a program that is launched that way is the compiler.
On Unix-like environments, the command line is usually called a shell and is
launched in a (or the) console or terminal.

(4) Compile programming text. Some environments provide a menu button or a key-
board shortcut for compilation. An alternative to that is to launch the compiler in
the command line of a terminal. This compiler must adhere to recent standards;
don’t waste your time with a compiler that does not conform.

ABOUT THIS BOOK iii

If you have never programmed before, this book will be tough. Knowing some of
the following will help: Basic, C (historical versions), C++, Fortran, R, bash, JavaScript,
Java, MATLAB, Perl, Python, Scilab, and so on. But perhaps you have had some other
programming experience, maybe even without noticing. Many technical specifications
actually come in some sort of specialized language that can be helpful as an analogy: for
example, HTML for web pages and LaTeX for document formatting.

You should have an idea of the following concepts, although their precise meanings
may be a bit different in C than in the context where you learned them:

(1) Variables — Named entities that hold values

(2) Conditionals — Doing something (or not) subject to a precise condition

(3) Iteration — Doing something repeatedly for a specified number of times or until
a certain condition is met

Source code. Many of the programming code snippets that are presented in this book
are available for download as a . zip archive from the book’s website atlhttps://gforge.
inria.fr/frs/download.php/latestfile/5298/code.zip. This allows you to view
them in context and to compile them and try them out. The archive also contains a
Makefile with a description of the components that are needed to compile these files.
It is centered around Linux or, more generally, POSIX systems, but it may also help you to
find out what you need when you are on a different system.

Exercises and challenges. Throughout this book, you’ll see exercises that are meant
to get you thinking about the concepts being discussed. These are probably best done
directly along with your reading. Then there is another category called “challenges.” These
are generally more demanding. You will need to do some research to even understand what
they are about, and the solutions will not come all by themselves: they will require effort.
They will take more time, sometimes hours or, depending on your degree of satisfaction
with your work, even days. The subjects covered in these challenges are the fruit of my
own personal bias toward “interesting questions” from my personal experience. If you
have other problems or projects in your studies or your work that cover the same ground,
they should do equally well. The important aspect is to train yourself by first searching for
help and ideas elsewhere, and then to get your hands dirty and get things done. You will
only learn to swim if you jump into the water.

Organization. This book is organized in levels, numbered from[0]to[3] The starting
level [0} named "Encounter," will summarize the very basics of programming with C. Its
principal role is to remind you of the main concepts we have mentioned and familiarize
you with the special vocabulary and viewpoints that C appliesﬂ By the end of it, even if
you don’t have much experience in programming with C, you should be able to understand
the structure of simple C programs and start writing your own.

The "Acquaintance" level [T| details most principal concepts and features such as con-
trol structures, data types, operators, and functions. It should give you a deeper under-
standing of the things that are going on when you run your programs. This knowledge
should be sufficient for an introductory course in algorithms and other work at that level,
with the notable caveat that pointers are not yet fully introduced.

The "Cognition" level 2| goes to the heart of the C language. It fully explains point-
ers, familiarizes you with C’s memory model, and allows you to understand most of C’s
library interface. Completing this level should enable you to write C code professionally;
it therefore begins with an essential discussion about the writing and organization of C
programs. I personally would expect anybody who graduated from an engineering school
with a major related to computer science or programming in C to master this level. Don’t
be satisfied with less.

1one of C’s special viewpoints is that indexing starts at @, and not at 1 as in Fortran.

https://gforge.inria.fr/frs/download.php/latestfile/5298/code.zip
https://gforge.inria.fr/frs/download.php/latestfile/5298/code.zip

The "Experience" level 3] then goes into detail about specific topics, such as perfor-
mance, reentrancy, atomicity, threads, and type-generic programming. These are probably
best discovered as you go, which is when you encounter them in the real world. Neverthe-
less, as a whole, they are necessary to round off the discussion and to provide you with full
expertise in C. Anybody with some years of professional programming in C or who heads
a software project that uses C as its main programming language should master this level.

Author. Jens Gustedt completed his studies of mathematics
at the University of Bonn and Berlin Technical University. His re-
search at that time covered the intersection between discrete math-
ematics and efficient computation. Since 1998, he has been work-
ing as a senior scientist at the French National Institute for Com-
puter Science and Control (INRIA), first in the LORIA lab, Nancy,
and since 2013 in the ICube lab, Strasbourg.

Throughout his career, most of his scientific research has been
accompanied by the development of software, at the beginning
mostly in C++, and then later exclusively in C. He now serves
AFNOR as an expert on the ISO committee JTC1/SC22/WG14
and is co-editor of the C standard document ISO/IEC 9899:2018| He also has a successful
blog that deals with programming in C and related topics: |https://gustedt.wordpress.
conm.

https://www.iso.org/standard/74528.html
https://gustedt.wordpress.com
https://gustedt.wordpress.com

Contents

i

equirements
yource code
|[Exercises and challenges|

Autho

[Level 0. Encounter
1. Getting started|

1. Imperative programmin
. Compiling and running
umma
2. The principal structure of a program|

o

> O

i

ummaj

|[Level 1. Acquaintance]

[3._Everything 1s about control|

gé

13.3. Multiple selection|
[4.Expressing computations|
41, Arithmetid

[4.2. Operators that modify objects|
M3 Boolean contex

4.4, 'The ternary or conditional operator|

= =

umma

EE%

19.2. Basic types|
19.3. Specifying values|
5.4. Implicit conversions

Eé

15.7. Binary representions|

ii
ii
iii
iii
iii
v

e cllle N S

13
15

17
18
21
21
23
27
28
29
29
32
33
35
35
36
38
38
42
45
48
50
51
56
63

vi CONTENTS

|6. Derived data types| 65
6.1 Arayy 65
[6:2" Pointers as opaque types| 71
[6.3.Structures| 73
[6.4. New names for types: type aliases| 78
[Summary) 79
[Z_Functions| 80
[7.1.__Simple functions| 80
82
[7.3._Recursion 84
89
|8. C library functions| 90
[8.1. General properties of the C library and 1ts functions| 90
94

3.3. Input, output, and file manipulatio 96
B4, Siring processing and conversion] 105
8.5. Timel 109
[8.6. Runtime environment settings| 111
[877.Program termination and assertions| 113
|§umma£z| 115
[Level 2. Cognition| 117
118
118
0 N g 119
umma 122
[10. Organization and documentation| 123
[I0.I.Tnterface documentation] 124
[10.2. Implementation| 126
[Summary]| 132
[IT.Pointers] 133
|[L1.1." Pointer operations| 133
[11.2. Pointers and structures| 140
[11.3. Pointers and arrays| 143
T4 Tunction pointers| 145
[Summary) 149
|12. The C memory model| 150
12.1. A uniform memory model| 150
(122" Unionsl 152
12.3. Memory and state| 153
24, Pointers to unspecific objects| 154
|12.5. Explicit conversions| 155
[12.6. Effective types| 156
157
159
160
3. "malloc and friends] 160
|13.2. Storage duration, lifetime, and visibility| 168
[13.3. Daigression: using objects "before” their definition| 173
[13.4. Tnitialization| 175
[13.5. Digression: a machine model| 177
[Summary) 179

|14." More involved processing and O] 181

CONTENTS vii

|14.1. Text processing] 181
[14.2. Formatted mnput| 186
[[4.3._Extended character sets| 188
14.4. Binary streams 195

[T4.5.Error checking and cleanup] 196
[Summary) 200

[Level 3. Experience] 203
15, Performance] 203
(15.1. Inline functions| 206
[15.2. Using restrict qualifiers| 209

|| 5.3. Measurement and inspection| 210
[Summary) 217

16. Function-like macros| 218
16.1. _How function-like macr I 219
[16.2. Argument checking| 221
224
6.4, Default arguments| 226
|16.5. Variable-length argument lists| 227
[16.6. Type-generic programming| 234
[Summary]| 239

240
17.1. A complicated example] 241
72, Sequencing] 244
|I1'7.3." Short jumps| 246
[I7.4. Functions| 247
[17.5. Long jumps| 247

|| 7.6. Signal handlers)| 252
|§ummagx 260

[[8__Threads 261
18.1. Simple inter-thread control 263
[I8.2.Race-free inifializafion and desfruction| 265
[[83._Thread-Tocal data 267
18.4. Crntical data and critical sections| 268
|18.5. Communicating through condition variables| 271
[18.6. More sophisticated thread management| 275
[Summary]| 277

|| 9 Atomic access and memory consistency| 278
9.1. e “happened before” relatio 279
0.2, C Tibrary calls that provide synchronization| 281
[19.3. Sequential consistency| 283
[19.4. Other consistency models| 285
[Summary]| 286
287
Bibliography| 299

[ndex| 301

LEVEL 0

Encounter

Our mascot for this level is the magpie, one of the most intelligent non-
human species on earth. They are capable of elaborate social rituals
and usage of tools.

This first level of the book may be your first encounter with the programming language
C. It provides you with a rough knowledge about C programs, their purpose, their structure,
and how to use them. It is not meant to give you a complete overview, it can’t and it doesn’t
even try. On the contrary, it is supposed to give you a general idea of what this is all about,
open up questions, and promote ideas and concepts. These then will be explained in detail
in the higher levels.

2 0. ENCOUNTER

1. Getting started

This section covers

e Introduction to imperative programming
e Compiling and running code

In this section, I will introduce you to one simple program that has been chosen be-
cause it contains many of the constructs of the C language. If you already have program-
ming experience, you may find that parts of it feel like needless repetition. If you lack such
experience, you might feel overwhelmed by the stream of new terms and concepts.

In either case, be patient. For those of you with programming experience, it’s very
possible that there are subtle details you’re not aware of, or assumptions you have made
about the language that are not valid, even if you have programmed C before. For those
approaching programming for the first time, be assured that after approximately 10 pages
your understanding will have increased a lot, and you should have a much clearer idea of
what programming represents.

An important bit of wisdom for programming in general, and for this book in particu-
lar, is summarized in the following citation from the Hitchhiker’s Guide to the Galaxy by
Douglas Adams |Adams|[1986]:

Takeaway B Don’t panic.

It’s not worth it. There are many cross references, links, and bits of side information
in the text, and there is an at the end. Follow those if you have a question. Or just
take a break.

Programming in C is about having the computer complete some specific tasks. A C
program does that by giving orders, much as we would express such orders in the im-
perative tense in many human languages; thus the term imperative programming for this
particular way of organizing computer programs. To get started and see what we are talking
about, consider our first program in listing [I.T}

1.1. Imperative programming. You probably see that this is a sort of language, con-
taining some weird words like main, include, for, and so on, which are laid out and
colored in a peculiar way and mixed with a lot of strange characters, numbers, and text
(“Doing some work™) that looks like ordinary English. It is designed to provide a link be-
tween us, the human programmers, and a machine, the computer, to tell it what to do: to
give it “orders.”

Takeaway 0.1.1.1 C is an imperative programming language.

In this book, we will not only encounter the C programming language, but also some
vocabulary from an English dialect, C jargon, the language that helps us to talk about C.
It will not be possible to immediately explain each term the first time it occurs. But I will
explain each one in time, and all of them are indexed so you can easily cheat and jump®
to more explanatory text, at your own riskﬂ

As you can probably guess from this first example, such a C program has different
components that form some intermixed layers. Let’s try to understand it from the inside
out. The visible result of running this program is to output 5 lines of text on the command
terminal of your computer. On my computer, using this program looks something like this:

ISuch special terms from C jargon are marked with a C, as shown here.

0N N AW~

17
18
19
20

1. GETTING STARTED 3

LISTING 1.1. A first example of a C program

/* This may look like nonsense, but really is -*- mode: C -*- %/
#include <stdlib.h>
#include <stdio.h>

/* The main thing that this program does. */
int main(void) {
// Declarations
double A[5] = ¢
[e] = 9.0,
[1]1 = 2.9,
[4] = 3.E+25,
[3]1 = .00007,
B

// Doing some work
for (size_t i = 0; i < 5; ++i) {
printf(”"element_%zu_is_%g,_\tits_square_is_%g\n",
i,
A[i],
ALiIxA[i]);
}

return EXIT_SUCCESS;

Terminal

> ./getting-started

element @ is 9, its square is 81
element 1 is 2.9, its square is 8.41
element 2 is 0, its square is @
element 3 is 7e-05, its square is 4.9e-09
element 4 is 3e+25, its square is 9e+50

We can easily identify within our program the parts of the text that this program out-
puts (prints©, in C jargon): the part of line 17| between quotes. The real action happens
between that line and line C calls this a statement®, which is a bit of a misnomer.
Other languages would use the term instruction which describes the purpose better. This
particular statement is a call® to a function® named printf:

getting-started.c

printf(”"element_%zu_is_%g,_\tits_square_is_%g\n",
i,

ALi],

ALi]*xAL1]);

Here, the printf function receives four argumentsc, enclosed in a pair of parenthesesc,

¢ ...)
e The funny-looking text (between the quotes) is a so-called string literal® that
serves as a format® for the output. Within the text are three markers (format
specifiers®) that indicate the positions in the output where numbers are to be

4 0. ENCOUNTER

inserted. These markers start with a % character. This format also contains some
special escape characters® that start with a backslash: \t and \n.

e After a comma character, we find the word i. The thing i stands for will be
printed in place of the first format specifier, %zu.

e Another comma separates the next argument A[i]. The thing this stands for will
be printed in place of the second format specifier, the first %g.

e Last, again separated by a comma, appears A[i1*A[i], corresponding to the last
%g.

We will later explain what all of these arguments mean. Just remember that we iden-
tified the main purpose of the program (to print some lines on the terminal) and that it
“orders” the printf function to fulfill that purpose. The rest is some sugar® to specify
which numbers will be printed, and how many of them.

1.2. Compiling and running. As shown in the previous subsection, the program text
expresses what we want our computer to do. As such, it is just another piece of text that
we have written and stored somewhere on our hard disk, but the program text as such
cannot be understood by your computer. There is a special program, called a compiler,
that translates the C text into something that your machine can understand: the binary
code® or executable® . What that translated program looks like and how this translation is
done are much too complicated to explain at this stageE] Even this entire book will not be
able to explain most of it; that would be the subject of another whole book. However, for
the moment, we don’t need to understand more deeply, as we have the tool that does all the
work for us.

Takeaway 0.1.2.1 C is a compiled programming language.

The name of the compiler and its command-line arguments depend a lot on the platform®
on which you will be running your program. There is a simple reason for this: the target
binary code is platform dependent® : that is, its form and details depend on the computer
on which you want to run it. A PC has different needs than a phone, and your refrigerator
doesn’t speak the same “language” as your set-top box. In fact, that’s one of the reasons for
C to exist: C provides a level of abstraction for all the different machine-specific languages
(usually referred to as assembler®).

Takeaway 0.1.2.2 A correct C program is portable between different platforms.

In this book, we will put a lot of effort into showing you how to write “correct” C
programs that ensure portability. Unfortunately, there are some platforms that claim to
be “C” but do not conform to the latest standards; and there are conforming platforms
that accept incorrect programs or provide extensions to the C standard that are not widely
portable. So, running and testing a program on a single platform will not always guarantee
portability.

It is the job of the compiler to ensure that the little program shown earlier, once trans-
lated for the appropriate platform, will run correctly on your PC, your phone, your set-top
box, and maybe even your refrigerator.

That said, if your have a POSIX system (such as Linux or macQOS), there is a good
chance that a program named c99 might be present and that it is in fact a C compiler. You
could try to compile the example program using the following command:

In fact, the translation itself is done in several steps that go from textual replacement, over proper compila-
tion, to linking. Nevertheless, the tool that bundles all this is traditionally called a compiler and not a translator,
which would be more accurate.

1. GETTING STARTED 5

Terminal

> c99 -Wall -o getting-started getting-started.c -1m

The compiler should do its job without complaining and output an executable file
called getting-started in your current directory/ ™ *| In the example line,

e 99 is the compiler program.

e -Wall tells it to warn us about anything that it finds unusual.

e -0 getting-started tells it to store the compiler output® in a file named
getting-started.

e getting-started.c names the source file®, the file that contains the C code
we have written. Note that the . c extension at the end of the filename refers to
the C programming language.

e -1m tells it to add some standard mathematical functions if necessary; we will
need those later on.

Now we can execute® our newly created executable® . Type in

Terminal

> ./getting-started

and you should see exactly the same output as I showed you earlier. That’s what
portable means: wherever you run that program, its behavior® should be the same.

If you are not lucky and the compilation command didn’t work, you will have to look
up the name of your compiler® in your system documentation. You might even have to
install a compiler if one is not available. [[The names of compilers vary. Here are some
common alternatives that might do the trick:

Terminal

> clang -Wall -1m -o getting-started getting-started.c

> gcc -std=c99 -Wall -1Im -o getting-started getting-started.c
> icc -std=c99 -Wall -1m -o getting-started getting-started.c

Some of these, even if they are present on your computer, might not compile the
program without complaining

With the program in listing [I.T} we presented an ideal world: a program that works
and produces the same result on all platforms. Unfortunately, when programming yourself,
very often you will have a program that works only partially and that may produce wrong
or unreliable results. Therefore, let us look at the program in listing [T.2} It looks quite
similar to the previous one.

If you run your compiler on this program, it should give you some diagnostic® infor-
mation similar to this:

[Exs 3]Try the compilation command in your terminal.

“This is necessary in particular if you have a system with a Microsoft operating system. Microsoft’s native
compilers do not yet fully support even C99, and many features that we discuss in this book will not work. For a
discussion of the alternatives, you might have a look at Chris Wellons’ blog entry “Four Ways to Compile C for
Windows” (https://nullprogram.com/blog/2016/06/13/).

[Exs SIS tart writing a text report about your tests with this book. Note down which command worked for you.

https://nullprogram.com/blog/2016/06/13/

O 01NN AW~

6 0. ENCOUNTER

LISTING 1.2. An example of a C program with flaws

/* This may look like nonsense, but really is -*- mode: C -*- %/

/* The main thing that this program does. =*/
void main() {
// Declarations
int i;
double A[5] = {
9.0,
2.9,
3.E+25,
.00007,
B

// Doing some work
for (i = 0; i < 5; ++i) {
printf("element_%d_is_%g,_\tits_.square_is_%g\n",
ihp
Alil,
ALi1*xALi]);

return 0;

Terminal

> c99 -Wall -o bad bad.c
bad.c:4:6: warning: return type of 'main' is not

int' [-Wmain]

bad.c: In function 'main':

bad.c:16:6: warning: implicit declaration of function 'printf' [-Wimplicit-function.
bad.c:16:6: warning: incompatible implicit declaration of built-in function 'printf' .

bad.c:22:3: warning: 'return' with a value, in function returning void [enabled by de..

Here we had a lot of long “warning” lines that are even too long to fit on a terminal
screen. In the end, the compiler produced an executable. Unfortunately, the output when
we run the program is different. This is a sign that we have to be careful and pay attention
to details.

clang is even more picky than gcc and gives us even longer diagnostic lines:

SUMMARY 7

Terminal

> clang -Wall -o getting-started-badly bad.c

bad.c:4:1: warning: return type of 'main' is not 'int' [-Wmain-return-typel]

void main() {

bad.c:16:6: warning: implicitly declaring library function 'printf' with type
'int (const char *, ...)'

printf("element %d is %g, \tits square is %g\n", /*@\label{printf-start-badly}*

A

bad.c:16:6: note: please include the header <stdio.h> or explicitly provide a declaratic
for 'printf'
bad.c:22:3: error: void function 'main' should not return a value [-Wreturn-type]

return 0;

A ~

2 warnings and 1 error generated.

This is a good thing! Its diagnostic output® is much more informative. In particular,
it gave us two hints: it expected a different return type for main, and it expected us to have
a line such as line [3] from listing [I.T] to specify where the printf function comes from.
Notice how clang, unlike gcc, did not produce an executable. It considers the problem on
line 22] fatal. Consider this to be a feature.

Depending on your platform, you can force your compiler to reject programs that
produce such diagnostics. For gcc, such a command-line option would be -Werror.

So we have seen two of the points in which listings [I.T] and [T.7] differed, and these
two modifications turned a good, standards-conforming, portable program into a bad one.
We also have seen that the compiler is there to help us. It nailed the problem down to the
lines in the program that cause trouble, and with a bit of experience you will be able to

understand what it is telling you

Takeaway 0.1.2.3 A C program should compile cleanly without warnings.

Summary

C is designed to give computers orders. Thereby it mediates between us (the
programmers) and computers.

e C must be compiled to be executed. The compiler provides the translation be-
tween the language that we understand (C) and the specific needs of the particular
platform.

C gives a level of abstraction that provides portability. One C program can be
used on many different computer architectures.

e The C compiler is there to help you. If it warns you about something in your
program, listen to it.

[Exs 6l Correct listing step by step. Start from the first diagnostic line, fix the code that is mentioned there,
recompile, and so on, until you have a flawless program.
[EXs TThere is a third difference between the two programs that we didn’t mention yet. Find it.

8 0. ENCOUNTER

2. The principal structure of a program

This section covers

C grammar

Declaring identifiers

Defining objects

Instructing the compiler with statements

Compared to our little examples in the previous section, real programs will be more
complicated and contain additional constructs, but their structure will be very similar. List-
ing[T.T] already has most of the structural elements of a C program.

There are two categories of aspects to consider in a C program: syntactical aspects
(how do we specify the program so the compiler understands it?) and semantic aspects
(what do we specify so that the program does what we want it to do?). In the follow-
ing subsections, we will introduce the syntactical aspects (grammar) and three different
semantic aspects: declarative parts (what things are), definitions of objects (where things
are), and statements (what things are supposed to do).

2.1. Grammar. Looking at its overall structure, we can see that a C program is com-
posed of different types of text elements that are assembled in a kind of grammar. These
elements are:

Special words: In listing we used the following special wordsﬁ #include, int, void,
double, for, and return. In program text in this book, they will usually be printed
in bold face. These special words represent concepts and features that the C language
imposes and that cannot be changed.

Punctuation®: C uses several types of punctuation to structure the program text.

e There are five kinds of brackets: { ... }, (...), [... 1, /* ... x/, and
< ... >. Brackets group certain parts of the program together and should always
come in pairs. Fortunately, the < ... > brackets are rare in C and are only used
as shown in our example, on the same logical line of text. The other four are not
limited to a single line; their contents might span several lines, as they did when we
used printf earlier.

e There are two different separators or terminators: comma and semicolon. When we
used printf, we saw that commas separated the four arguments of that function;
and on line [12] we saw that a comma also can follow the last element of a list of
elements.

getting-started.c

12 ‘ [3] = .00007, ‘

One of the difficulties for newcomers in C is that the same punctuation characters are
used to express different concepts. For example, the pairs {} and [] are each used for

three different purposes in listing

Takeaway 0.2.1.1 Punctuation characters can be used with several different meanings.

Comments©': The construct /% ... x/ that we saw earlier tells the compiler that every-
thing inside it is a comment; see, for example, line E}

8In C jargon, these are directivesc, keywordsc, and reserved® identifiers.
[Exs 9]Eing these different uses of these two sorts of brackets.

2. THE PRINCIPAL STRUCTURE OF A PROGRAM 9

getting-started.c

5 |/* The main thing that this program does. */ \

Comments are ignored by the compiler. It is the perfect place to explain
and document your code. Such in-place documentation can (and should) greatly
improve the readability and comprehensibility of your code. Another form of
comment is the so-called C++-style comment, as on line @ These are marked
with //. C++-style comments extend from the // to the end of the line.

Literals®: Our program contains several items that refer to fixed values that are part of the
program: 9, 1, 3, 4,5,9.0, 2.9, 3.E+25, .00007, and
"element_%zu_is. %g, \tits_square_is_%g\n". These are called literals® .

Identifiers®: These are “names” that we (or the C standard) give to certain entities in
the program. Here we have A, i, main, printf, size_t, and EXIT_SUCCESS.
Identifiers can play different roles in a program. Among other things, they may
refer to

e Data objects® (such as A and i). These are also referred to as variables® .

° TypeC aliases, such as size_t, that specify the “sort” of a new object, here
of i. Observe the trailing _t in the name. This naming convention is used
by the C standard to remind you that the identifier refers to a type.

e Functions, such as main and printf.

e Constants, such as EXIT_SUCCESS.

Functions®: Two of the identifiers refer to functions: main and printf. As we have al-
ready seen, printf is used by the program to produce some output. The function
main in turn is defined®: that is, its declaration® int main(void) is followed
by a block® enclosed in { ... } that describes what that function is supposed
to do. In our example, this function definition® goes from line@to main has
a special role in C programs, as we will encounter: it must always be present,
since it is the starting point of the program’s execution.

Operators®: Of the numerous C operators, our program only uses a few:

= for initialization® and assignment®

< for comparison,

++ to increment a variable (to increase its value by 1), and

* to multiply two values.

Just as in natural languages, the lexical elements and the grammar of C programs that
we have seen here have to be distinguished from the actual meaning these constructs con-
vey. In contrast to natural languages, though, this meaning is rigidly specified and usually
leaves no room for ambiguity. In the following subsections, we will dig into the three main
semantic categories that C distinguishes: declarations, definitions, and statements.

2.2. Declarations. Before we may use a particular identifier in a program, we have to
give the compiler a declaration® that specifies what that identifier is supposed to represent.
This is where identifiers differ from keywords: keywords are predefined by the language
and must not be declared or redefined.

Takeaway 0.2.2.1 All identifiers in a program have to be declared.

Three of the identifiers we use are effectively declared in our program: main, A, and
i. Later on, we will see where the other identifiers (printf, size_t, and EXIT_SUCCESS)
come from. We already mentioned the declaration of the main function. All three declara-
tions, in isolation as “declarations only,” look like this:

int main(void);
double A[5];
size_t i;

<stdio.h>
<stdlib.h>

10 0. ENCOUNTER

These three follow a pattern. Each has an identifier (main, A, or i) and a specification
of certain properties that are associated with that identifier:

e iisoftype” size_t.

e main is additionally followed by parentheses, (...), and thus declares a function of
type int.
e Ais followed by brackets, [... 1, and thus declares an array®. An array is an aggre-

gate of several items of the same type; here it consists of 5 items of type double. These
5 items are ordered and can be referred to by numbers, called indices® , from 0 to 4.

Each of these declarations starts with a typec, here int, double, and size_t. We will
see later what that represents. For the moment, it is sufficient to know that this specifies
that all three identifiers, when used in the context of a statement, will act as some sort of
“numbers.”

The declarations of i and A declare variables®, which are named items that allow us
to store values®. They are best visualized as a kind of box that may contain a “something”
of a particular type:

[

size_t ??

[o] [11] [2] [3] [4]

A| double ?? double ?7? double ?7? double ?7? double

??

Conceptually, it is important to distinguish the box itself (the object), the specification (its
type), the box contents (its value), and the name or label that is written on the box (the
identifier). In such diagrams, we put ?? if we don’t know the actual value of an item.

For the other three identifiers, printf, size_t, and EXIT_SUCCESS, we don’t see any
declaration. In fact, they are predeclared identifiers, but as we saw when we tried to com-
pile listing [[.2] the information about these identifiers doesn’t come out of nowhere. We
have to tell the compiler where it can obtain information about them. This is done right
at the start of the program, in lines [2] and 3} printf is provided by stdio.h, whereas
size_t and EXIT_SUCCESS come from stdlib.h. The real declarations of these identi-
fiers are specified in . h files with these names somewhere on your computer. They could
be something like:

[|
‘int printf(char const format[static 11, ...);

| typedef unsigned long size_t;

| #define EXIT_SUCCESS ©

L |

Because the specifics of these predeclared features are of minor importance, this infor-
mation is normally hidden from you in these include files© or header files® . If you need
to know their semantics, it is usually a bad idea to look them up in the corresponding files,
as these tend to be barely readable. Instead, search in the documentation that comes with
your platform. For the brave, I always recommend a look into the current C standard, as
that is where they all come from. For the less courageous, the following commands may
help:

2. THE PRINCIPAL STRUCTURE OF A PROGRAM 11

Terminal

> apropos printf
> man printf

> man 3 printf

A declaration only describes a feature but does not create it, so repeating a declaration
does not do much harm but adds redundancy.

Takeaway 0.2.2.2 Identifiers may have several consistent declarations.

Clearly, it would become really confusing (for us or the compiler) if there were sev-
eral contradicting declarations for the same identifier in the same part of the program, so
generally this is not allowed. C is quite specific about what “the same part of the program”
is supposed to mean: the scopeC is a part of the program where an identifier is visible®.

Takeaway 0.2.2.3 Declarations are bound to the scope in which they appear.

These scopes of identifiers are unambiguously described by the grammar. In list-
ing[I.T] we have declarations in different scopes:

e A is visible inside the definition of main, starting at its declaration on line [§|and
ending at the closing } on line [24] of the innermost { ... } block that contains
that declaration.

e i has more restricted visibility. It is bound to the for construct in which it is
declared. Its visibility reaches from that declaration on line [T6]to the end of the

{ ... }block that is associated with the for on line
e main is not enclosed in a { ... } block, so it is visible from its declaration

onward until the end of the file.

In a slight abuse of terminology, the first two types of scope are called block scope®,
because the scope is limited by a block® of matching { ... }. The third type, as used for
main, which is not inside a { ... } pair, is called file scope® . Identifiers in file scope are
often referred to as globals.

2.3. Definitions. Generally, declarations only specify the kind of object an identifier
refers to, not what the concrete value of an identifier is, nor where the object it refers to
can be found. This important role is filled by a definition® .

Takeaway 0.2.3.1 Declarations specify identifiers, whereas definitions specify objects.

We will later see that things are a little more complicated in real life, but for now we
can make the simplification that we will always initialize our variables. An initialization
is a grammatical construct that augments a declaration and provides an initial value for the
object. For instance,

[
| size_t i = 0;
L

is a declaration of i such that the initial value is .

In C, such a declaration with an initializer also defines the object with the correspond-
ing name: that is, it instructs the compiler to provide storage in which the value of the
variable can be stored.

Takeaway 0.2.3.2 An object is defined at the same time it is initialized.

Our box visualization can now be completed with a value, @ in this example:

10
11
12
13

12 0. ENCOUNTER

size_t 0

[

A is a bit more complex because it has several components:

getting-started.c

double A[5] = {
[e] = 9.0,
[1] = 2.9,
[4] = 3.E+25,
[3]1 = .00007,

¥s

This initializes the 5 items in A to the values 9.0, 2.9, 0.0, 0.00007, and 3.0E+25, in
that order:
[0l 11 [21 [3]

[4]

A double 9.0 double 2.9 double 0.0 double 0.00007

double 3.0E+25

The form of an initializer that we see here is called designated®: a pair of brackets
with an integer designate which item of the array is initialized with the corresponding
value. For example, [4] = 3.E+25 sets the last item of the array A to the value 3.E+25.
As a special rule, any position that is not listed in the initializer is set to @. In our example,
the missing [2] is filled with @. OET]

Takeaway 0.2.3.3 Missing elements in initializers default to 0.

You might have noticed that array positions, indices®, do not start with 1 for the first
element, but with 0. Think of an array position as the distance of the corresponding array
element from the start of the array.

Takeaway 0.2.3.4 For an array with n elements, the first element has index 0, and the
last has index n-1.

For a function, we have a definition (as opposed to only a declaration) if its declaration
is followed by braces { ... J} containing the code of the function:

int main(void) {

3

In our examples so far, we have seen names for two different features: objectsc, i
and A, and functionsc, main and printf. In contrast to object or function declarations,
where several are allowed for the same identifier, definitions of objects or functions must
be unique. That is, for a C program to be operational, any object or function that is used
must have a definition (otherwise the execution would not know where to look for them),
and there must be no more than one definition (otherwise the execution could become
inconsistent).

Takeaway 0.2.3.5 Each object or function must have exactly one definition.

10We will see later how these number literals with dots (.) and exponents (E+25) work.

16
17
18
19
20
21
22
23

2. THE PRINCIPAL STRUCTURE OF A PROGRAM 13

2.4. Statements. The second part of the main function consists primarily of szate-
ments. Statements are instructions that tell the compiler what to do with identifiers that
have been declared so far. We have

getting-started.c

for (size_t i = 0; i < 5; ++i) {
printf(”"element_%zu_is_%g,_\tits_square_is_%g\n",
iy
Ali],
ALiI*ALi]);

3

return EXIT_SUCCESS;

We have already discussed the lines that correspond to the call to printf. There are
also other types of statements: for and return statements, and an increment operation,
indicated by the operator® ++. In the following subsection, we will go a bit into the details
of three categories of statements: iferations (do something several times), function calls
(delegate execution somewhere else), and function returns (resume execution from where
a function was called).

2.4.1. Iteration. The for statement tells the compiler that the program should execute
the printf line a number of times. This is the simplest form of domain iteration® that C
has to offer. It has four different parts.

The code that is to be repeated is called the loop body®': it is the { ... } block that
follows the for (...). The other three parts are those inside the (...) part, divided
by semicolons:

(1) The declaration, definition, and initialization of the loop variable€ i, which we
already discussed. This initialization is executed once before any of the rest of
the entire for statement.

(2) A loop condition®, i < 5 specifies how long the for iteration should continue.
This tells the compiler to continue iterating as long as i is strictly less than 5.
The loop condition is checked before each execution of the loop body.

(3) Another statement, ++1, is executed after each iteration. In this case, it increases
the value of i by 1 each time.

If we put all of these together, we ask the program to perform the part in the block five
times, setting the value of i to @, 1, 2, 3, and 4, respectively, in each iteration. The fact
that we can identify each iteration with a specific value for i makes this an iteration over
the domain€ 0, ..., 4. There is more than one way to do this in C, but for is the easiest,
cleanest, and best tool for the task.

Takeaway 0.2.4.1 Domain iterations should be coded with a for statement.

A for statement can be written in several ways other than what we just saw. Often,
people place the definition of the loop variable somewhere before the for or even reuse
the same variable for several loops. Don’t do that: to help an occasional reader and the
compiler understand your code, it is important to know that this variable has the special
meaning of an iteration counter for that given for loop.

Takeaway 0.2.4.2 The loop variable should be defined in the initial part of a for.

2.4.2. Function calls. Function calls are special statements that suspend the execu-
tion of the current function (at the beginning, this is usually main) and then hand over
control to the named function. In our example

17
18
19
20

14 0. ENCOUNTER

getting-started.c

printf(”"element_%zu_is_%g,_\tits_square_is_%g\n",
i,
A[i],
ALid*A[i]);

the called function is printf. A function call usually provides more than just the
name of the function, but also arguments. Here, these are the long chain of characters, i,
A[i], and ALiI*A[i]. The values of these arguments are passed over to the function. In
this case, these values are the information that is printed by printf. The emphasis here
is on “value”: although i is an argument, printf will never be able to change i itself.
Such a mechanism is called call by value. Other programming languages also have call by
reference, a mechanism where the called function can change the value of a variable. C
does not implement pass by reference, but it has another mechanism to pass the control of
a variable to another function: by taking addresses and transmitting pointers. We will see
these mechanism much later.

2.4.3. Function return. The last statement in main is a return. It tells the main func-
tion to return to the statement that it was called from once it’s done. Here, since main has
int in its declaration, a return must send back a value of type int to the calling statement.
In this case, that value is EXIT_SUCCESS.

Even though we can’t see its definition, the printf function must contain a similar
return statement. At the point where we call the function on line [T7] execution of the
statements in main is temporarily suspended. Execution continues in the printf function
until a return is encountered. After the return from printf, execution of the statements
in main continues from where it stopped.

/int printf(char const fmt[], ...) {

int main(void) {
/ // Declarations
double A[5] = {

4

[0]
[1]
[4]
[31]

&

// Doing some work
\ for (si'ze_t i=0;1<35; ++i) {
printf("element_%zu_is_%g,_\tits_sqpare_is_%g\n",
i,
Ali],
A[i]*A[1])

=1
Areiqy o

pin();

Process startup

>
<

}

/9@,0
return EXIT_SUCCESS; &
}

Progam code N return something;

}

FIGURE 2.1. Execution of a small program

Figure [2.1] shows a schematic view of the execution of our little program: its control
Sflow. First, a process-startup routine (on the left) that is provided by our platform calls the
user-provided function main (middle). That, in turn, calls printf, a function that is part
of the C libraryc, on the right. Once a return is encountered there, control returns back
to main; and when we reach the return in main, it passes back to the startup routine. The

SUMMARY 15

latter transfer of control, from a programmer’s point of view, is the end of the program’s
execution.

Summary

C distinguishes the lexical structure (the punctuators, identifiers, and numbers),
the grammatical structure (syntax), and the semantics (meaning) of programs.
All identifiers (names) must be declared such that we know the properties of the
concept they represent.

All objects (things that we deal with) and functions (methods that we use to deal
with things) must be defined; that is, we must specify how and where they come
to be.

Statements indicate how things are going to be done: iterations (for) repeat
variations of a certain tasks, functions calls (printf(...)) delegate a task to a
function, and function returns (return something;) go back where we came
from.

LEVEL 1

Acquaintance

Our mascot for this level, the common raven, is a very sociable corvid
and known for its problem-solving capacity. Ravens organize in teams
and have been observed playing even as adults.

This level will acquaint you with the C programming language: that is, it will provide
you with enough knowledge to write and use good C programs. “Good” here refers to a
modern understanding of the language, avoiding most of the pitfalls of early dialects of C,
and offering you some constructs that were not present before and that are portable across
the vast majority of modern computer architectures, from your cell phone to a mainframe
computer. Having worked through these sections, you should be able to write short code
for everyday needs: not extremely sophisticated, but useful and portable.

18 1. ACQUAINTANCE

Buckle up

In many ways, C is a permissive language; programmers are allowed to shoot them-
selves in the foot or other body parts if they choose to, and C will make no effort to stop
them. Therefore, just for the moment, we will introduce some restrictions. We’ll try to
avoid handing out guns in this level, and place the key to the gun safe out of your reach for
the moment, marking its location with big and visible exclamation marks.

The most dangerous constructs in C are the so-called casts®, so we’ll skip them at this
level. However, there are many other pitfalls that are less easy to avoid. We will approach
some of them in a way that might look unfamiliar to you, in particular if you learned your
C basics in the last millennium or if you were introduced to C on a platform that wasn’t
upgraded to current ISO C for years.

Experienced C programmers: If you already have some experience with C program-
ming, what follows may take some getting used to or even provoke allergic reac-
tions. If you happen to break out in spots when you read some of the code here,
take a deep breath and try to relax, but please do not skip these pages.

Inexperienced C programmers: If you are not an experienced C programmer, much of
the following discussion may be a bit over your head: for example, we may use
terminology that you have not yet even heard of. If so, this is a digression for
you, and you may skip to the start of section [3|and come back later when you
feel a bit more comfortable. But be sure to do so before the end of this level.

Some of “getting used to” our approach on this level may concern the emphasis and order-
ing in which we present the material:

e We will focus primarily on the unsigned® versions of integer types.

o We will introduce pointers in steps: first, in disguise as parameters to functions
(section [6.1.4), then with their state (being valid or not, section [6.2), and then,
on the next level, (section @, using their entire potential.

e We will focus on the use of arrays whenever possible, instead.

You might also be surprised by some style considerations that we will discuss in the fol-
lowing points. On the next level, we will dedicate an entire section (section [9) to these
questions, so please be patient and accept them for the moment as they are.

(1) We bind type modifiers and qualifiers to the left.: We want to separate identifiers vi-
sually from their type. So we will typically write things as

ichar* name; i
L |

where charx is the type and name is the identifier. We also apply the left-binding rule to
qualifiers and write

[|
| char const* const path_name;
L |

Here the first const qualifies the char to its left, the * makes it to a pointer, and the second
const again qualifies what is to its left.

(2) We do not use continued declarations.: They obfuscate the bindings of type declara-
tors. For example:

iunsigned const*const a, b;

L |
Here, b has type unsigned const: that is, the first const goes to the type, and the

second const only goes to the declaration of a. Such rules are highly confusing, and you

have more important things to learn.

BUCKLE UP 19

(3) We use array notation for pointer parameters.: We do so wherever these assume
that the pointer can’t be null. Examples:

/* These emphasize that the arguments cannot be null. =x/
size_t strlen(char const string[static 1]);

int main(int argc, charx argv[argc+1]);

/* Compatible declarations for the same functions. */
size_t strlen(const char *string);

int main(int argc, char *xargv);

The first stresses the fact that strlen must receive a valid (non-null) pointer and will access
at least one element of string. The second summarizes the fact that main receives an array
of pointers to char: the program name, argc-1 program arguments, and one null pointer
that terminates the array.

Note that the previous code is valid as it stands. The second set of declarations only
adds additional equivalent declarations for features that are already known to the compiler.

(4) We use function notation for function pointer parameters.: Along the same lines,
we do so whenever we know that a function pointer can’t be null:

/* This emphasizes that the '‘handler’’ argument cannot be null. x/
int atexit(void handler(void));
/* Compatible declaration for the same function. */

int atexit(void (*handler)(void));

Here, the first declaration of atexit emphasizes that, semantically, it receives a function
named handler as an argument and that a null function pointer is not allowed. Techni-
cally, the function parameter handler is “rewritten” to a function pointer much as array
parameters are rewritten to object pointers, but this is of minor interest for a description of
the functionality.

Note, again, that the previous code is valid as it stands and that the second declaration
just adds an equivalent declaration for atexit.

(5) We define variables as close to their first use as possible.: Lack of variable initial-
ization, especially for pointers, is one of the major pitfalls for novice C programmers.
This is why we should, whenever possible, combine the declaration of a variable with the
first assignment to it: the tool that C gives us for this purpose is the definition: a declaration
together with an initialization. This gives a name to a value and introduces this name at the
first place where it is used.

This is particularly convenient for for loops. The iterator variable of one loop is
semantically a different object from that in another loop, so we declare the variable within
the for to ensure it stays within the loop’s scope.

(6) We use prefix notation for code blocks.: To be able to read a code block, it is impor-
tant to capture two things about it easily: its purpose and its extent. Therefore:
e All { are prefixed on the same line with the statement or declaration that introduces
them.
e The code inside is indented by one level.
e The terminating } starts a new line on the same level as the statement that introduced
the block.
e Block statements that have a continuation after the } continue on the same line.
Examples:

20

1. ACQUAINTANCE

int main(int argc, charx argv[largc+1]) {
puts("Hello_world!");
if (argec > 1) {
while (true) {
puts (”"some_programs_never_stop");
3
} else {
do ¢
puts("but_this_one_does");
} while (false);
¥
return EXIT_SUCCESS;

3. EVERYTHING IS ABOUT CONTROL 21

3. Everything is about control

This section covers

e Conditional execution with if
e [terating over domains
e Making multiple selections

In our introductory example, listing we saw two different constructs that allowed
us to control the flow of a program’s execution: functions and the for iteration. Functions
are a way to transfer control unconditionally. The call transfers control unconditionally fo
the function, and a return statement unconditionally transfers it back to the caller. We
will come back to functions in section [

The for statement is different in that it has a controlling condition (i < 5 in the ex-
ample) that regulates if and when the dependent block or statement ({ printf(...) })
is executed. C has five conditional control statements: if, for, do, while, and switch.
We will look at these statements in this section: if introduces a conditional execution de-
pending on a Boolean expression; for, do, and while are different forms of iterations; and
switch is a multiple selection based on an integer value.

C has some other conditionals that we will discuss later: the ternary operator®, de-
noted by an expression in the form cond ? A : B (section f.4), the compile-time pre-
processor conditionals #if/#ifdef/#ifndef/#elif/#else/#endif (section [§.1.5)), and
type generic expressions denoted with the keyword _Generic (section[I6.6).

3.1. Conditional execution. The first construct that we will look at is specified by
the keyword if. It looks like this:

if (i > 25)
jo=1i - 25;
3

Here we compare i against the value 25. If it is larger than 25, j is set to the value i - 25.
In the example, i > 25 is called the controlling expressionc, and the partin { ... }is
called the dependent block® .

On the surface, this form of an if statement resembles the for statement that we
already encountered. But it works differently than that: there is only one part inside the
parentheses, and that determines whether the dependent statement or block is run once or
not at all.

There is a more general form of the if construct:

if (i > 25) {

j =1i - 25;
} else {
J 8 i

3

It has a second dependent statement or block that is executed if the controlling condi-
tion is not fulfilled. Syntactically, this is done by introducing another keyword else that
separates the two statements or blocks.

The if (...) ... else ... is a selection statement®. It selects one of the two
possible code paths© according to the contents of (...). The general form is

if (condition) statement@-or-blocko
else statementl-or-blockl

The possibilities for condition (the controlling expression) are numerous. They can
range from simple comparisons, as in this example, to very complex nested expressions.
We will present all the primitives that can be used in section[d.3.2]

22 1. ACQUAINTANCE

The simplest of such condition specifications in an if statement can be seen in the
following example, in a variation of the for loop from listing[I.T}

for (size_t i = 0; i < 5; ++i) {
if (i) |
printf(”element_%zu_is_%g,_\tits_square_is_%g\n",
i
ALi],
ALiI*ALi]);
3

}

Here the condition that determines whether printf is executed is just i: a numerical
value by itself can be interpreted as a condition. The text will only be printed when the
value of i is not 0P 1]

There are two simple rules for the evaluation of a numerical condition:

Takeaway 1.3.1.1 The value @ represents logical false.

Takeaway 1.3.1.2 Any value different from @ represents logical true.

The operators == and != allow us to test for equality and inequality, respectively.
a == b is true if the value of a is equal to the value of b, and false otherwise; a != b is
false if a is equal to b, and true otherwise. Knowing how numerical values are evaluated
as conditions, we can avoid redundancy. For example, we can rewrite

if (i 1= o) {

}

as:

if (i) {

}

Which of these two versions is more readable is a question of coding style® and can be
subject to fruitless debates. While the first might be easier for occasional readers of C code
to read, the latter is often preferred in projects that assume some knowledge about C’s type
system.

<stdbool.h> The type bool, specified in stdbool. h, is what we should be using if we want to store
truth values. Its values are false and true. Technically, false is just another name for @
and true for 1. It’s important to use false and true (and not the numbers) to emphasize
that a value is to be interpreted as a condition. We will learn more about the bool type in
section3.7.4]

Redundant comparisons quickly become unreadable and clutter your code. If you have

a conditional that depends on a truth value, use that truth value directly as the condition.
Again, we can avoid redundancy by rewriting something like

bool b = ...;
if ((b != false) == true) {

}

as

[Exs 1IAdd the if (i) condition to the program, and compare the output to the previous.

3. EVERYTHING IS ABOUT CONTROL 23

bool b = ...;

i;“(b) {

3

Generally:

Takeaway 1.3.1.3 Don’t compare to 0, false, or true.

Using the truth value directly makes your code clearer and illustrates one of the basic
concepts of the C language:

Takeaway 1.3.1.4 All scalars have a truth value.

Here, scalar® types include all the numerical types such as size_t, bool, and int that
we already encountered, and pointer® types; see table for the types that are frequently
used in this book. We will come back to them in section

TABLE 3.1. Scalar types used in this book

Level | Name Other | Category | Where printf

0 size_t Unsigned | <stddef.h> "%zu" "%zx"

0 double Floating Built in "he" "%T" "%g" "%a"
0 signed int Signed Built in "%d"

0 unsigned Unsigned | Builtin "%u" %X

0 bool _Bool | Unsigned | <stdbool.h> | "%d" asOor1

1 ptrdiff_t Signed <stddef.h> "%td"”

1 char constx String Built in "%s"

1 char Character | Built in "%

1 voidx Pointer Built in "%p"

2 unsigned char Unsigned | Builtin "%hhu" "%02hhx"

3.2. Iterations. Previously, we encountered the for statement to iterate over a do-
main; in our introductory example, it declared a variable i that was set to the values 9, 1,
2, 3, and 4. The general form of this statement is

[
\ for (clausel; condition2; expression3) statement-or-block
L

This statement is actually quite generic. Usually, clausel is an assignment expres-
sion or a variable definition. It serves to state an initial value for the iteration domain.
condition2 tests whether the iteration should continue. Then, expression3 updates the
iteration variable used in clausel. It is performed at the end of each iteration. Some
advice:

e Because we want iteration variables to be defined narrowly in the context for a
for loop (¢f. Takeaway [0.2.4.2), clausel should in most cases be a variable

definition.
e Because for is relatively complex with its four different parts and not easy to
capture visually, statement-or-block should usually bea { ... 3} block.

Let’s see some more examples:

for (size_t i = 10; i; --i) {
something (i);

for (size_t i = @, stop = upper_bound(); i < stop; ++i) {
something_else(i);

|
\
} }
\

24 1. ACQUAINTANCE

| 2
‘ for (size_t i = 9; i <= 9; --i) {
\ something_else(i);
|
L

}

The first for counts i down from 10 to 1, inclusive. The condition is again just the
evaluation of the variable i; no redundant test against value 0 is required. When i becomes
0, it will evaluate to false, and the loop will stop. The second for declares two variables,
i and stop. As before, i is the loop variable, stop is what we compare against in the
condition, and when i becomes greater than or equal to stop, the loop terminates.

The third for looks as though it would go on forever, but actually it counts down from
9 to @. In fact, in the next section, we will see that “sizes” in C (numbers that have type
size_t) are never negative

Observe that all three for statements declare variables named i. These three variables
with the same name happily live side by side, as long as their scopes don’t overlap.

There are two more iterative statements in C, while and do:

while (condition) statement-or-block
do statement-or-block while(condition);

The following example shows a typical use of the first. It implements the so-called
Heron approximation to compute the multiplicative inverse + of a number .

x

#include <tgmath.h>
double const eps = 1E-9; // Desired precision

double const a = 34.0;

double x = 0.5;

while (fabs(1.0 - axx) >= eps) { // Iterates until close
X *= (2.0 - a*x); // Heron approximation

}

It iterates as long as the given condition evaluates true. The do loop is very similar,
except that it checks the condition affer the dependent block:

do { // Iterates
X *= (2.0 - a*x); // Heron approximation
} while (fabs (1.0 - a*x) >= eps); // Iterates until close

This means if the condition evaluates to false, a while loop will not run its dependent block
at all, and a do loop will run it once before terminating.

As with the for statement, with do and while it is advisable touse the { ... } block
variants. There is also a subtle syntactical difference between the two: do always needs a
semicolon ; after the while (condition) to terminate the statement. Later, we will see
that this is a syntactic feature that turns out to be quite useful in the context of multiple
nested statements; see section [10.2.1]

All three iteration statements become even more flexible with break and continue
statements. A break statement stops the loop without reevaluating the termination condi-
tion or executing the part of the dependent block after the break statement:

[
|while (true) {

‘ double prod = axx;

\ if (fabs(1.0 - prod) < eps) { // Stops if close enough

break;
}
X *= (2.0 - prod); // Heron approximation

[Exs 2]Try to imagine what happens when i has value @ and is decremented by means of the operator --.

3. EVERYTHING IS ABOUT CONTROL 25

|3

This way, we can separate the computation of the product axx, the evaluation of the
stop condition, and the update of x. The condition of the while then becomes trivial. The
same thing can be done using a for, and there is a tradition among C programmers to write
it as follows:

for (;;) {
double prod = ax*x;
if (fabs (1.0 - prod) < eps) { // Stops if close enough
break;
}
X *x= (2.0 - prod); // Heron approximation
}

for(; ;) here is equivalent to while(true). The fact that the controlling expression of a
for (the middle part between the ; ;) can be omitted and is interpreted as “always true” is
just a historical artifact in the rules of C and has no other special purpose.

The continue statement is less frequently used. Like break, it skips the execution of
the rest of the dependent block, so all statements in the block after the continue are not
executed for the current iteration. However, it then reevaluates the condition and continues
from the start of the dependent block if the condition is true:

for (size_t i =0; i < max_iterations; ++i) {
if (x > 1.0) { // Checks if we are on the correct side of 1
X = 1.0/x;
continue;
}
double prod = axx;
if (fabs(1.0 - prod) < eps) { // Stops if close enough
break;
}
X *x= (2.0 - prod); // Heron approximation
}

In these examples, we use a standard macro fabs, which comes with the tgmath.h
heade It calculates the absolute value of a double. Listing is a complete program
that implements the same algorithm, where fabs has been replaced by several explicit
comparisons against certain fixed numbers: for example, eps1m24 defined to be 1 — 2724,
or eps1p24 as 1 + 2724 We will see later (section how the constants @x1P-24 and
similar used in these definitions work.

In the first phase, the product of the current number under investigation a with the
current estimate x is compared to 1.5 and 0.5, and then x is multiplied by 0.5 or 2 until
the product is close to 1. Then, the Heron approximation as shown in the code is used in a
second iteration to close in and to compute the multiplicative inverse with high accuracy.

The overall task of the program is to compute the inverse of all numbers that are
provided to it on the command line. An example of a program execution looks like this:

Terminal

> ./heron 0.07 5 6E+23

heron: a=7.00000e-02, x=1.42857e+01, a*x=0.999999999996
heron: a=5.00000e+00, x=2.00000e-01, a*x=0.999999999767
heron: a=6.00000e+23, x=1.66667e-24, a*x=0.999999997028

3“tgmath” stands for type generic mathematical functions.

<tgmath.h>

26 1. ACQUAINTANCE

To process the numbers on the command line, the program uses another library function

<stdlib.h> strtod from stdlib.h

CHALLENGE 1 (Sequential sorting algorithms). Can you do

(1) A merge sort (with recursion)
(2) A quick sort (with recursion)

on arrays with sort keys such as double or strings to your liking?

Nothing is gained if you don’t know whether your programs are correct. Therefore, can
you provide a simple test routine that checks if the resulting array really is sorted?

This test routine should just scan once through the array and should be much, much faster
than your sorting algorithms.

LISTING 3.1. Computing multiplicative inverses of numbers

1 | #include <stdlib.h>

2 |#include <stdio.h>

3

4 | /x lower and upper iteration limits centered around 1.0 */
5 | static double const epsim@l = 1.0 - O0x1P-01;

6 | static double const epsip@l = 1.0 + 0x1P-01;

7 | static double const epsim24 = 1.0 - 0x1P-24;

8 |static double const epsip24 = 1.0 + Ox1P-24;

9

10 |int main(int argc, char* argv[argc+1]) {

11 for (int i = 1; i < argc; ++i) { // process args
12 double const a = strtod(argv[il, @); // arg -> double
13 double x = 1.0;

14 for (;;) { // by powers of 2

15 double prod = axx;

16 if (prod < epsimo1) {

17 X *= 2.0;

18 } else if (eps1p@1 < prod) {

19 X *= 0.5;

20 } else {

21 break;

22 3}

23 3}

24 for (;;) { // Heron approximation
25 double prod = axx;

26 if ((prod < epsim24) || (epsl1p24 < prod)) {

27 X *x= (2.0 - prod);

28 } else {

29 break;

30 3}

31 3}

32 printf("heron:_a=%.5e,\tx=%.5e,\taxx=%.12f\n",

33 a, X, ax*x);

34 }

35 return EXIT_SUCCESS;

36 |}

[Exs 4]Analyze listingby adding printf calls for intermediate values of x.
[Exs SIDescribe the use of the parameters arge and argv in listing
[Exs 61print out the values of epsTm@1, and observe the output when you change them slightly.

3. EVERYTHING IS ABOUT CONTROL 27

3.3. Multiple selection. The last control statement that C has to offer is the switch
statement and is another selection® statement. It is mainly used when cascades of if-else
constructs would be too tedious:

if (arg == 'm’) {
puts("this_is_a_magpie”);

} else if (arg == 'r’) {
puts(”this_is_a_raven");

} else if (arg == ’j’) {
puts("this_is_a_jay");

} else if (arg == ’'¢’) {
puts("this_is_a_chough”);

} else {
puts(”"this_is_an_unknown_corvid");

b

In this case, we have a choice that is more complex than a false-true decision and that
can have several outcomes. We can simplify this as follows:

switch (arg) {
case 'm’: puts("this_is_a_magpie”);
break;
case ’'r’: puts("this_is_a_raven”);
break;
case ’'j’: puts("this_is_a_jay");
break;
case ’'c’: puts("this_is_a_chough”);
break;
default: puts(”this_is_an_unknown_corvid”");
3

Here we select one of the puts calls according to the value of the arg variable. Like
printf, the function puts is provided by stdio.h. It outputs a line with the string that
is passed as an argument. We provide specific cases for characters 'm’, ’'r’, ’j’, ’'c’
and a fallback® case labeled default. The default case is triggered if arg doesn’t match
any of the case values

Syntactically, a switch is as simple as

i switch (expression) statement-or-block

L |
and its semantics are quite straightforward: the case and default labels serve as jump
targets® . According to the value of the expression, control continues at the statement
that is labeled accordingly. If we hit a break statement, the whole switch under which it
appears terminates, and control is transferred to the next statement after the switch.

By that specification, switch statements can be used much more widely than iterated

if-else constructs:

switch (count) {
default:puts("++++_....._+++");
case 4: puts("++++");

case 3: puts("+++");
case 2: puts("++");
case 1: puts("+"
case 0:;

}

Once we have jumped into the block, execution continues until it reaches a break or the
end of the block. In this case, because there are no break statements, we end up running

[EXS T Test the example switch statement in a program. See what happens if you leave out some of the break
statements.

<stdio.h>

28 1. ACQUAINTANCE

all subsequent puts statements. For example, the output when the value of count is 3 is a
triangle with three lines:

Terminal

The structure of a switch can be more flexible than if-else, but it is restricted in
another way:

Takeaway 1.3.3.1 case values must be integer constant expressions.

In section [5.6.2] we will see what these expressions are in detail. For now, it suffices
to know that these have to be fixed values that we provide directly in the source, such as
the 4, 3, 2, 1, @ in the previous example. In particular, variables such as count are only
allowed in the switch part, not in the individual case s.

With the greater flexibility of the switch statement also comes a price: it is more error
prone. In particular, we might accidentally skip variable definitions:

Takeaway 1.3.3.2 case labels must not jump beyond a variable definition.

CHALLENGE 2 (Numerical derivatives). Something we’ll deal with a lot is the concept of
numerical algorithms. To get your hands dirty, see if you can implement the numerical
derivative double f(double x) of a function double F(double x).

Implement this with an example F for the function that you use for this exercise. A good
primary choice for F would be a function for which you know the derivative, such as sin,
cos, or sqrt. This allows to check your results for correctness.

CHALLENGE 3 (). Compute the N first decimal places of w?

Summary

e Numerical values can be directly used as conditions for if statements; O repre-
sents “false,” and all other values are “true.”

e There are three different iteration statements: for, do, and while. for is the
preferred tool for domain iterations.

o A switch statement performs multiple selection. One case runs into the next, if
it is not terminated by a break.

4. EXPRESSING COMPUTATIONS 29

4. Expressing computations

This section covers

e Performing arithmetic

Modifying objects

Working with booleans

Conditional compilation with the ternary operator
Setting the evaluation order

We’ve already made use of some simple examples of expressions®. These are code
snippets that compute a value based on other values. The simplest such expressions are
arithmetic expressions, which are similar to those we learned in school. But there are
others, notably comparison operators such as == and !=, which we saw earlier.

In this section, the values and objects on which we will do these computations will
be mostly of the type size_t, which we have already met. Such values correspond to
“sizes,” so they are numbers that cannot be negative. Their range of possible values starts
at 0. What we would like to represent are all the non-negative integers, often denoted as
N, Ny, or “natural” numbers in mathematics. Unfortunately, computers are finite, so we
can’t directly represent all the natural numbers, but we can do a reasonable approximation.
There is a big upper limit SIZE_MAX that is the upper bound of what we can represent in a
size_t.

Takeaway 1.4.0.1 The type size_t represents values in the range [0, SIZE_MAX].

The value of SIZE_MAX is quite large. Depending on the platform, it is one of

216 1 = 65535
232 _1 = 4294967295
264 _ 1 = 18446744073709551615

The first value is a minimal requirement; nowadays, such a small value would only occur on
some embedded platforms. The other two values are much more commonly used today: the
second is still found on some PCs and laptops, and the large majority of newer platforms
have the third. Such a choice of value is large enough for calculations that are not too
sophisticated. The standard header stdint.h provides SIZE_MAX such that you don’t have
to figure out that value yourself, and such that you do not have to specialize your program
accordingly.

The concept of “numbers that cannot be negative” to which we referred for size_t
corresponds to what C calls unsigned integer types®. Symbols and combinations like +
and ! = are called operators®, and the things to which they are applied are called operands®;
so, in something like a + b, + is the operator and a and b are its operands.

For an overview of all C operators, see the following tables: table[.Tlists the operators
that operate on values, table .2]lists those that operate on objects, and table 4.3 lists those
that operate on types. To work with these, you may have to jump from one table to another.
For example, if you want to work out an expression such as a + 5, where a is some variable
of type unsigned, you first have to go to the third line in table[d.2]to see that a is evaluated.
Then, you can use the third line in table@]to deduce that the value of a and 5 are combined
in an arithmetic operation: a +. Don’t be frustrated if you don’t understand everything in
these tables. A lot of the concepts that are mentioned have not yet been introduced; they
are listed here to form a reference for the entire book.

4.1. Arithmetic. Arithmetic operators form the first group in table of operators
that operate on values.

<stdint.h>

30

1. ACQUAINTANCE

TABLE 4.1. Value operators: The Form column gives the syntactic form
of the operation, where @ represents the operator and a and possibly b
denote values that serve as operands. For arithmetic and bit operations,
the type of the result is a type that reconciles the types of a and b. For
some of the operators, the Nick column gives an alternative form of the
operator, or lists a combination of operators that has special meaning.
Most of the operators and terms will be discussed later.

type restriction
Operator Nick Form a b Result
a Narrow Wide Promotion
+ - a@b Pointer Integer Pointer Arithmetic
+ - %/ a@b Arithmetic Arithmetic | Arithmetic | Arithmetic
+ - @a Arithmetic Arithmetic | Arithmetic
% a@b Integer Integer Integer Arithmetic
~ compl @a Integer Integer Bit
& bitand a@b Integer Integer Integer Bit
| bitor
. xor
<K >> aeb Integer Positive Integer Bit
== < > <= >= a@b Scalar Scalar 0,1 Comparison
1= not_eq aeb Scalar Scalar 0,1 Comparison
Ila a Scalar 0,1 Logic
la not @a Scalar 0,1 Logic
&& || and or aeb Scalar Scalar 0,1 Logic
. atm struct Value Member
* @a Pointer Object Reference
[1 alb] Pointer Integer Object Member
-> atm struct Pointer Object Member
O a(b ...) | Function pointer Value Call
sizeof @ a None size_t Size, ICE
_Alignof alignof Q@(a) None size_t Alignment, ICE

TABLE 4.2. Object operators: the Form column gives the syntactic form
of the operation, where @ represents the operator, o denotes an object, and
a denotes a suitable additional value (if any) that serves as an operand.
An additional * in the Type column requires that the object o be address-

able.
l Operator [Nick [Form [Type [Result []
0 Array* Pointer | Array decay
0 Function Pointer | Function decay
0 Other Value Evaluation
= o@a Non-array Value Assignment
+= == %= /= o@a Arithmetic Value Arithmetic
= -= o@a Pointer Value Arithmetic
%= o@a Integer Value Arithmetic
t+ -- @ o@ | Arithmetic or pointer Value Arithmetic
&= and_eq o@a Integer Value Bit
= or_eq
A= xor_eq
<<= >>= o@a Integer Value Bit
. o@m struct Object | Member
[1 ofal | Array* Object | Member
& @o Any* Pointer | Address
sizeof @o Data Object, non-VLA | size_t | Size, ICE
sizeof @o VLA size_t | size
_Alignof alignof | @(o) Non-function size_t | Alignment, ICE

4. EXPRESSING COMPUTATIONS 31

TABLE 4.3. Type operators: these operators return an integer constant
(ICE) of type size_t. They have function-like syntax with the operands
in parentheses.

Operator | Nick Form Type of T

sizeof sizeof (T) Any Size

_Alignof | alignof _Alignof(T) Any Alignment
offsetof | offsetof(T,m) | struct Member offset

4.1.1. +, -, and * The arithmetic operators +, -, and * mostly work as we would
expect by computing the sum, the difference, and the product, respectively, of two values:

size_t a = 45;

size_t b = 7;

size_t ¢ = (a - b)x*2;
size_t d = a - bx*2;

Here, ¢ must be equal to 76, and d to 31. As you can see from this little example, sub-
expressions can be grouped together with parentheses to enforce a preferred binding of the
operator.

In addition, the operators + and - have unary variants. -b gives the negative of b: a
value a such thatb + ais @. +a simply provides the value of a. The following gives 76 as
well:

[
| size_t c = (+a + -b)*2;
L

Even though we use an unsigned type for our computation, negation and difference
by means of the operator - are well defined®. That is, regardless of the values we feed
into such a subtraction, our computation will always have a valid result. In fact, one of the
miraculous properties of size_t is that +-* arithmetic always works where it can. As long
as the final mathematical result is within the range [0, SIZE_MAX], then that result will be
the value of the expression.

Takeaway 1.4.1.1 Unsigned arithmetic is always well defined.

Takeaway 1.4.1.2 The operations +, -, and * on size_t provide the mathematically
correct result if it is representable as a size_t.

When the result is not in that range and thus is not representable® as a size_t value,
we speak of arithmetic overflow. Overflow can happen, for example, if we multiply two
values that are so large that their mathematical product is greater than SIZE_MAX. We’ll
look how C deals with overflow in the next section.

4.1.2. Division and remainder. The operators / and % are a bit more complicated,
because they correspond to integer division and the remainder operation. You might not
be as used to them as you are to the other three arithmetic operators. a/b evaluates to the
number of times b fits into a, and a%b is the remaining value once the maximum number
of b s are removed from a. The operators / and % come in pairs: if we have z = a / b,
the remainder a % b can be computed as a - z*b:

Takeaway 1.4.1.3 For unsigned values, a == (a/b)*b + (a%b).

A familiar example for the % operator is the hours on a clock. Say we have a 12-
hour clock: 6 hours after 8:00 is 2:00. Most people are able to compute time differences
on 12-hour or 24-hour clocks. This computation corresponds to a % 12: in our example,

32 1. ACQUAINTANCE

(8 +6) %12 == 2 Another similar use for % is computation using minutes in an
hour, of the form a % 60.

There is only one value that is not allowed for these two operations: @. Division by
zero is forbidden.

Takeaway 1.4.1.4 Unsigned / and % are well defined only if the second operand is not 0.

The % operator can also be used to explain additive and multiplicative arithmetic on
unsigned types a bit better. As already mentioned, when an unsigned type is given a value
outside its range, it is said to oveiﬂowc. In that case, the result is reduced as if the %
operator had been used. The resulting value “wraps around” the range of the type. In the
case of size_t, the range is @ to SIZE_MAX, and therefore

Takeaway 1.4.1.5 Arithmetic on size_t implicitly does the computation %(SIZE_MAX+1).

Takeaway 1.4.1.6 In the case of overflow, unsigned arithmetic wraps around.

This means for size_t values, SIZE_MAX + 1 is equal to @, and @ - 1 is equal to
SIZE_MAX.

This “wrapping around” is the magic that makes the - operators work for unsigned
types. For example, the value -1 interpreted as a size_t is equal to SIZE_MAX; so adding
-1 to a value a just evaluates to a + SIZE_MAX, which wraps around to

a + SIZE_MAX - (SIZE_MAX+1) = a - 1.

The operators / and % have the nice property that their results are always smaller than or
equal to their operands:

Takeaway 1.4.1.7 The result of unsigned / and % is always smaller than the operands.

And thus

Takeaway 1.4.1.8 Unsigned / and % can’t overflow.

4.2. Operators that modify objects. Another important operation that we have al-
ready seen is assignment: a = 42. As you can see from that example, this operator is
not symmetric: it has a value on the right and an object on the left. In a freaky abuse of
language, C jargon often refers to the right side as rvalue® (right value) and to the object
on the left as value® (left value). We will try to avoid that vocabulary whenever we can:
speaking of a value and an object is sufficient.

C has other assignment operators. For any binary operator @, the five we have seen all
have the syntax

[]
‘ an_object @= some_expression;
L |

They are just convenient abbreviations for combining the arithmetic operator @ and
assignment; see table[.2] A mostly equivalent form is

[|

\ an_object = (an_object @ (some_expression));

L |
In other words, there are operators +=, -=, *=, /=, and %=. For example, in a for loop,

the operator += can be used:

for (size_t i = 0; i < 25; i +=7) {

3

[Exs 8]Implement some computations using a 24-hour clock, such as 3 hours after 10:00 and 8 hours after 20:00.

4. EXPRESSING COMPUTATIONS 33

The syntax of these operators is a bit picky. You aren’t allowed to have blanks between
the different characters: for example, i + = 7 instead of i += 7 is a syntax error.

Takeaway 1.4.2.1 Operators must have all their characters directly attached to each
other.

We already have seen two other operators that modify objects: the increment operator®
++ and the decrement operator® --:
e ++iisequivalenttoi += 1.
e —-iisequivalenttoi -= 1.
All these assignment operators are real operators. They return a value (but not an
object!): the value of the object after the modification. You could, if you were crazy
enough, write something like

a = = c += ++d;

b
a = (b = (c += (++d))); // Same

But such combinations of modifications to several objects in one go is generally frowned
upon. Don’t do that unless you want to obfuscate your code. Such changes to objects that
are involved in an expression are referred to as side effectsC.

Takeaway 1.4.2.2 Side effects in value expressions are evil.

Takeaway 1.4.2.3 Never modify more than one object in a statement.

For the increment and decrement operators, there are even two other forms: postfix
increment® and postfix decrement® . They differ from the one we have seen, in the result
they provide to the surrounding expression. The prefix versions of these operators (++a
and --a) do the operation first and then return the result, much like the corresponding
assignment operators (a+=1 and a-=1); the postfix operations return the value before the
operation and perform the modification of the object thereafter. For any of them, the effect
on the variable is the same: the incremented or decremented value.

All this shows that evaluation of expressions with side effects may be difficult to fol-
low. Don’t do it.

4.3. Boolean context. Several operators yield a value @ or 1, depending on whether
some condition is verified; see table They can be grouped in two categories: compar-
isons and logical evaluation.

4.3.1. Comparison. In our examples, we already have seen the comparison opera-
tors ==, !=, <, and > Whereas the latter two perform strict comparisons between their
operands, the operators <= and >= perform “less than or equal” and “greater than or equal”
comparisons, respectively. All these operators can be used in control statements, as we
have already seen, but they are actually more powerful than that.

Takeaway 1.4.3.1 Comparison operators return the value false or true.

Remember that false and true are nothing more than fancy names for @ and 1, re-
spectively. So, they can be used in arithmetic or for array indexing. In the following code,
c will always be 1, and d will be 1 if a and b are equal and @ otherwise:

[]
| size_t ¢ = (a <b) + (a ==0b) + (a>bh);
| size_t d = (a <= b) + (a >= b) - 1;

L |

In the next example, the array element sign[false] will hold the number of values in
largeA that are greater than or equal to 1.0 and sign[true] those that are strictly less:

34 1. ACQUAINTANCE

double largeA[N] = { 0 };
/* Fill largeA somehow */

size_t sign[2] = { 0, 0 };

for (size_t i = @0; i < N; ++i) {
sign[(largeA[i] < 1.0)] += 1;

3

[false] [true]

sign| size_t size_t

Finally, there also is an identifier not_eq that may be used as a replacement for !=.
This feature is rarely used. It dates back to the times where some characters were not
properly present on all computer platforms. To be able to use it, you’d have to include the

<is0646.h> file is0646.h .

4.3.2. Logic. Logic operators operate on values that are already supposed to repre-
sent a false or true value. If they do not, the rules described for conditional execution
(Takeaway[I.3.1.1) apply first. The operator ! (not) logically negates its operand, operator
&& (and) is logical and, and operator || (or) is logical or. The results of these operators
are summarized in table £.4]

TABLE 4.4. Logical operators

a |nota a and b | false true a or b | false true
false | true false | false false false | false true
true | false true false true true true true

Similar to the comparison operators,

Takeaway 1.4.3.2 Logic operators return the value false or true.

Again, remember that these values are nothing more than @ and 1 and can thus be used
as indices:

double largeA[N] = { 0@ };
/* Fill largeA somehow */

size_t isset[2] = { 0, 0 };

for (size_t i = 0; i < N; ++i) {
isset[!!largeA[i]l] += 1;

}

Here, the expression ! ! largeA[i] applies the ! operator twice and thus just ensures that
largeA[i] is evaluated as a truth value (Takeaway [I.3.1.4). As a result, the array elements
isset[0] and isset[1] will hold the number of values that are equal to .0 and unequal,
respectively.

[false] [true]

isset size_t size_t

The operators && and | | have a particular property called short-circuit evaluation® .
This barbaric term denotes the fact that the evaluation of the second operand is omitted if
it is not necessary for the result of the operation:

| // This never divides by @.
|if (b != @ 8& ((a/b) > 1)) {

4. EXPRESSING COMPUTATIONS 35

| |

1} |

L |
Here, the evaluation of a/b is omitted conditionally during execution, and thereby a divi-
sion by zero can never occur. Equivalent code would be

if (b) {
// This never divides by @.
if (a/b > 1) {

++X;

3

}

4.4. The ternary or conditional operator. The fernary operator is similar to an if
statement, but it is an expression that returns the value of the chosen branch:

size_t size_min(size_t a, size_t b) {
return (a < b) ? a : b;

}

Similar to the operators && and ||, the second and third operand are evaluated only if
they are really needed. The macro sqrt from tgmath.h computes the square root of a <tgmath.h>
non-negative value. Calling it with a negative value raises a domain error®:

#include <tgmath.h>

#ifdef __STDC_NO_COMPLEX__
error "we_need_complex_arithmetic”
#endif

double complex sqrt_real (double x) {
return (x < @) ? CMPLX(@, sqrt(-x)) : CMPLX(sqrt(x), 0);
3

In this function, sqrt is called only once, and the argument to that call is never negative.
So, sgrt_real is always well behaved; no bad values are ever passed to sqrt.
Complex arithmetic and the tools used for it require the header complex.h, which is <complex.h>
indirectly included by tgmath.h. They will be introduced later, in section[5.7.7} <tgmath.h>
In the previous example, we also see conditional compilation that is achieved with
preprocessor directives® . The #ifdef construct ensures that we hit the #error condition
only if the macro __STDC_NO_COMPLEX__ isn’t defined.

4.5. Evaluation order. Of the operators so far, we have seen that &&, ||, and ?:
condition the evaluation of some of their operands. This implies in particular that for these
operators, there is an evaluation order for the operands: the first operand, since it is a
condition for the remaining ones, is always evaluated first:

Takeaway 1.4.5.1 &8, ||, ?:, and , evaluate their first operand first.

The comma (,) is the only operator we haven’t introduced yet. It evaluates its operands
in order, and the result is the value of the right operand. For example, (f(a), f(b)) first
evaluates f(a) and then f(b); the result is the value of f(b).Be aware that the comma
character plays other syntactical roles in C that do not use the same convention about
evaluation. For example, the commas that separate initializations do not have the same
properties as those that separate function arguments.

The comma operator is rarely useful in clean code, and it is a trap for beginners:
A[i, j]is not atwo-dimensional index for matrix A, but results in A[j].

Takeaway 1.4.5.2 Don’t use the , operator.

36 1. ACQUAINTANCE

Other operators don’t have an evaluation restriction. For example, in an expression
such as f(a)+g(b), there is no pre-established order specifying whether f(a) or g(b) is
to be computed first. If either the function f or g works with side effects (for instance, if
f modifies b behind the scenes), the outcome of the expression will depend on the chosen
order.

Takeaway 1.4.5.3 Most operators don’t sequence their operands.

That order may depend on your compiler, on the particular version of that compiler,
on compile-time options, or just on the code that surrounds the expression. Don’t rely on
any such particular sequencing: it will bite you.

The same holds for function arguments. In something like

[
‘printf(”%guandu%g\n”, f(a), f(b));

we wouldn’t know which of the last two arguments is evaluated first.

Takeaway 1.4.5.4 Function calls don’t sequence their argument expressions.

The only reliable way not to depend on evaluation ordering of arithmetic expressions
is to ban side effects:

Takeaway 1.4.5.5 Functions that are called inside expressions should not have side ef-
fects.

Summary

Arithmetic operators do math. They operate on values.

Assignment operators modify objects.

Comparison operators compare values and return @ or 1.

Function calls and most operators evaluate their operands in a nonspecific order.
Only &&, | |, and ?: impose an ordering on the evaluation of their operands.

SUMMARY 37

CHALLENGE 4 (Union-Find). The Union-Find problem deals with the representation of
partitions over a base set. We will identify the elements of the base set using the numbers
0,1, ... and will represent partitions with a forest data structure where each element knows
has a “parent” that is another element inside the same partition. Each set in such a
partition is identified by a designated element called the root of the set.

We want to perform two principal operations:

e A Find operation receives one element of the ground set and returns the root of
the corresponding set.
e A Unionpperation receives two elements and merges the two sets to which these
elements belong into one.
Can you implement a forest data structure in an index table of base type size_t called
parent? Here, a value in the table SIZE_MAX would mean a position represents a root of
one of the trees; another number represents position of the parent of the corresponding
tree. One of the important features to start the implementation is an initialization function
that makes parent the singleton partition: that is, the partition where each element is the
root of its own private set.
With this index table, can you implement a Find function that, for a given index, finds the
root of its tree?
Can you implement a FindReplace function that changes all parent entries on a path to
the root (including) to a specific value?
Can you implement a FindCompress function that changes all parent entries to the root
that has been found?
Can you implement a Union function that, for two given elements, combines their trees into
one? Use FindCompress for one side and FindReplace for the other.

“C also has a concept called a union, which we will see later, and which is completely different than the op-
eration we are currently talking about. Because union is a keyword, we use capital letters to name the operations
here.

38 1. ACQUAINTANCE

5. Basic values and data

This section covers

Understanding the abstract state machine
Working with types and values
Initializing variables

Using named constants

Binary representations of types

We will now change our focus from “how things are to be done” (statements and ex-
pressions) to the things on which C programs operate: values® and data®. A concrete
program at an instance in time has to represent values. Humans have a similar strategy:
nowadays we use a decimal presentation to write numbers on paper using the Hindu-Arabic
numeral system. But we have other systems to write numbers: for example, Roman nu-
merals (i, ii, iii, iv, and so on) or textual notation. To know that the word twelve denotes the
value 12 is a nontrivial step and reminds us that European languages denote numbers not
only in decimal but also in other systems. English and German mix with base 12, French
with bases 16 and 20. For non-native French speakers like myself, it may be difficult to
spontaneously associate quatre vingt quinze (four times twenty and fifteen) with the value
95.

Similarly, representations of values on a computer can vary “culturally” from archi-
tecture to architecture or are determined by the type the programmer gave to the value.
Therefore, we should try to reason primarily about values and not about representations if
we want to write portable code.

If you already have some experience in C and in manipulating bytes and bits, you
will need to make an effort to actively “forget” your knowledge for most of this section.
Thinking about concrete representations of values on your computer will inhibit you more
than it helps.

Takeaway 1.5.0.1 C programs primarily reason about values and not about their repre-
sentation.

The representation that a particular value has should in most cases not be your con-
cern; the compiler is there to organize the translation back and forth between values and
representations.

In this section, we will see how the different parts of this translation are supposed to
work. The ideal world in which you will usually “argue” in your program is C’s abstract
state machine (section[5.1). It gives a vision of the execution of your program that is mostly
independent of the platform on which the program runs. The components of the state of
this machine, the objects, all have a fixed interpretation (their fype) and a value that varies
in time. C’s basic types are described in subsection[5.2] followed by descriptions of how we
can express specific values for such basic types (subsection [5.3), how types are assembled
in expressions (subsection [5.4), how we can ensure that our objects initially have the de-
sired values (subsection @, how we can give names to recurrent values (subsection @,
and how such values are represented in the abstract state machine (subsection [5.7).

5.1. The abstract state machine. A C program can be seen as a sort of machine that
manipulates values: the particular values that variables of the program have at a given time,
and also intermediate values that are the result of computed expressions. Let us consider a
basic example:

5. BASIC VALUES AND DATA 39

double x = 5.
double y = 3

x = (x x 1.5) - y;
printf("x_is_\%g\n", x);

Here we have two variables, x and y, that have initial values 5.0 and 3. @, respectively. The
third line computes some expressions: a subexpression

[1
| x |
L |

that evaluates x and provides the value 5. 9;

(5.0 % 1.5) |

that results in the value 7.5;

Ly \

that evaluates y and provides the value 3.9;

7.5 - 3.0 |

that results in 4. 5;

that changes the value of x to 4.5;

[]
| x
L |

that evaluates x again, but that now provides the value 4.5; and

i printf("x_is_\%g\n", 4.5)
L |
that outputs a text line to the terminal.

Not all operations and their resulting values are observable from within your program.
They are observable only if they are stored in addressable memory or written to an output
device. In the example, to a certain extent, the printf statement “observes” what was done
on the previous line by evaluating the variable x and then writing a string representation
of that value to the terminal. But the other subexpressions and their results (such as the
multiplication and subtraction) are not observable as such, since we never define a variable
that is supposed to hold these values.

Your C compiler is allowed to shortcut any of the steps during a process called
optimization® only if it ensures the realization of the end results. Here, in our toy ex-
ample, there are basically two possibilities. The first is that variable x is not used later in
the program, and its acquired value is only relevant for our printf statement. In that case,
the only effect of our code snippet is the output to the terminal, and the compiler may well
(and will!) replace the whole snippet with the equivalent

i printf(”"x_is_4.5\n"); i
That is, it will do all the computations at compile time and, the executable that is produced
will just print a fixed string. All the remaining code and even the definitions of the variables
disappear.

The other possibility is that x might be used later. Then a decent compiler would either

do something like

40 1. ACQUAINTANCE

double x = 4.5;
printf(”"x_.is_4.5\n");

or maybe

printf(”"x_.is_4.5\n");
double x = 4.5;

because to use x at a later point, it is not relevant whether the assignment took place before
or after the printf.

For an optimization to be valid, it is only important that a C compiler produces an
executable that reproduces the observable states©. These consist of the contents of some
variables (and similar entities that we will see later) and the output as they evolve during
the execution of the program. This whole mechanism of change is called the abstract state
machine® .

To explain the abstract state machine, we first have to look into the concepts of a value
(what state are we in), the fype (what this state represents), and the representation (how
state is distinguished). As the term abstract suggests, C’s mechanism allows different
platforms to realize the abstract state machine of a given program differently according
to their needs and capacities. This permissiveness is one of the keys to C’s potential for
optimization.

5.1.1. Values. A value in C is an abstract entity that usually exists beyond your pro-
gram, the particular implementation of that program, and the representation of the value
during a particular run of the program. As an example, the value and concept of @ should
and will always have the same effects on all C platforms: adding that value to another value
x will again be x, and evaluating a value @ in a control expression will always trigger the
false branch of the control statement.

So far, most of our examples of values have been some kind of numbers. This is not
an accident, but relates to one of the major concepts of C.

Takeaway 1.5.1.1 All values are numbers or translate to numbers.

This property really concerns all values a C program is about, whether these are the
characters or text we print, truth values, measures that we take, or relations that we in-
vestigate. Think of these numbers as mathematical entities that are independent of your
program and its concrete realization.

The data of a program execution consists of all the assembled values of all objects at
a given moment. The state of the program execution is determined by:

The executable

The current point of execution

The data

Outside intervention, such as IO from the user

If we abstract from the last point, an executable that runs with the same data from the
same point of execution must give the same result. But since C programs should be portable
between systems, we want more than that. We don’t want the result of a computation to
depend on the executable (which is platform specific) but ideally to depend only on the
program specification itself. An important step to achieve this platform independence is
the concept of types©.

5.1.2. Types. A type is an additional property that C associates with values. Up to
now, we have seen several such types, most prominently size_t, but also double and
bool.

Takeaway 1.5.1.2 All values have a type that is statically determined.

5. BASIC VALUES AND DATA 41

Takeaway 1.5.1.3 Possible operations on a value are determined by its type.

Takeaway 1.5.1.4 A value’s type determines the results of all operations.

5.1.3. Binary representation and the abstract state machine. Unfortunately, the va-
riety of computer platforms is not such that the C standard can completely impose the
results of the operations on a given type. Things that are not completely specified as such
by the standard are, for example, how the sign of a signed type is represented the (sign
representation), and the precision to which a double floating-point operation is performed
(floating-point representation)ﬂ C only imposes properties on representations such that the
results of operations can be deduced a priori from two different sources:

e The values of the operands
e Some characteristic values that describe the particular platform

For example, the operations on the type size_t can be entirely determined when inspecting
the value of SIZE_MAX in addition to the operands. We call the model to represent values
of a given type on a given platform the binary representation® of the type.

Takeaway 1.5.1.5 A type’s binary representation determines the results of all opera-
tions.

Generally, all information we need to determine that model is within reach of any C
program: the C library headers provide the necessary information through named values
(such as SIZE_MAX), operators, and function calls.

Takeaway 1.5.1.6 A type’s binary representation is observable.

This binary representation is still a model and thus an abstract representation in the
sense that it doesn’t completely determine how values are stored in the memory of a com-
puter or on a disk or other persistent storage device. That representation is the object repre-
sentation. In contrast to the binary representation, the object representation usually is not
of much concern to us, as long as we don’t want to hack together values of objects in main
memory or have to communicate between computers that have different platform models.
Much later, in section[I2.1] we will see that we can even observe the object representation,
if such an object is stored in memory and we know its address.

As a consequence, all computation is fixed through the values, types, and their binary
representations that are specified in the program. The program text describes an abstract
state machine® that regulates how the program switches from one state to the next. These
transitions are determined by value, type, and binary representation only.

Takeaway 1.5.1.7 (as-if) Programs execute as if following the abstract state machine.

5.1.4. Optimization. How a concrete executable manages to follow the description of
the abstract state machine is left to the discretion of the compiler creators. Most mod-
ern C compilers produce code that doesn’t follow the exact code prescription: they cheat
wherever they can and only respect the observable states of the abstract state machine. For
example, a sequence of additions with constant values such as

X += 5;
/* Do something else without x in the meantime. */
X += 7;

9Other international standards are more restrictive about these representations. For example, the [POSIX
[2009]] standard enforces a particular sign representation, and [SO/IEC/IEEE 60559|[2011]] normalizes floating-
point representations.

42 1. ACQUAINTANCE

may in many cases be done as if it were specified as either

/* Do something without x. */
X += 12;

X += 12;
/* Do something without x. */

The compiler may perform such changes to the execution order as long as there will be no
observable difference in the result: for example, as long as we don’t print the intermediate
value of x and as long as we don’t use that intermediate value in another computation.

But such an optimization can also be forbidden because the compiler can’t prove that
a certain operation will not force program termination. In our example, much depends on
the type of x. If the current value of x could be close to the upper limit of the type, the
innocent-looking operation x += 7 may produce an overflow. Such overflows are handled
differently according to the type. As we have seen, overflow of an unsigned type is not a
problem, and the result of the condensed operation will always be consistent with the two
separate ones. For other types, such as signed integer types (signed) and floating-point
types (double), an overflow may raise an exception and terminate the program. In that
case, the optimization cannot be performed.

As we have already mentioned, this allowed slackness between program description
and abstract state machine is a very valuable feature, commonly referred to as optimization.
Combined with the relative simplicity of its language description, this is actually one of
the main features that allows C to outperform other programming languages that have a lot
more knobs and whistles. An important consequence of this discussion can be summarized
as follows:

Takeaway 1.5.1.8 Type determines optimization opportunities.

5.2. Basic types. C has a series of basic types and means of constructing derived
types® from them that we will describe later, in section

Mainly for historical reasons, the system of basic types is a bit complicated, and the
syntax to specify such types is not completely straightforward. There is a first level of
specification that is done entirely with keywords of the language, such as signed, int, and
double. This first level is mainly organized according to C internals. On top of that is
a second level of specification that comes through header files, and we have already seen
examples: size_t and bool. This second level is organized by type semantics, specifying
what properties a particular type brings to the programmer.

We will start with the first-level specification of such types. As we discussed earlier
(Takeaway [I.5.1.T), all basic values in C are numbers, but there are different kinds of num-
bers. As a principal distinction, we have two different classes of numbers, each with two
subclasses each: unsigned integersC, signed integersC, real floating-point numbers®
and complex floating-point numbers®. Each of these four classes contains several types.
They differ according to their precision® , which determines the valid range of values that
are allowed for a particular typeEG] Table contains an overview of the 18 base types.

As you can see from the table, there are six types that we can’t use directly for arith-
metic, the so-called narrow types. They are promoted® to one of the wider types before
they are considered in an arithmetic expression. Nowadays, on any realistic platform,
this promotion will be a signed int of the same value as the narrow type, regardless of
whether the narrow type was signed.

10The term precision is used here in a restricted sense as the C standard defines it. It is different from the
accuracy of a floating-point computation.

5. BASIC VALUES AND DATA 43

TABLE 5.1. Base types according to the four main type classes. Types
with a gray background don’t allow for arithmetic; they are promoted
before doing arithmetic. Type char is special since it can be unsigned or
signed, depending on the platform. A/l types in this table are considered
to be distinct types, even if they have the same class and precision.

Class Systematic name Other name Rank
_Bool bool 0
unsigned char 1
. unsigned short 2
Unsigned unsigned int unsigned 3
unsigned long 4
unsigned long long 5
Integers [Unlsigned char 1
signed char 1
signed short short 2
Signed signed int signed or int 3
signed long long 4
signed long long long long 5
float
Real double
. . long double
Floating point float _Complex float complex
Complex double _Complex double complex
long double _Complex long double complex

Takeaway 1.5.2.1 Before arithmetic, narrow integer types are promoted to signed int.

Observe that among the narrow integer types, we have two prominent members: char
and bool. The first is C’s type that handles printable characters for text, and the second
holds truth values, false and true. As we said earlier, for C, even these are just some sort
of numbers.

The 12 remaining, unpromoted, types split nicely into the four classes.

Takeaway 1.5.2.2 Each of the four classes of base types has three distinct unpromoted
types.

Contrary to what many people believe, the C standard doesn’t prescribe the preci-
sion of these 12 types: it only constrains them. They depend on a lot of factors that are
implementation defined® .

One of the things the standard does prescribe is that the possible ranges of values for
the signed types must include each other according to their rank:

short int |long|long long

But this inclusion does not need to be strict. For example, on many platforms, the set of
values of int and long are the same, although the types are considered to be different. An
analogous inclusion holds for the six unsigned types:

44 1. ACQUAINTANCE

unsigned unsigned . unsigned unsigned
char short unsigned long long long

But remember that for any arithmetic or comparison, the narrow unsigned types are pro-
moted to signed int and not to unsigned int, as this diagram might suggest.

The comparison of the ranges of signed and unsigned types is more difficult. Obvi-
ously, an unsigned type can never include the negative values of a signed type. For the
non-negative values, we have the following inclusion of the values of types with corre-
sponding rank:

Non-negative signed values | Unsigned values

That is, for a given rank, the non-negative values of the signed type fit into the unsigned
type. On any modern platform you encounter, this inclusion is strict: the unsigned type has
values that do not fit into the signed type. For example, a common pair of maximal values is
231 1 = 2147483647 for signed int and 232 — 1 = 4294 967 295 for unsigned int.

Because the interrelationship between integer types depends on the platform, choosing
the “best” type for a given purpose in a portable way can be a tedious task. Luckily, we
can get some help from the compiler implementation, which provides us with typedef s
such as size_t that represent certain features.

Takeaway 1.5.2.3 Use size_t for sizes, cardinalities, or ordinal numbers.

Remember that unsigned types are the most convenient types, since they are the only
types that have an arithmetic that is defined consistently with mathematical properties: the
modulo operation. They can’t raise signals on overflow and can be optimized best. They
are described in more detail in subsection[3.7.11

Takeaway 1.5.2.4 Use unsigned for small quantities that can’t be negative.

If your program really needs values that may both be positive and negative but don’t
have fractions, use a signed type (see subsection[5.7.5).

Takeaway 1.5.2.5 Use signed for small quantities that bear a sign.

Takeaway 1.5.2.6 Use ptrdiff_t for large differences that bear a sign.

If you want to do fractional computation with a value such as 0.5 or 3.77189E+89,
use floating-point types (see subsection[5.7.7).

Takeaway 1.5.2.7 Use double for floating-point calculations.

Takeaway 1.5.2.8 Use double complex for complex calculations.

The C standard defines a lot of other types, among them other arithmetic types that
model special use cases. Table [5.2] list some of them. The second pair represents the
types with maximal width that the platform supports. This is also the type in which the
preprocessor does any of its arithmetic or comparison.

The two types time_t and clock_t are used to handle times. They are semantic
types, because the precision of the time computation can be different from platform to
platform. The way to have a time in seconds that can be used in arithmetic is the function
difftime: it computes the difference of two timestamps. clock_t values present the
platform’s model of processor clock cycles, so the unit of time is usually much less than a
second; CLOCKS_PER_SEC can be used to convert such values to seconds.

5. BASIC VALUES AND DATA 45

TABLE 5.2. Some semantic arithmetic types for specialized use cases

Type Header Context of definition Meaning

size_t stddef.h type for “sizes” and cardi-
nalities

ptrdiff_t | stddef.h type for size differences

uintmax_t | stdint.h maximum width unsigned
integer, preprocessor

intmax_t | stdint.h maximum width signed inte-
ger, preprocessor

time_t time.h time(0), difftime(t1, t@) | calendar time in seconds
since epoch

clock_t time.h clock() processor time

5.3. Specifying values. We have already seen several ways in which numerical con-
stants (literals“') can be specified:

123 Decimal integer constant® . The most natural choice for most of us.

077 Octal integer constant® . This is specified by a sequence of digits, the first be-
ing @ and the following between @ and 7. For example, @77 has the value 63.
This type of specification merely has historical value and is rarely used nowa-
days.Only one octal literal is commonly used: @ itself.

OXFFFF Hexadecimal integer constant® . This is specified by starting with @x followed
by a sequence of digits between @, ..., 9 and a ... f. For example, 0xbeaf has
the value 48815. The a .. f and x can also be written in capitals, @XBEAF.

1.7€-13 Decimal floating-point constants® . Quite familiar as the version that has a dec-
imal point. But there is also the “scientific” notation with an exponent. In the
general form, mEe is interpreted as m - 10°.
ox1.7aP-13 Hexadecimal floating-point constants® . Usually used to describe floating-point
values in a form that makes it easy to specify values that have exact representa-
tions. The general form @XhPe is interpreted as h - 2¢. Here, h is specified as an
hexadecimal fraction. The exponent e is still specified as a decimal number.

'a’ Integer character constant®. These are characters put between ’ apostrophes,
such as “a’ or ’?’. These have values that are only implicitly fixed by the C
standard. For example, ’a’ corresponds to the integer code for the character a
of the Latin alphabet.

Among character constants, the \ character has a special meaning. For ex-
ample, we already have seen ’\n’ for the newline character.
"hello"” String literals®. They specify text, such as that needed for the printf and puts
functions. Again, the \ character is special, as with character constants

All but the last are numerical constants: they specify numbersE] String literals are
an exception and can be used to specify text that is known at compile time. Integrating
larger text into our code could be tedious, if we weren’t allowed to split string literals into
chunks:

iputs(“Firstuline\n“ i
‘ "another_line\n"
\ "first_and."

1 used in the context of the printf function, another character also becomes “special”: the % character. If
you want to print a literal % with printf, you have to duplicate it.
12You may have observed that complex numbers are not included in this list. We will see how to specify them

in subsection@

46 1. ACQUAINTANCE

\ "second_part_of_the_third_line");

Takeaway 1.5.3.1 Consecutive string literals are concatenated.

The rules for numbers are a little bit more complicated.

Takeaway 1.5.3.2 Numerical literals are never negative.

That is, if we write something like -34 or -1.5E-23, the leading sign is not considered
part of the number but is the negation operator applied to the number that comes after it.
We will see shortly where this is important. Bizarre as this may sound, the minus sign in
the exponent is considered to be part of a floating-point literal.

We have already seen (Takeaway [.5.1.2)) that all literals must have not only a value
but also a type. Don’t mix up the fact of a constant having a positive value with its type,
which can be signed.

Takeaway 1.5.3.3 Decimal integer constants are signed.

This is an important feature: we’d probably expect the expression -1 to be a signed,
negative value.
To determine the exact type for integer literals, we always have a first fit rule.

Takeaway 1.5.3.4 A decimal integer constant has the first of the three signed types that

fits it.

This rule can have surprising effects. Suppose that on a platform, the minimal signed
value is —2!% = —32768 and the maximum value is 2'° — 1 = 32767. The constant 32768
then doesn’t fit into signed and is thus signed long. As a consequence, the expression
-32768 has type signed long. Thus the minimal value of the type signed on such a
platform cannot be written as a literal constant

Takeaway 1.5.3.5 The same value can have different types.

Deducing the type of an octal or hexadecimal constant is a bit more complicated.
These can also be of an unsigned type if the value doesn’t fit for a signed type. In the
earlier example, the hexadecimal constant @x7FFF has the value 32767 and thus is type
signed. Other than for the decimal constant, the constant 0x8000 (value 32768 written in
hexadecimal) then is an unsigned, and expression -0x8000 again is unsigned

Takeaway 1.5.3.6 Don’t use octal or hexadecimal constants to express negative values.

As a consequence, there is only one choice left for negative values.

Takeaway 1.5.3.7 Use decimal constants to express negative values.

Integer constants can be forced to be unsigned or to be a type with minimal width.
This done by appending U, L, or LL to the literal. For example, 1U has value 1 and type
unsigned, 1L is signed long, and TULL has the same value 1 but type unsigned long long
Note, that we are representing C constants such as 1ULL in type-writer font and distinguish
them from their mathematical value 1 which is in normal font.

[Exs 131Show that if the minimal and maximal values for signed long long have similar properties, the smallest
integer value for the platform can’t be written as a combination of one literal with a minus sign.

(Exs 14]Show that if the maximum unsigned is 216 _ 1, then -0x8000 has value 32768, too.

[Exs I51Show that the expressions -1U, -1UL, and -TULL have the maximum values and type as the three non-

promoted unsigned types, respectively.

5. BASIC VALUES AND DATA 47

TABLE 5.3. Examples for constants and their types, under the supposi-
tion that signed and unsigned have the commonly used representation

with 32 bits
Constant = Value | Type Value of —x
2147483647 | +2147483647 | signed —2147483647
2147483648 | 42147483648 | signed long | —2147483648
4294967295 | +4294967295 | signed long | —4294967295
OxX7FFFFFFF | 42147483647 | signed —2147483647
0x80000000 | +2147483648 | unsigned 42147483648
OxFFFFFFFF | +4294967295 | unsigned +1
1 +1 | signed -1
1U +1 | unsigned 44294967295

A common error is to try to assign a hexadecimal constant to a signed with the ex-
pectation that it will represent a negative value. Consider a declaration such as int x =
OxFFFFFFFF. This is done under the assumption that the hexadecimal value has the same
binary representation as the signed value —1. On most architectures with 32-bit signed,
this will be true (but not on all of them); but then nothing guarantees that the effective value
+4294967295 is converted to the value —1. Table [5.3 has some examples of interesting
constants, their values and their types.

Remember that value 0 is important. It is so important that it has a lot of equivalent
spellings: @, 0x0, and *\@’ are all the same value, a @ of type signed int. 0 has no
decimal integer spelling: 0.9 is a decimal spelling for the value 0 but is seen as a floating-
point value with type double.

Takeaway 1.5.3.8 Different literals can have the same value.

For integers, this rule looks almost trivial, but for floating-point constants it is less
obvious. Floating-point values are only an approximation of the value they present literally,
because binary digits of the fractional part may be truncated or rounded.

Takeaway 1.5.3.9 The effective value of a decimal floating-point constant may be dif-
ferent from its literal value.

For example, on my machine, the constant @. 2 has the value 0.2000000000000000111,
and as a consequence the constants 0.2 and 0.2000000000000000111 have the same
value.

Hexadecimal floating-point constants have been designed because they better corre-
spond to binary representations of floating-point values. In fact, on most modern architec-
tures, such a constant (that does not have too many digits) will exactly correspond to the lit-
eral value. Unfortunately, these beasts are almost unreadable for mere humans. For exam-
ple, consider the two constants @x1.99999AP-3 and @xC.CCCCCCCCCCCCCCDP-6. The first
corresponds to 1.60000002384 273 and the second to 12.8000000000000000002 % 2~6;
thus, expressed as decimal floating points, their values are approximatively 0.20000000298
and 0.200000000000000000003, respectively. So the two constants have values that are
very close to each other, whereas their representation as hexadecimal floating-point con-
stants seems to put them far apart.

Finally, floating-point constants can be followed by the letter f or F to denote a float
or by 1 or L to denote a long double. Otherwise, they are of type double. Be aware that
different types of constants generally lead to different values for the same literal. Here is a
typical example:

<complex.h>
<tgmath.h>

48 1. ACQUAINTANCE

float double long double
literal 0.2F 0.2 0.2L
value | @x1.99999AP-3F | 0x1.999999999999AP-3 | @xC.CCCCCCCCCCCCCCDP-6L

Takeaway 1.5.3.10 Literals have value, type, and binary representations.

5.3.1. Complex constants. Complex types are not necessarily supported by all C plat-
forms. This fact can be checked by inspecting __STDC_NO_COMPLEX__. To have full
support of complex types, the header complex. h should be included. If you use tgmath.h
for mathematical functions, this is already done implicitly.

Unfortunately, C provides no literals to specify constants of a complex type. It only
has several macroﬂ that may ease the manipulation of these types.

The first possibility to specify complex values is the macro CMPLX, which comprises
two floating-point values, the real and imaginary parts, in one complex value. For example,
CMPLX(@.5, @.5) isadouble complex value with the real and imaginary part of one-half.
Analogously, there are CMPLXF for float complex and CMPLXL for long double complex.

Another, more convenient, possibility is provided by the macro I, which represents
a constant value of type float complex such that I*I has the value —1. One-character
macro names in uppercase are often used in programs for numbers that are fixed for the
whole program. By itself, it is not a brilliant idea (the supply of one-character names is
limited), but you should definitely leave I alone.

Takeaway 1.5.3.11 I is reserved for the imaginary unit.

I can be used to specify constants of complex types similar to the usual mathe-
matical notation. For example, .5 + 0.5%xI would be of type double complex and
0.5F + 0.5F*I of float complex. The compiler implicitly converts® the result to the
wider of the types if we mix, for example, float and double constants for real and imag-
inary parts.

CHALLENGE 5 (complex numbers). Can you extend the derivative (Challenge [2) to the
complex domain: that is, functions that receive and return double complex values?

5.4. Implicit conversions. As we have seen in the examples, the type of an operand
has an influence on the type of an operator expression such as -1 or -1U: whereas the first is
a signed int, the second is an unsigned int. The latter might be particularly surprising
for beginners, because an unsigned int has no negative values and so the value of -1U is
a large positive integer.

Takeaway 1.5.4.1 Unary - and + have the type of their promoted argument.

So, these operators are examples where the type usually does not change. In cases
where they do change, we have to rely on C’s strategy to do implicit conversions: that is,
to move a value with a specific type to one that has another, desired, type. Consider the
following examples, again under the assumption that —2147483648 and 2147483647 are
the minimal and maximal values of a signed int, respectively:

16we will only see in subsection what macros really are. For now, just take them as names to which the

compiler has associated some specific property.

5. BASIC VALUES AND DATA 49

double a = 1; // Harmless; value fits type

signed short b = -1; // Harmless; value fits type

signed int cC = 0x80000000; // Dangerous; value too big for type
signed int d = -0x80000000; // Dangerous; value too big for type
signed int e = -2147483648; // Harmless; value fits type
unsigned short g = 0x80000000; // Loses information; has value @

Here, the initializations of a and b are harmless. The respective values are well in the
range of the desired types, so the C compiler can convert them silently.

The next two conversions for ¢ and d are problematic. As we have seen, 9x80000000
is of type unsigned int and does not fit into a signed int. So c receives a value that
is implementation-defined, and we have to know what our platform has decided to do in
such cases. It could just reuse the bit pattern of the value on the right or terminate the
program. As for all implementation-defined features, which solution is chosen should be
documented by your platform, but be aware that this can change with new versions of your
compiler or may be switched by compiler arguments.

For the case of d, the situation is even more complicated: @x80000000 has the value
2147483648, and we might expect that -0x80000000 is just —2147483648. But since
effectively -0x80000000 is again 2147483648, the same problem arises as for c

Then, e is harmless, again. This is because we used a negated decimal literal -2147483648,
which has type signed long and whose value effectively is —2147483648 (shown earlier).
Since this value fits into a signed int, the conversion can be done with no problem.

The last example for g is ambiguous in its consequences. A value that is too large for
an unsigned type is converted according to the modulus. Here in particular, if we assume
that the maximum value for unsigned short is 2!6 — 1, the resulting value is 0. Whether
or not such a “narrowing” conversion is the desired outcome is often difficult to tell.

Takeaway 1.5.4.2 Avoid narrowing conversions.

Takeaway 1.5.4.3 Don’t use narrow types in arithmetic.

The type rules become even more complicated for operators such as addition and
multiplication that have two operands, because these then may have different types. Here
are some examples of operations that involve floating-point types:

1 + ©.0 // Harmless; double

1 + I // Harmless; complex float

INT_MAX + @0.0F // May lose precision; float

INT_MAX + I // May lose precision; complex float
INT_MAX + 0.0 // Usually harmless; double

Here, the first two examples are harmless: the value of the integer constant 1 fits well into
the type double or complex float. In fact, for most such mixed operations, whenever the
range of one type fits into the range of the other, the result has the type of the wider range.

The next two are problematic because INT_MAX, the maximal value for signed int,
usually will not fitinto a float or complex float. For example, on my machine, INT_MAX +
0.0F is the same as INT_MAX + 1.0F and has the value 2147483648. The last line shows
that for an operation with double, this would work fine on most platforms. Neverthe-
less, on an existing or future platform where int is 64 bit, an analogous problem with the
precision could occur.

Because there is no strict inclusion of value ranges for integer types, deducing the type
of an operation that mixes signed and unsigned values can be nasty:

[Exs 17lUnder the assumption that the maximum value for unsigned int is OxFFFFFFFF, prove that

-0x80000000 == 0x830000000.

50 1. ACQUAINTANCE

-1 < 0 // True, harmless, same signedness

-1L < o // True, harmless, same signedness

-1U < QU // False, harmless, same signedness

-1 < QU // False, dangerous, mixed signedness

-1U < 0 // False, dangerous, mixed signedness

-1L < QU // Depends, dangerous, same or mixed signedness
-1LL < @UL // Depends, dangerous, same or mixed signedness

The first three comparisons are harmless, because even if they mix operands of different
types, they do not mix signedness. Since for these cases the ranges of possible values
nicely contain each other, C simply converts the other type to the wider one and does the
comparison there.

The next two cases are unambiguous, but perhaps not what a naive programmer would
expect. In fact, for both, all operands are converted to unsigned int. Thus both negated
values are converted to large unsigned values, and the result of the comparison is false.

The last two comparisons are even more problematic. On platforms where UINT_MAX <
LONG_MAX, QU is converted to @L, and thus the first result is true. On other platforms with
LONG_MAX < UINT_MAX, -1L is converted to -1U (that is, UINT_MAX), and thus the first
comparison is false. Analogous observations hold for the second comparison of the last
two, but be aware that there is a good chance the outcome of the two is not the same.

Examples like the last two comparisons can give rise to endless debates in favor of
or against signed or unsigned types, respectively. But they show only one thing: that the
semantics of mixing signed and unsigned operands is not always clear. There are cases
where either possible choice of an implicit conversion is problematic.

Takeaway 1.5.4.4 Avoid operations with operands of different signedness.
Takeaway 1.5.4.5 Use unsigned types whenever you can.

Takeaway 1.5.4.6 Chose your arithmetic types such that implicit conversions are harm-
less.

5.5. Initializers. We have seen (subsection [2.3) that the initializer is an important
part of an object definition. Initializers help us to guarantee that a program execution is
always in a defined state: that whenever we access an object, it has a well-known value
that determines the state of the abstract machine.

Takeaway 1.5.5.1 All variables should be initialized.

There are only few exception to that rule: variable-length arrays (VLA); see subsec-
tion [6.1.3] which don’t allow for an initializer, and code that must be highly optimized.
The latter mainly occurs in situations that use pointers, so this is not yet relevant to us.
For most code that we are able to write so far, a modern compiler will be able to trace the
origin of a value to its last assignment or its initialization. Superfluous initializations or
assignments will simply be optimized out.

For scalar types such as integers and floating points, an initializer just contains an
expression that can be converted to that type. We have seen a lot of examples of that.
Optionally, such an initializer expression may be surrounded with {}. Here are some
examples:

double
double
double
double

o 0 T o
1

[Nan i NS IEN
®\l>(-;:0

5. BASIC VALUES AND DATA 51

Initializers for other types must have these {}. For example, array initializers contain
initializers for the different elements, each of which is followed by a comma:

double A[]l = { 7.8, };
double B[3] = { 2 * A[el, 7, 33, };
double C[1 = { [@]1 =6, [3]1 =1, };

[o]
A double 7.8

[l 1 [21
B double 15.6 double 7.0 double 33.0

[0l [1] [2] [31
C double 6.0 double 0.0 double 0.0 double 1.0

As we have seen, arrays that have an incomplete type© because there is no length speci-
fication are completed by the initializer to fully specify the length. Here, A has only one
element, whereas C has four. For the first two initializers, the element to which the scalar
initialization applies is deduced from the position of the scalar in the list: for example,
B[1] is initialized to 7. Designated initializers as for C are by far preferable, since they
make the code more robust against small changes in declarations.

Takeaway 1.5.5.2 Use designated initializers for all aggregate data types.

If you don’t know how to initialize a variable of type T, the default initializer“T a =
{0} will almost{:g] always do.

Takeaway 1.5.5.3 {03} is a valid initializer for all object types that are not VLA.

Several things ensure that this works. First, if we omit the designation (the . membername
for struct [see subsection[6.3]| or [n] for arrays [see section[6.])) initialization is just done
in declaration order® : that is, the 0 in the default initializer designates the very first mem-
ber that is declared, and all other members are then initialized by default to @ as well. Then,
the {3 form of initializers for scalars ensures that { @ } is also valid for them.

Maybe your compiler warns you about this: annoyingly, some compiler implementers
don’t know about this special rule. It is explicitly designed as a catch-all initializer in the
C standard, so this is one of the rare cases where I would switch off a compiler warning.

In initializers, we often have to specify values that have a particular meaning for the
program.

5.6. Named constants. A common issue even in small programs is that they use
special values for some purposes that are textually repeated all over. If for one reason or
another this value changes, the program falls apart. Take an artificial setting as an example
where we have arrays of stringsE;] on which we would like to perform some operations:

ichar const*const bird[3] = {

‘ "raven", ‘
| "magpie”, ‘
| "jay", ‘
¥ |

18The exceptions are variable-length arrays; see subsection
19This uses a pointer, type char constx*const, to refer to strings. We will see later how this particular
technique works.

52 1. ACQUAINTANCE

char constxconst pronoun[3] = {

n n

we",
"you",
"they",
i
char constxconst ordinal[3]
"first",
"second",
"third",
3

"
-~

for (unsigned i = 0; i < 3; ++i)
printf("Corvid_%u_is_the_%s\n", i, bird[i]);

for (unsigned i = 0; i < 3; ++i)
printf("%s_plural_pronoun_is_%s\n", ordinal[il], pronoun[i]);

Here we use the constant 3 in several places, and with three different “meanings” that
are not very correlated. For example, an addition to our set of corvids would require two
separate code changes. In a real setting, there might be many more places in the code
that depend on this particular value, and in a large code base this can be very tedious to
maintain.

Takeaway 1.5.6.1 All constants with a particular meaning must be named.

It is equally important to distinguish constants that are equal, but for which equality is
just a coincidence.

Takeaway 1.5.6.2 All constants with different meanings must be distinguished.

C has surprisingly little means to specify named constants, and its terminology even
causes a lot of confusion about which constructs effectively lead to compile-time constants.
So we first have to get the terminology straight (subsection [5.6.T) before we look into the
only proper named constants that C provides: enumeration constants (subsection [5.6.2).
The latter will help us to replace the different versions of 3 in our example with something
more explanatory. A second, generic, mechanism complements this feature with simple
text replacement: macros (subsection [5.6.3). Macros only lead to compile-time constants
if their replacements are composed of literals of base types, as we have seen. If we want to
provide something close to the concept of constants for more-complicated data types, we
have to provide them as temporary objects (subsection[5.6.4).

5.6.1. Read-only objects. Don’t confuse the term constant, which has a very specific
meaning in C, with objects that can’t be modified. For example, in the previous code,
bird, pronoun, and ordinal are not constants according to our terminology; they are
const-qualified objects. This qualifier® specifies that we don’t have the right to change
this object. For bird, neither the array entries nor the actual strings can be modified, and
your compiler should give you a diagnostic if you try to do so:

Takeaway 1.5.6.3 An object of const-qualified type is read-only.

That doesn’t mean the compiler or run-time system may not perhaps change the value
of such an object: other parts of the program may see that object without the qualification
and change it. The fact that you cannot write the summary of your bank account directly
(but only read it) doesn’t mean it will remain constant over time.

There is another family of read-only objects that unfortunately are not protected by
their type from being modified: string literals.

Takeaway 1.5.6.4 String literals are read-only.

5. BASIC VALUES AND DATA 53

If introduced today, the type of string literals would certainly be char const[], an
array of const-qualified characters. Unfortunately, the const keyword was introduced to
the C language much later than string literals, and therefore it remained as it is for backward
compatibilityE’]

Arrays such as bird also use another technique to handle string literals. They use a
pointer® type, char constxconst, to “refer” to a string literal. A visualization of such an
array looks like this:

[el (11 [2]
bird char const*const char const*const char const*const

1 1

Hravenn nmagpieu njayn

That is, the string literals themselves are not stored inside the array bird but in some
other place, and bird only refers to those places. We will see much later, in subsections[6.2]
and[TT] how this mechanism works.

5.6.2. Enumerations. C has a simple mechanism to name small integers as we needed
them in the example, called enumerations® :

enum corvid { magpie, raven, jay, corvid_num, };

char const*const bird[corvid_num] = {
[raven] = "raven",
[magpie]l = "magpie”,
[jayl = "jay",

B3

for (unsigned i = @; i < corvid_num; ++i)
printf(”"Corvid_%u_is_the_%s\n", i, bird[il);

This declares a new integer type enum corvid for which we know four different val-
ues.

Takeaway 1.5.6.5 Enumeration constants have either an explicit or a positional value.

As you might have guessed, positional values start from @ onward, so in our example
we have raven with value 0, magpie with 1, jay with 2, and corvid_num with 3. This last
3 is obviously the 3 we are interested in.

[magpie] [raven] [jay]
bird char constx*const char const*const char const*const

\ 1 1

"magpie" nravenn "jay"

Notice that this uses a different order for the array entries than before, and this is one
of the advantages of the approach with enumerations: we do not have to manually track
the order we used in the array. The ordering that is fixed in the enumeration type does that
automatically.

Now, if we want to add another corvid, we just put it in the list, anywhere before
corvid_num:

LISTING 5.1. An enumeratin type and related array of strings

\Fenum corvid { magpie, raven, jay, chough, corvid_num, 3}; j\
' char constxconst bird[corvid_num] = { \
| [choughl = "chough”, \
| [raven]l = "raven”, \
| [magpiel = "magpie”, ‘

204 third class of read-only objects exist: temporary objects. We will see them later, in subsection|13.2.2)

54 1. ACQUAINTANCE

} [jay] = "jay", \
b

As for most other narrow types, there is not really much interest in declaring variables
of an enumeration type; for indexing and arithmetic, they would be converted to a wider
integer, anyhow. Even the enumeration constants themselves aren’t of the enumeration

type:
Takeaway 1.5.6.6 Enumeration constants are of type signed int.
So the interest really lies in the constants, not in the newly created type. We can thus

name any signed int constant that we need, without even providing a tag® for the type
name:

[|
\ enum { p@ = 1, pl = 2%p0@, p2 = 2%pl, p3 = 2xp2, };
L |

To define these constants, we can use integer constant expressionsc (ICE). Such an
ICE provides a compile-time integer value and is much restricted. Not only must its value
be determinable at compile time (no function call allowed), but also no evaluation of an
object must participate as an operand to the value:

signed const o042 = 42;

enum {
b42 42, // Ok: 42 is a literal.
cb2 = 042 + 10, // Error: 042 is an object.
b52 = b42 + 10, // Ok: b42 is not an object.

b8

Here, 042 is an object, const-qualified but still, so the expression for c52 is not an
“integer constant expression.”

Takeaway 1.5.6.7 An integer constant expression doesn’t evaluate any object.

So, principally, an ICE may consist of any operations with integer literals, enumer-
ation constants, _Alignof and offsetof subexpressions, and eventually some sizeof
subexpressions

Still, even when the value is an ICE, to be able to use it to define an enumeration
constant, you have to ensure that the value fits into a signed.

5.6.3. Macros. Unfortunately, there is no other mechanism to declare constants of
other types than signed int in the strict sense of the C language. Instead, C proposes
another powerful mechanism that introduces textual replacement of the program code:
macros© . A macro is introduced by a preprocessor® #define:

T
‘# define M_PI 3.14159265358979323846
L

This macro definition has the effect that the identifier M_PI is replaced in the following
program code by the double constant. Such a macro definition consists of five different
parts:

(1) A starting # character that must be the first non-blank character on the line
(2) The keyword define

(3) An identifier that is to be declared, here M_PI

(4) The replacement text, here 3.14159265358979323846

(5) A terminating newline character

2lWe will handle the latter two concepts in subsections and

5. BASIC VALUES AND DATA 55

With this trick, we can declare textual replacement for constants of unsigned, size_t, and
double. In fact, the implementation-imposed bound of size_t, SIZE_MAX, is defined, as
well as many of the other system features we have already seen: EXIT_SUCCESS, false,
true, not_eq, bool, complex ...Here, in this book, such C standard macros are all printed
in dark red.

The spelling of these examples from the C standard is not representative for the con-
ventions that are generally used in a large majority of software projects. Most of them have
quite restrictive rules such that macros visually stick out from their surroundings.

Takeaway 1.5.6.8 Macro names are in all caps.

Only deviate from that rule if you have good reasons, in particular not before you
reach level Bl

5.6.4. Compound literals. For types that don’t have literals that describe their con-
stants, things get even more complicated. We have to use compound literals® on the
replacement side of the macro. Such a compound literal has the form

i (T){ INIT }

That is, a type, in parentheses, followed by an initializer. Here’s an example:

define CORVID_NAME /*xx/ \
(char const*const[corvid_num]){ \
[chough] = "chough", \
[raven] = "raven", \
[magpie] = "magpie”, \
[jayl = "jay", \

}

With that, we could leave out the bird array and rewrite our for loop:

for (unsigned i = @; i < corvid_num; ++i)
printf(”"Corvid_%u_is_the_%s\n", i, CORVID_NAME[i]);

Whereas compound literals in macro definitions can help us to declare something that
behaves similarly to a constant of a chosen type, it isn’t a constant in the narrow sense of
C.

Takeaway 1.5.6.9 A compound literal defines an object.

Overall, this form of macro has some pitfalls:

e Compound literals aren’t suitable for ICE.

e For our purpose here ,to declare named constants, the type T should be const-
qualified® . This ensures that the optimizer has a bit more slack to generate good
binary code for such a macro replacement.

e There must be space between the macro name and the () of the compound literal,
here indicated by the /**/ comment. Otherwise, this would be interpreted as the
start of a definition of a function-like macro. We will see these much later.

e A backspace character \ at the very end of the line can be used to continue the
macro definition to the next line.

e There must be no ; at the end of the macro definition. Remember, it is all just
text replacement.

Takeaway 1.5.6.10 Don’t hide a terminating semicolon inside a macro.
Also, for readability of macros, please pity the poor occasional reader of your code:
Takeaway 1.5.6.11 Right-indent continuation markers for macros to the same column.

As you can see in the example, this helps to visualize the entire spread of the macro
definition easily.

<limits.h>
<stdint.h>

56 1. ACQUAINTANCE

5.7. Binary representions. The binary representation of a type is a model that de-
scribes the possible values for that type. It is not the same as the in-memory object repre-
sentation that describes the more or less physical storage of values of a given type.

Takeaway 1.5.7.1 The same value may have different binary representations.

5.7.1. Unsigned integers. We have seen that unsigned integer types are those arith-
metic types for which the standard arithmetic operations have a nice, closed mathematical
description. They are closed under arithmetic operations:

Takeaway 1.5.7.2 Unsigned arithmetic wraps nicely.

In mathematical terms, they implement a ring, Zy, the set of integers modulo some
number N. The values that are representable are 0,..., N — 1. The maximum value
N — 1 completely determines such an unsigned integer type and is made available through
a macro with terminating _MAX in the name. For the basic unsigned integer types, these are
UINT_MAX, ULONG_MAX, and ULLONG_MAX , and they are provided through 1imits.h. As we
have seen, the one for size_t is SIZE_MAX from stdint.h.

The binary representation for non-negative integer values is always exactly what the
term indicates: such a number is represented by binary digits bg, b1, . .., b,—1 called bits© .
Each of the bits has a value of 0 or 1. The value of such a number is computed as

p—1
(1) S b2,
=0

The value p in that binary representation is called the precision® of the underlying
type. Bit by is called the least-significant bit“, and LSB, b,_1 is the most-significant bit®
(MSB).

Of the bits b; that are 1, the one with minimal index ¢ is called the least-significant
bit set®, and the one with the highest index is the most-significant bit set® . For example,
for an unsigned type with p = 16, the value 240 would have by = 1, b5 = 1, bg = 1, and
b7 = 1. All other bits of the binary representation are 0, the least-significant bit set ¢ is by,
and the most-significant bit set is b7. From (), we see immediately that 2? is the first value
that cannot be represented with the type. Thus N = 27 and

Takeaway 1.5.7.3 The maximum value of any integer type is of the form 2P — 1.

Observe that for this discussion of the representation of non-negative values, we haven’t
argued about the signedness of the type. These rules apply equally to signed and unsigned
types. Only for unsigned types, we are lucky, and what we have said so far completely
suffices to describe such an unsigned type.

Takeaway 1.5.7.4 Arithmetic on an unsigned integer type is determined by its precision.

Finally, table[5.4]shows the bounds of some of the commonly used scalars throughout
this book.

5.7.2. Bit sets and bitwise operators. This simple binary representation of unsigned
types allows us to use them for another purpose that is not directly related to arithmetic: as
bit sets. A bit set is a different interpretation of an unsigned value, where we assume that
it represents a subset of the base set V' = {0,...,p — 1} and where we take element i to
be member of the set, if the bit b; is present.

There are three binary operators that operate on bit sets: |, & and *. They represent
the set union A U B, set intersection AN B, and symmetric difference AAB, respectively.
For an example, let us choose A = 240, representing {4,5,6, 7}, and B = 287, the bit

5. BASIC VALUES AND DATA

TABLE 5.4. Bounds for scalar types used in this book

Name [min, max] Where Typical

size_t [0, SIZE_MAX] <stdint.h> [0, 2% — 1], w = 32,64
double [4-DBL_MIN, £-DBL_MAX] <float.h> [+£2-% =2, +2%] w = 1024
signed [INT_MIN, INT_MAX] <limits.h> [—2v,2% — 1], w = 31
unsigned [0, UINT_MAX] <limits.h> | [0,2% — 1], w = 32

bool [false, true] <stdbool.h> | [0, 1]

ptrdiff_t [PTRDIFF_MIN, PTRDIFF_MAX] | <stdint.h> [—2w,2% — 1], w = 31,63
char [CHAR_MIN, CHAR_MAX] <limits.h> | [0,2% —1],w = 7,8
unsigned char | [0, UCHAR_MAX] <limits.h> 0, 255]

57

TABLE 5.5. Effects of bitwise operators.

Bitop | Value Hex | b1s e bo | Setop | Set
Vv 65535 | OxFFFF | 1111111111111111 {0,1,2,3,4,5,6,7,8,9, 10,
11,12,13,14,15}
A 240 | ox@0eFo | 0000000011110000 {4,5,6,7}
~A 65295 | oxFFoF | 1111111100001111 | V' \ A | {0,1,2,3,8,9,10,
11,12,13,14,15}
-A 65296 | oxFF10 | 1111111100010000 {4,8,9, 10,
11,12,13,14,15}
B 287 | @x@11F | 0000000100011111 {0,1,2,3,4,8}
AlB 511 | @x@1FF | 0000000111111111 | AU B | {0,1,2,3,4,5,6,7,8}
A&B 16 | 9x0010 | 0000000000010000 | AN B | {4}
A"B 495 | 0x@1EF | 0000000111101111 | AAB | {0,1,2,3,5,6,7,8}

set {0,1,2,3,4,8}; see table For the result of these operations, the total size of the
base set, and thus the precision p, is not needed. As for the arithmetic operators, there are
corresponding assignment operators &=, | =, and *=, respectively[Fx® 2] B[Exs 24 25]

There is yet another operator that operates on the bits of the value: the complement
operator ~. The complement ~A would have value 65295 and would correspond to the set
{0,1,2,3,8,9,10,11,12,13,14,15}. This bit complement always depends on the preci-
sion p of the type

All of these operators can be written with identifiers: bitor, bitand, xor, or_eq,
and_eq, xor_eq, and compl if you include header is0646.h.

A typical usage of bit sets is for flags, variables that control certain settings of a pro-
gram:

enum corvid { magpie, raven, jay, chough, corvid_num, };

#define FLOCK_MAGPIE 1U
#define FLOCK_RAVEN 2U

#define FLOCK_JAY 4U
#define FLOCK_CHOUGH 8U
#define FLOCK_EMPTY ou
#define FLOCK_FULL 15U

int main(void) {

unsigned flock = FLOCK_EMPTY;

[Exs 221Show that A \ B can be computed by A - (A8B).

(Exs 2IShow that V + 1 is 0.

[Exs 241Show that A*B is equivalent to (A - (A&B)) + (B - (A&B)) and A + B - 2x(A8&B).
[Exs 251Ghow that A|B is equivalent to A + B - (A&B).

[Exs 26]ghow that ~B can be computed by V - B.

(Bxs 27IShow that -B = ~B + 1.

<is0646.h>

<stdbool.h>

58 1. ACQUAINTANCE

if (something) flock |= FLOCK_JAY;

if (flock&FLOCK_CHOUGH)
do_something_chough_specific(flock);

3

Here the constants for each type of corvid are a power of two, and so they have exactly one
bit set in their binary representation. Membership in a flock can then be handled through
the operators: |= adds a corvid to flock, and & with one of the constants tests whether a
particular corvid is present.

Observe the similarity between operators & and && or | and ||: if we see each of
the bits b; of an unsigned as a truth value, & performs the ‘logical and of all bits of
its arguments simultaneously. This is a nice analogy that should help you memorize the
particular spelling of these operators. On the other hand, keep in mind that the operators
| | and && have short-circuit evaluation, so be sure to distinguish them clearly from the bit
operators.

5.7.3. Shift operators. The next set of operators builds a bridge between interpretation
of unsigned values as numbers and as bit sets. A left-shift operation << corresponds to the
multiplication of the numerical value by the corresponding power of two. For example,
for A = 240, the set {4,5,6,7}, A << 21is 240 - 22 = 240 - 4 = 960, which represents
the set {6,7,8,9}. Resulting bits that don’t fit into the binary representation for the type
are simply omitted. In our example, A << 9 would correspond to set {13, 14, 15,16} (and
value 122880), but since there is no bit 16, the resulting set is {13, 14,15}, value 57344.

Thus, for such a shift operation, the precision p is again important. Not only are bits
that don’t fit are dropped, but it also restricts the possible values of the operand on the right:

Takeaway 1.5.7.5 The second operand of a shift operation must be less than the preci-
sion.

There is an analogous right-shift operation >> that shifts the binary representation
toward the less-significant bits. Analogously, this corresponds to an integer division by a
power of two. Bits in positions less than or equal to the shift value are omitted for the
result. Observe that for this operation, the precision of the type isn’t important

Again, there are also corresponding assignment operators <<= and >>=.

The primary use of the left-shift operator << is specifying powers of two. In our
example, we can now replace the #define s:

#define FLOCK_MAGPIE (1U << magpie)
#define FLOCK_RAVEN (11U << raven)

#define FLOCK_JAY (1U << jay)
#define FLOCK_CHOUGH (17U << chough)
#define FLOCK_EMPTY ou

#define FLOCK_FULL ((1U << corvid_num)-1)

This makes the example more robust against changes to the enumeration.

5.7.4. Boolean values. The Boolean data type in C is also considered an unsigned
type. Remember that it has only values 0 and 1, so there are no negative values. For back-
ward compatibility with ancient programs, the basic type is called _Bool. The name bool
as well as the constants false and true only come through the inclusion of stdbool.h.
Unless you have to maintain a really old code base, you should use the latter.

[Exs 28]ghow that the bits that are “lost” in an operation x>>n correspond to the remainder x % (TULL << n).

5. BASIC VALUES AND DATA 59

Treating bool as an unsigned type is a stretch of the concept. Assignment to a variable
of that type doesn’t follow the modulus rule of Takeaway but a special rule for
Boolean values (Takeaway [I.3.1.1).

You will probably rarely need bool variables. They are only useful if you want to
ensure that the value is always reduced to false or true on assignment. Early versions of
C didn’t have a Boolean type, and many experienced C programmers still don’t use it.

5.7.5. Signed integers. Signed types are a bit more complicated than unsigned types.
A C implementation has to decide about two points:

e What happens on arithmetic overflow?

e How is the sign of a signed type represented?
Signed and unsigned types come in pairs according to their integer rank, with the notable
two exceptions from table 5.1} char and bool. The binary representation of the signed
type is constrained by thefinclusion diagram|that we have seen above.

Takeaway 1.5.7.6 Positive values are represented independently from signedness.

Or, stated otherwise, a positive value with a signed type has the same representation as
in the corresponding unsigned type. That is why the maximum value for any integer type
can be expressed so easily (Takeaway [I.5.7.3)): signed types also have a precision, p, that
determines the maximum value of the type.

The next thing the standard prescribes is that signed types have one additional bit, the
sign bit® . If it is 0, we have a positive value; if it is 1, the value is negative. Unfortunately,
there are different concepts of how such a sign bit can be used to obtain a negative number.

C allows three different sign representations® :

e Sign and magnitude®
e Ones’ complement®
o Two’s complement®

The first two nowadays probably only have historical or exotic relevance: for sign
and magnitude, the magnitude is taken as positive values, and the sign bit simply specifies
that there is a minus sign. Ones’ complement takes the corresponding positive value and
complements all bits. Both representations have the disadvantage that two values evaluate
to 0: there is a positive and a negative OE’T]

Commonly used on modern platforms is the two’s complement representation. It per-
forms exactly the same arithmetic as we have seen for unsigned types, but the upper half of
unsigned values (those with a high-order bit of 1) is interpreted as being negative. The fol-
lowing two functions are basically all that is needed to interpret unsigned values as signed
values:

bool is_negative(unsigned a) {
unsigned const int_max = UINT_MAX/2;
return a > int_max;
3
bool is_signed_less(unsigned a, unsigned b) {
if (is_negative(b) && !is_negative(a)) return false;
else return a < b;

}

Table [5.6] shows an example of how the negative of our example value 240 can be
constructed. For unsigned types, —A can be computed as A + 1 Two’s
29Since these two have fallen completely out of use on modern architectures, efforts are underway to remove
them from the next revision of the C standard.
(Exs 30lprove that for unsigned arithmetic, A + ~A is the maximum value.

[Exs 31Iprove that for unsigned arithmetic, A + ~Ais —1.
[Exs 32Iprove that for unsigned arithmetic, A + (~A + 1) == 0.

60 1. ACQUAINTANCE

TABLE 5.6. Negation for 16-bit unsigned integer types

Op Value 1)15 bo
A 240 | 0000000011110000
~A | 65295 | 1111111100001111
+1 | 65295 | 0000000000000001
-A | 65296 | 1111111100010000

complement representation performs exactly the same bit operation for signed types as
for unsigned types. It only interprets representations that have the high-order bit as being
negative.

When done that way, signed integer arithmetic will again behave more or less nicely.
Unfortunately, there is a pitfall that makes the outcome of signed arithmetic difficult to
predict: overflow. Where unsigned values are forced to wrap around, the behavior of a
signed overflow is undefined® . The following two loops look much the same:

1; i; ++i) do_something();

1, i; ++i) do_something();

for (unsigned i
for (signed i

We know what happens for the first loop: the counter is incremented up to UINT_MAX
and then wraps around to 0. All of this may take some time, but after UINT_MAX-1 itera-
tions, the loop stops because i will have reached 0.

For the second loop, everything looks similar. But because here the behavior of over-
flow is undefined, the compiler is allowed to pretend that it will never happen. Since it also
knows that the value at the start is positive, it may assume that i, as long as the program
has defined behavior, is never negative or 0. The as-if Rule (Takeaway allows it to
optimize the second loop to

‘ while (true) do_something();

That’s right, an infinite loop.

Takeaway 1.5.7.7 Once the abstract state machine reaches an undefined state, no fur-
ther assumption about the continuation of the execution can be made.

Not only that, the compiler is allowed to do what it pleases for the operation itself
(“Undefined? so let’s define it”), but it may also assume that it will never reach such a state
and draw conclusions from that.

Commonly, a program that has reached an undefined state is referred to as “having”
or “showing” undefined behavior. This wording is a bit unfortunate; in many such cases,
a program does not “show” any visible signs of weirdness. In the contrary, bad things will
be going on that you will not even notice for a long time.

Takeaway 1.5.7.8 It is your responsibility to avoid undefined behavior of all operations.

What makes things even worse is that on some platforms with some standard compiler
options will just look right. Since the behavior is undefined, on such a platform, signed
integer arithmetic might turn out to be basically the same as unsigned. But changing the
platform, the compiler, or some options can change that. All of a sudden, your program
that worked for years crashes out of nowhere.

Basically, what we have discussed up to this section always had well-defined behavior,
so the abstract state machine is always in a well-defined state. Signed arithmetic changes
this, so as long as you don’t need it, avoid it. We say that a program performs a trap® (or
just traps) if it is terminated abruptly before its usual end.

Takeaway 1.5.7.9 Signed arithmetic may trap badly.

5. BASIC VALUES AND DATA 61

One of the things that might already overflow for signed types is negation. We have
seen that INT_MAX has all bits but the sign bit set to 1. INT_MIN then has the “next” repre-
sentation: the sign bit set to 1 and all other values set to 0. The corresponding value is not

~INT_MAX [53]

Takeaway 1.5.7.10 In twos’ complement representation, INT_MIN < -INT_MAX.

Or, stated otherwise, in twos’ complement representation, the positive value ~INT_MIN
is out of bounds since the value of the operation is larger than INT_MAX.

Takeaway 1.5.7.11 Negation may overflow for signed arithmetic.

For signed types, bit operations work with the binary representation. So the value of a
bit operation depends in particular on the sign representation. In fact, bit operations even
allow us to detect the sign representation:

char constx sign_rep[4] =
{
[1] = "sign_and_magnitude”,
[2] = "ones’_complement”,
[3] = "two’s_complement”,
[0] = "weird”,
s
enum { sign_magic = -1&3, };
printf(”"Sign_representation:_%s.\n", sign_rep[sign_magic]);

The shift operations then become really messy. The semantics of what such an opera-
tion is for a negative value is not clear.

Takeaway 1.5.7.12 Use unsigned types for bit operations.

5.7.6. Fixed-width integer types. The precision for the integer types that we have seen
so far can be inspected indirectly by using macros from limits.h, such as UINT_MAX and <limits.h>
LONG_MIN. The C standard only gives us a minimal precision for them. For the unsigned
types, these are

type minimal precision
bool 1

unsigned char 8

unsigned short 16

unsigned 16

unsigned long 32

unsigned long long | 64

Under usual circumstances, these guarantees should give you enough information; but
under some technical constraints, such guarantees might not be sufficient, or you might
want to emphasize a particular precision. This may be the case if you want to use an
unsigned quantity to represent a bit set of a known maximal size. If you know that 32-bit
will suffice for your set, depending on your platform, you might want to choose unsigned
or unsigned long to represent it.
The C standard provides names for exact-width integer types in stdint.h. As the <stdint.h>
name indicates, they are of an exact prescribed “width,” which for provided unsigned types
is guaranteed to be the same as their precision.

Takeaway 1.5.7.13 If the type uintN_t is provided, it is an unsigned integer type with
exactly N bits of width and precision.

[Exs 331Show that INT_MIN+INT_MAX is —1.

<inttypes.h>

<float.h>

62 1. ACQUAINTANCE

Takeaway 1.5.7.14 If the type intN_t is provided, it is signed, with two’s complement
representation and has a width of exactly N bits and a precision of N — 1.

None of these types is guaranteed to exist, but for a convenient set of powers of two, the
typedef must be provided if types with the corresponding properties exist.

Takeaway 1.5.7.15 Iftypes with the required properties exist for values of N = 8,16, 32,
and 64, types uintN_t and intN_t, respectively, must be provided.

Nowadays, platforms usually provide uint8_t, uint16_t, uint32_t, and uint64_t
unsigned types and int8_t, int16_t, int32_t, and int64_t signed types. Their presence
and bounds can be tested with the macros UINT8_MAX, ..., UINT64_MAX for unsigned types
and INT8_MIN, INT8_MAX, ..., INT64_MIN and INT64_MAX, respectively

To encode literals of the requested type, there are the macros UINT8_C, ..., UINT64_C,
and INT8_C, ..., INT64_C, respectively. For example, on platforms where uint64_t is
unsigned long, INT64_C(1) expands to 1UL.

Takeaway 1.5.7.16 For any of the fixed-width types that are provided, _MIN (only signed),
maximum _MAX, and literals _C macros are provided, too.

Since we cannot know the type behind such a fixed-width type, it would be difficult to
guess the correct format specifier to use for printf and friends. The header inttypes.h
provides us with macros for that. for example, for N = 64, we are provided with PRId64,
PRIi64, PRI064, PRIu64, PRIx64, and PRIX64, for printf formats "%d", "%i", "%0",
"%u", "%x" and "%X", respectively:

uint32_t n = 78;
int64_t max = (-UINT64_C(1))>>1; // Same value as INT64_MAX
printf("n_is_%" PRIu32 ",_and_max_is_.%" PRId64 "\n", n, max);

As you can see, these macros expand to string literals that are combined with other string
literals into the format string. This is certainly not the best candidate for a C coding beauty
contest.

5.7.7. Floating-point data. Whereas integers come near the mathematical concepts
of N (unsigned) or Z (signed), floating-point types are close to R (non-complex) or C
(complex). The way they differ from these mathematical concepts is twofold. First, there
is a size restriction on what is presentable. This is similar to what we have seen for integer
types. The include file float.h, for example, has constants DBL_MIN and DBL_MAX that
provide us with the minimal and maximal values for double. But be aware that here,
DBL_MIN is the smallest number that is strictly greater than @.0; the smallest negative
double value is ~-DBL_MAX.

But real numbers (R) have another difficulty when we want to represent them on a
physical system: they can have an unlimited expansion, such as the value % which has
an endless repetition of the digit 3 in decimal representation, or the value of 7, which is
“transcendent” and so has an endless expansion in any representation and doesn’t repeat in
any way.

C and other programming languages deal with these difficulties by cutting off the
expansion. The position where the expansion is cut is “floating” (thus the name) and
depends on the magnitude of the number in question.

In a view that is a bit simplified, a floating-point value is computed from the following
values:

s Sign (£1)

[Exs 3417 they exist, the values of all these macros are prescribed by the properties of the types. Think of a closed
formulas in N for these values.

SUMMARY 63

e Exponent, an integer
fi,--., fp values O or 1, the mantissa bits
For the exponent, we have e,,,;,, < e < €42 P, the number of bits in the mantissa, is
called precision. The floating-point value is then given by this formula:

p
$:2°-) " fr27h,
k=1

The values p, emin, and emax are type dependent and therefore not represented ex-
plicitly in each number. They can be obtained through macros such as DBL_MANT_DIG (for
p, typically 53) DBL_MIN_EXP (€,n, —1021), and DBL_MAX_EXP (€42, 1024).

If we have, for example, a number that has s = —1,e = -2, f; = 1, fo = 0, and
f2 =1, its value is

1 1 1 1 441 -
—1'2_2'(f12_1+f22_2+f22_3):—1'1'(54‘@):—1'1'% = ?5
which corresponds to the decimal value -0.15625. From that calculation, we see also that
floating-point values are always representable as a fraction that has some power of two in

the denominator [*]

An important thing to keep in mind with such floating-point representations is that
values can be cut off during intermediate computations.

Takeaway 1.5.7.17 Floating-point operations are neither associative, commutative, nor
distributive.

So basically, they lose all the nice algebraic properties we are used to when doing
pure math. The problems that arise from that are particularly pronounced if we operate
with values that have very different orders of magnitude For example, adding a very
small floating-point value = with an exponent that is less than —p to a value y > 1 just
returns y again. As a consequence, it is really difficult to assert without further investigation
whether two computations have the “same” result. Such investigations are often cutting-
edge research questions, so we cannot expect to be able to assert equality or not. We are
only able to tell that the results are “close.”

Takeaway 1.5.7.18 Never compare floating-point values for equality.

The representation of the complex types is straightforward and identical to an array
of two elements of the corresponding real floating-point type. To access the real and
imaginary part of a complex number, two type generic macros also come with the header
tgmath.h: creal and cimag. For any z of one of the three complex types, we have that
z == creal(z) + cimag(z)*I

Summary

e C programs run in an abstract state machine that is mostly independent of the
specific computer where it is launched.

e All basic C types are kinds of numbers, but not all of them can be used directly

for arithmetic.

Values have a type and a binary representation.

When necessary, types of values are implicitly converted to fit the needs of par-

ticular places where they are used.

[Exs 351Show that all representable floating-point values with e > p are multiples of 2¢7P.
[Exs 36]pying the results of the following expressions: 1.0E-13 + 1.0E-13 and
(1.0E-13 + (1.QE-13 + 1.0)) - 1.0.
3We will learn about such function-like macros in section

<tgmath.h>

64

1. ACQUAINTANCE

e Variables must be explicitly initialized before their first use.

e Integer computations give exact values as long as there is no overflow.

o Floating-point computations only give approximated results that are cut off after
a certain number of binary digits.

6. DERIVED DATA TYPES 65

6. Derived data types
This section covers

Grouping objects into arrays

Using pointers as opaque types
Combining objects into structures
Giving types new names with typedef

All other data types in C are derived from the basic types that we know now. There
are four strategies for deriving data types. Two of them are called aggregate data types,
because they combine multiple instances of one or several other data types:

Arrays: These combine items that all have the same base type (subsection [6.1)).
Structures: These combine items that may have different base types (subsection [6.3)).

The two other strategies to derive data types are more involved:

Pointers: Entities that refer to an object in memory.
Pointers are by far the most involved concept, and we will delay a full discussion
pf them to section Here, in subsection we will only discuss them as
opaque data types, without even mentioning the real purpose they fulfill.

Unions: These overlay items of different base types in the same memory location.
Unions require a deeper understanding of C’s memory model and are not of
much use in a programmer’s everyday life, so they are only introduced later, in
subsection [12.21

There is a fifth strategy that introduces new names for types: typedef (subsection|[6.4).
Unlike the previous four, this does not create a new type in C’s type system, but only creates
a new name for an existing type. In that way, it is similar to the definition of macros with
#define; thus the choice for the keyword for this feature.

6.1. Arrays. Arrays allow us to group objects of the same type into an encapsulating
object. We will see pointer types later (section [TT)), but many people who come to C are
confused about arrays and pointers. And this is completely normal: arrays and pointers are
closely related in C, and to explain them we face a chicken and egg problem: arrays look
like pointers in many contexts, and pointers refer to array objects. We chose an order of
introduction that is perhaps unusual: we will start with arrays and stay with them as long as
possible before introducing pointers. This may seem “wrong” to some of you, but remem-
ber that everything stated here must be viewed based on the as-if Rule (Takeaway[1.5.1.7):
we will first describe arrays in a way that is consistent with C’s assumptions about the
abstract state machine.

Takeaway 1.6.1.1 Arrays are not pointers.

Later, we will see how these two concepts relate, but for the moment it is important to
read this section without prejudice about arrays; otherwise, you will delay your ascent to a
better understanding of C.

6.1.1. Array declaration. We have already seen how arrays are declared: by placing
something like [N] after another declaration. For example:

double al[4];
signed b[N];

Here, a comprises 4 subobjects of type double and b comprises N of type signed. We
visualize arrays with diagrams like the following, with a sequence of boxes of their base

66 1. ACQUAINTANCE

type:
[o] [1] [2] [3]
a double ?? double ?? double ?7? double ?7?
[o] N-1]
b| signed ?? |--- signed ??

The dots - - - here indicate that there may be an unknown number of similar items between
the two boxes.

The type that composes an array may itself again be an array, forming a multidimen-
sional array® . The declarations for those become a bit more difficult to read since [] binds
to the left. The following two declarations declare variables of exactly the same type:

double C[MI[NI;
double (D[MI)[INI;

Both C and D are M objects of array type double[N]. This means we have to read a nested
array declaration from inside out to describe its structure:
[el M-11
Lelre] [01IN-1] [M-11C0] [M-11IN-1]
C double ?? |---| double ?? ce double ?? |..-| double ??

We also have seen how array elements are accessed and initialized, again with a pair
of []. In the previous example, a[@] is an object of double and can be used wherever we
want to use, for example, a simple variable. As we have seen, C[@] is itself an array, so
C[o][@e], which is the same as (C[@])[@], is also an object of type double.

Initializers can use designated initializers (also using [] notation) to pick the spe-
cific position to which an initialization applies. The example code in listing [5.1] contains
such initializers. During development, designated initializers help to make our code robust
against small changes in array sizes or positions.

6.1.2. Array operations. Arrays are really just objects of a different type than we have
seen so far.

Takeaway 1.6.1.2 An array in a condition evaluates to true.

The truth of that comes from the array decay operation, which we will see later. An-
other important property is that we can’t evaluate arrays like other objects.

Takeaway 1.6.1.3 There are array objects but no array values.

So arrays can’t be operands for the value operators in table and there is no arith-
metic declared on arrays (themselves).

Takeaway 1.6.1.4 Arrays can’t be compared.

Arrays also can’t be on the value side of the object operators in table 4#.2] Most of
the object operators are likewise ruled out from having arrays as object operands, either
because they assume arithmetic or because they have a second value operand that would
have to be an array, too.

Takeaway 1.6.1.5 Arrays can’t be assigned to.

6. DERIVED DATA TYPES 67

From table [4.2] we also know that there are only four operators left that work on
arrays as object operators. And we know the operator []@ The array decay operation, the
address operator &, and the sizeof operator will be introduced later.

6.1.3. Array length. There are two categories of arrays: fixed-length arrays® (FLAs)
and variable-length arrays® (VLAs). The first are a concept that has been present in C
since the beginning; this feature is shared with many other programming languages. The
second was introduced in C99 and is relatively unique to C, and it has some restrictions on
its usage.

Takeaway 1.6.1.6 VLAs can’t have initializers.

Takeaway 1.6.1.7 VLAs can’t be declared outside functions.

So let’s start at the other end and see which arrays are in fact FLAs, such that they
don’t fall under these restrictions.

Takeaway 1.6.1.8 The length of an FLA is determined by an integer constant expression
(ICE) or by an initializer.

For the first of these alternatives, the length is known at compile time through an ICE
(introduced in subsection [5.6.2). There is no type restriction for the ICE: any integer type
will do.

Takeaway 1.6.1.9 An array-length specification must be strictly positive.

Another important special case leads to an FLA: when there is no length specification
at all. If the [] are left empty, the length of the array is determined from its initializer, if
any:

double E[]
double F[]

{ [31 = 42.0, [2] = 37.0, };
{ 22.0, 17.0, 1, 0.5, };

Here, E and F both are of type double[4]. Since such an initializer’s structure can always
be determined at compile time without necessarily knowing the values of the items, the
array is still an FLA.

o] (1] [2] (3]
E| double 0.0 double 0.0 double 37.0 double 42.0

[o] [1] [2] [3]
F| double 22.0 double 17.0 double 1.0 double 0.5

All other array variable declarations lead to VLAs.

Takeaway 1.6.1.10 An array with a length that is not an integer constant expression is
an VLA.

The length of an array can be computed with the sizeof operator. That operator
provides the size of any objectﬁ]so the length of an array can be calculated using simple
division

Takeaway 1.6.1.11 The length of an array A is (sizeof A)/(sizeof A[0@]).

That is, it is the total size of the array object, divided by the size of any of the array
elements.

3 The real C jargon story about arrays and [] is a bit more complicated. Let us apply the as-if Rule (Take-
away[@ to our explanation. All C programs behave as if the [] are directly applied to an array object.

39Lalter, we will see what the unit of measure for such sizes is.

40Note also that the sizeof operator comes in two different syntactical forms. If applied to an object, as it is
here, it does not need parentheses, but they would be needed if we applied it to a type.

68 1. ACQUAINTANCE

6.1.4. Arrays as parameters. Yet another special case occurs for arrays as parameters
to functions. As we saw for the prototype of printf, such parameters may have empty
[]. Since no initializer is possible for such a parameter, the array dimension can’t be
determined.

Takeaway 1.6.1.12 The innermost dimension of an array parameter to a function is lost.

Takeaway 1.6.1.13 Don’t use the sizeof operator on array parameters to functions.

Array parameter are even more bizarre, because we cannot produce array values
(Takeaway [1.6.1.3)), array parameters cannot be passed by value, and thus array param-
eters as such would not make much sense.

Takeaway 1.6.1.14 Array parameters behave as if the array is passed by referenceC.

Take the example shown in listing [6.1]

LISTING 6.1. A function with an array parameter

#include <stdio.h>

void swap_double (double a[static 2]) {
double tmp = al[0];
alel = al1];
al1] tmp;
}
int main(void) {
double A[2] = { 1.0, 2.0, };
swap_double (A);
printf("A[0]_=_%g, _A[1]_=_%g\n", A[Q], A[1]1);
}

Here, swap_double(A) will act directly on array A and not on a copy. Therefore, the
program will swap the values of the two elements of A.

CHALLENGE 6 (linear algebra). Some of the most important problems for which arrays
are used stem from linear algebra.

Can you write functions that do vector-to-vector or matrix-to-vector products at this point?
What about Gauf3 elimination or iterative algorithms for matrix inversion?

6.1.5. Strings are special. There is a special kind of array that we have encountered
several times and that, in contrast to other arrays, even has literals: stringsc.

Takeaway 1.6.1.15 A string is a @-terminated array of char.

That is, a string like "hello” always has one more element than is visible, which
contains the value 0, so here the array has length 6.

Like all arrays, strings can’t be assigned to, but they can be initialized from string
literals:

char jaye[] = "jay";
char jay1[]l = { "jay" };

char jay2[1 = { ’j’, ’a’, ’y’, 0, };
char jay3[41 = { ’j’, ’a’, ’y’, };

6. DERIVED DATA TYPES 69

These are all equivalent declarations. Be aware that not all arrays of char are strings, such
as

char jay4[31 = { ’'j’, ’a’, ’'y’, };
char jay5([3] = "jay";

These both cut off after the ’y’ character and so are not @-terminated.

[e] 1] [2] [3]

jayo char ’j’ char ’a’ char 'y’ char ’\o’
[e] [1] [2] [3]
jay1 char ’j’ char ’a’ char 'y’ char ’\o’
[o] [1] [2] [3]
jay2 char ’j’ char ’a’ char 'y’ char ’\o’
[e] [1] [2] [3]
jay3| char ’j’ char ’a’ char 'y’ char ’\o’
[e] [1] [2]
jay4 char ’j’ char ’a’ char 'y’
[el (11 [2]
jay5| char ’j’ char ’a’ char 'y’

We briefly saw the base type char of strings among the integer types. It is a narrow
integer type that can be used to encode all characters of the basic character set®. This
character set contains all the characters of the Latin alphabet, Arabic digits, and punctu-
ation characters that we use for coding in C. It usually doesn’t contain special characters
(for example, d, d), and characters from completely different writing systems).

The vast majority of platforms nowadays use American Standard Code for Information
Interchange (ASCII) to encode characters in the type char. We don’t have to know how
the particular encoding works as long as we stay in the basic character set: everything is
done in C and its standard library, which use this encoding transparently.

To deal with char arrays and strings, there are a bunch of functions in the standard
library that come with the header string.h. Those that just require an array argument start
their names with mem, and those that in addition require that their arguments are strings start
with str. Listing[6.2 uses some of the functions that are described next.

Functions that operate on char arrays are as follows:

e memcpy(target, source, len) canbe used tocopy one array to another. These
have to be known to be distinct arrays. The number of char s to be copied must
be given as a third argument len.

e memcmp(s@, s1, len) compares two arrays in lexicographic order. That is, it
first scans the initial segments of the two arrays that happen to be equal and then
returns the difference between the two first characters that are distinct. If no
differing elements are found up to len, @ is returned.

e memchr(s, c, len) searches array s for the appearance of character c.

Next are the string functions:

e strlen(s) returns the length of the string s. This is simply the position of the
first @ character and not the length of the array. It is your duty to ensure that s is
indeed a string: that it is @-terminated.

e strcpy(target, source) works similarly to memcpy. It only copies up to the
string length of the source, and therefore it doesn’t need a 1en parameter. Again,
source must be @-terminated. Also, target must be big enough to hold the copy.

<string.h>

70 1. ACQUAINTANCE

LISTING 6.2. Using some of the string functions

#include <string.h>

#include <stdio.h>

int main(int argc, char* argv[argc+1]) {
size_t const len = strlen(argv[@]l); //

0N N AW~

Computes the length

char name[len+17]; // Creates a VLA
// Ensures a place for @
memcpy (name, argv[0], len); // Copies the name
name[len] = 0; // Ensures a @ character
9 if (!strcmp(name, argv[0]l)) {
10 printf("program_name_\"%s\"_successfully._copied\n",
11 name) ;
12 } else {
13 printf("copying_%s_leads_to_different_string_%s\n",
14 argv[@], name);
15 }
16 |}

e strcmp(s@, s1) compares two arrays in lexicographic order, similarly to memcmp,
but may not take some language specialties into account. The comparison stops
at the first @ character that is encountered in either s@ or s1. Again, both param-
eters have to be @-terminated.

e strcoll(s@, s1) comparestwo arrays in lexicographic order, respecting language-
specific environment settings. We will learn how to properly set this in subsec-
tion

e strchr(s, c) issimilar to memchr, only the string s must be @-terminated.

e strspn(s@, s1) returns the length of the initial segment in s@ that consist of
characters that also appear in s1.

e strcspn(s@, s1) returns the length of the initial segment in s@ that consist of
characters that do not appear in s1.

Takeaway 1.6.1.16 Using a string function with a non-string has undefined behavior.

In real life, common symptoms for such misuse may be:
e Long times for strlen or similar scanning functions because they don’t en-
counter a @-character
e Segmentation violations because such functions try to access elements after the
boundary of the array object
e Seemingly random corruption of data because the functions write data in places
where they are not supposed to

In other words, be careful, and make sure all your strings really are strings. If you know the
length of the character array, but you do not know if it is O-terminated, memchr and pointer
arithmetic (see section |'1;1'|) can be used as a safe replacement for strlen. Analogously, if
a character array is not known to be a string, is better to copy it by using memcpy

In the discussion so far, [have been hiding an important detail from you: the proto-
types of the functions. For the string functions, they can be written as

isize t strlen(char const s[static 1]);

‘char* strcpy(char target[static 1], char const source[static 1]);
\signed strcmp (char const s0[static 1], char const si[static 1]);
‘signed strcoll (char const s@[static 1], char const sl1[static 1]);

[Exs 41lyse memchr and memcmp to implement a bounds-checking version of strcmp.

6. DERIVED DATA TYPES 71

\char* strchr(const char s[static 1], int c);

‘size_t strspn(const char sl1[static 1], const char s2[static 1]);
\size_t strcspn(const char si1[static 1], const char s2[static 1]);
L

Other than the bizarre return type of strcpy and strchr, this looks reasonable. The pa-
rameter arrays are arrays of unknown length, so the [static 1] s correspond to arrays of
at least one char. strlen, strspn, and strcspn will return a size, and strcmp will return
a negative, 0, or positive value according to the sort order of the arguments.

The picture darkens when we look at the declarations of the array functions:

void*x memcpy(voidx target, void constx source, size_t len);
signed memcmp(void const* s@, void const* s1, size_t len);
void*x memchr (const void *s, int c, size_t n);

You are missing knowledge about entities that are specified as void*. These are point-
ers to objects of unknown type. It is only in level 2] section [T} that we will see why and
how these new concepts of pointers and void type occur.

CHALLENGE 7 (Adjacency matrix). The adjacency matrix of a graph G is a matrix A that
holds a value true or false in element ALi1[]j] if there is an arc from node 1 to node j.
At this point, can you use an adjacency matrix to conduct a breadth-first search in a graph
G? Can you find connected components? Can you find a spanning tree?

CHALLENGE 8 (Shortest path). Extend the idea of an adjacency matrix of a graph G to
a distance matrix D that holds the distance when going from point i to point j. Mark the
absence of a direct arc with a very large value, such as SIZE_MAX.

Can you find the shortest path between two nodes x and y given as an input?

6.2. Pointers as opaque types. We now have seen the concept of pointers pop up in
several places, in particular as a void* argument and return type, and as char const*const
to manipulate references to string literals. Their main property is that they do not directly
contain the information that we are interested in: rather, they refer, or point, to the data.
C’s syntax for pointers always has the peculiar *:

‘ char const*const p2string = "some_text";
L

It can be visualized like this:

p2string char constxconst

"some_text"

Compare this to the earlier array jay®, which itself contains all the characters of the string
that we want it to represent:

[
‘ char jaye[] = "jay";

72 1. ACQUAINTANCE

[e] [1] [2] (3]
jaye| char ’j’ char ’a’ char 'y’ char ’\o’

In this first exploration, we only need to know some simple properties of pointers. The
binary representation of a pointer is completely up to the platform and is not our business.

Takeaway 1.6.2.1 Pointers are opaque objects.

This means we will only be able to deal with pointers through the operations that the
C language allows for them. As I said, most of these operations will be introduced later; in
our first attempt, we will only need initialization, assignment, and evaluation.

One particular property of pointers that distinguishes them from other variables is their
state.

Takeaway 1.6.2.2 Pointers are valid, null, or indeterminate.

For example, our variable p2string is always valid, because it points to the string
literal "some_text"”, and, because of the second const, this association can never be
changed.

The null state of any pointer type corresponds to our old friend @, sometimes known
under its pseudonym false.

Takeaway 1.6.2.3 Initialization or assignment with @ makes a pointer null.

Take the following as an example:

[
| char constxconst p2nothing = 0;
L

We visualize this special situation like this:

p2nothing char const*const

7
®

Note that this is different from pointing to an empty string:

[
non

\ char constxconst p2empty = g
L

p2empty char constxconst

7

nn

Usually, we refer to a pointer in the null state as a null pointer® . Surprisingly, disposing
of null pointers is really a feature.

Takeaway 1.6.2.4 In logical expressions, pointers evaluate to false if they are null.

Note that such tests can’t distinguish valid pointers from indeterminate ones. So, the
really “bad” state of a pointer is indeterminate, since this state is not observable.

Takeaway 1.6.2.5 Indeterminate pointers lead to undefined behavior.

An example of an indeterminate pointer could look like this:

‘ char const*const p2invalid;
L

6. DERIVED DATA TYPES 73

p2invalid char constxconst

4
®

Because it is uninitialized, its state is indeterminate, and any use of it would do you harm
and leave your program in an undefined state (takeaway|1.5.7.7). Thus, if we can’t ensure
that a pointer is valid, we must at least ensure that it is set to null.

Takeaway 1.6.2.6 Always initialize pointers.

6.3. Structures. As we have seen, arrays combine several objects of the same base
type into a larger object. This makes perfect sense where we want to combine information
for which the notion of a first, second, ...element is acceptable. If it is not, or if we have
to combine objects of different type, then structures, introduced by the keyword struct
come into play.

As a first example, let us revisit the corvids from section @} There, we used a trick
with an enumeration type to keep track of our interpretation of the individual elements
of an array name. C structures allow for a more systematic approach by giving names to
so-called members (or field) in an aggregate:

struct birdStruct {
char const* jay;
char const* magpie;
char const* raven;
char const* chough;

3

struct birdStruct const aName = {
.chough = "Henry",
.raven = "Lissy",
.magpie = "Frau”,
.jay = "Joe",

3

That is, from line E] to @, we have the declaration of a new type, denoted as struct
birdStruct. This structure has four membersC, whose declarations look exactly like nor-
mal variable declarations. So instead of declaring four elements that are bound together in
an array, here we name the different members and declare types for them. Such declaration
of a structure type only explains the type; it is not (yet) the declaration of an object of that
type and even less a definition for such an object.

Then, starting on line [/} we declare and define a variable (called aName) of the new
type. In the initializer and in later usage, the individual members are designated using a
notation with a dot (.). Instead of bird[raven], as in subsection [5.6.1] for the array we
use aName . raven for the structure:

aName i
struct birdStruct
. jay .magpie .raven .chough
char constx char constx char constx char constx*
IIJ0eIY IIFraull 1ILiSSyII VIHenryll

Please note that in this example, the individual members again only refer to the strings.
For example, the member aName . magpie refers to an entity "Frau” that is located outside
the box and is not considered part of the struct itself.

Now, for a second example, let us look at a way to organize time stamps. Calendar
time is an complicated way of counting, in years, month, days, minutes, and seconds; the

<time.h>

29

30
31
32
33
34
35
36

74

1. ACQUAINTANCE

different time periods such as months or years can have different lengths, and so on. One
possible to organize such data could be an array:

‘typedef int calArray[9];

calArray

[e]

011

[3]

[41

8]

int ??

int ??

int ??

int ??

int ??

The use of this array type would be ambiguous: would we store the year in element
[0] or [5]1? To avoid ambiguities, we could again use our trick with an enum. But the C
standard has chosen a different way. In time.h, it uses a struct that looks similar to the
following:

int
int
int
int
int
int
int
int
int

g

struct tm {

tm_sec; //
tm_min; //
tm_hour; //
tm_mday; //
tm_mon; //
tm_year; //
tm_wday; //
tm_yday; //
tm_isdst;//

Seconds after the minute [0,
Minutes after the hour [0,
Hours since midnight [o,
Day of the month [1,
Months since January [0,
Years since 1900

Days since Sunday [0,
Days since January [0,

Daylight Saving Time flag

60]
59]
23]
31]
111

6]
365]

This struct has named members, such as tm_sec for the seconds and tm_year for
the year. Encoding a date, such as the date of this writing

Wed Apr

> LC_TIME=C date -u
3 10:00:47 UTC 2019

Terminal

is simple:

yday.c

BE

.tm_mon =
.tm_mday =
.tm_hour =
.tm_min =
.tm_sec =

struct tm today
.tm_year =

= {

2014,

2,
29
16
7,
5,

’

)

This creates a variable of type struct tm and initializes its members with the appro-
priate values. The order or position of the members in the structure usually is not important:
using the name of the member preceded with a dot . suffices to specify where the corre-

sponding data should go.

today

struct tm

.tm_sec

.tm_min

.tm_hour

. tm_mday

.tm_isdst

int 5

int 7

int 16

int 29

int 0

Note that this visualization of today has an extra “box” compared to calArray. In-
deed, a proper struct type creates an additional level of abstraction. This struct tmis a
proper type in C’s type system.

6. DERIVED DATA TYPES 75

Accessing the members of the structure is just as simple and has similar . syntax:

yday.c

37 printf(”"this_year_is_%d,_next_year_will_be_%d\n",
38 today.tm_year, today.tm_year+1);

A reference to a member such as today . tm_year can appear in an expression just like
any variable of the same base type.

There are three other members in struct tm that we didn’t even mention in our ini-
tializer list: tm_wday, tm_yday, and tm_isdst. Since we didn’t mention them, they are
automatically set to 0.

Takeaway 1.6.3.1 Omitted struct initializers force the corresponding member to 0.

This can even go to the extreme that all but one of the members are initialized.

Takeaway 1.6.3.2 A struct initializer must initialize at least one member.

Previously (takeaway [1.5.5.3), we saw that there is a default initializer that works for
all data types: {03.

So when we initialize struct tm as we did here, the data structure is not consistent;
the tm_wday and tm_yday members don’t have values that would correspond to the values
of the remaining members. A function that sets this member to a value that is consistent
with the others could be something like

yday.c

19 | struct tm time_set_yday(struct tm t) {

20 // tm_mdays starts at 1.

21 t.tm_yday += DAYS_BEFORE[t.tm_mon] + t.tm_mday - 1;
22 // Takes care of leap years

23 if ((t.tm_mon > 1) && leapyear(t.tm_year))

24 ++t.tm_yday;

25 return t;

26 |}

It uses the number of days of the months preceding the current one, the tm_mday mem-
ber, and an eventual corrective for leap years to compute the day in the year. This function
has a particularity that is important at our current level: it modifies only the member of the
parameter of the function, t, and not of the original object.

Takeaway 1.6.3.3 struct parameters are passed by value.

To keep track of the changes, we have to reassign the result of the function to the
original:

T yday.c ‘

39 | today = time_set_yday(today); \

Later, with pointer types, we will see how to overcome that restriction for functions,
but we are not there yet. Here we see that the assignment operator = is well defined for all
structure types. Unfortunately, its counterparts for comparisons are not.

Takeaway 1.6.3.4 Structures can be assigned with = but not compared with == or !=,

0N N AW~

76

LISTING 6.3. A sample program manipulating struct tm

1. ACQUAINTANCE

3

[0]1 = 0, [11]

[4]

[8]
3

return t;

}

b

#include <time.
#include <stdbool.h>
#include <stdio.h>

struct tm time_
// tm_mdays starts at 1.
t.tm_yday += DAYS_BEFORE[t.tm_mon] + t.tm_mday -
// Takes care of leap years
if ((t.tm_mon > 1) && leapyear(t.tm_year))
++t.tm_yday;

h>

bool leapyear (unsigned year) {
/* All years that are divisible by 4 are leap years,
unless they start a new century,

are not divisible by 400. =*/
return !(year % 4) && ((year % 100) || !(year % 400));

#define DAYS_BEFORE
(int const[12]){

= 31, [2]1 = 59, [3] = 90,

120, [5]1 = 151, [6]1 = 181, [7] = 212,
243, [9] = 273, [10] = 304, [11] = 334,

set_yday(struct tm t) {

int main(void) {
struct tm today = {

.tm_year = 2014,
.tm_mon = 2,
.tm_mday = 29,
.tm_hour = 16,
.tm_min = 7,
.tm_sec = 5,

tm_year, today.tm_year+1);
set_yday (today);

provided they

\
\
\
\
\

printf("this_year_is_%d,_next_year_will_be_%d\n",
today.
today = time_

printf("day_of_the_year_is_%d\n", today.tm_yday);

Listing [6.3] shows the complete example code for the use of struct tm. It doesn’t
contain a declaration of the historical struct tm since this is provided through the stan-
dard header time.h. Nowadays, the types for the individual members would probably be
chosen differently. But many times in C we have to stick with design decisions that were

made many years ago.

Takeaway 1.6.3.5 A structure layout is an important design decision.

You may regret your design after some years, when all the existing code that uses it

makes it almost impossible to adapt it to new situations.

<time.h>

6. DERIVED DATA TYPES 71

Another use of struct is to group objects of different types together in one larger
enclosing object. Again, for manipulating times with a nanosecond granularity, the C
standard already has made that choice:

struct timespec {
time_t tv_sec; // Whole seconds >0

long tv_nsec; // Nanoseconds [0, 999999999]
3
.tv_sec .tv_nsec
struct timespec time_t ?? long ?7?

Here we see the opaque type time_t that we saw in table [5.2] for the seconds, and a
long for the nanosecondsF_z] Again, the reasons for this choice are historical; nowadays
the chosen types would perhaps be a bit different. To compute the difference between two
struct timespec times, we can easily define a function.

Whereas the function difftime is part of the C standard, such functionality here is
very simple and isn’t based on platform-specific properties. So it can easily be imple-
mented by anyone who needs it

Any data type other than a VLA is allowed as a member in a structure. So structures
can also be nested in the sense that a member of a struct can again be of (another) struct
type, and the smaller enclosed structure may even be declared inside the larger one:

struct person {
char name[256];
struct stardate {
struct tm date;
struct timespec precision;
} bdate;
3

struct person
.nhame

[o] 11 [255]
char ?? char ?? |--- char ??

.bdate

struct stardate

.date
.tm_sec .tm_min . tm_hour .tm_mday .tm_isdst
struct tm| int ?? int ?? int ?? int ?? |..-| int ??
.precision
.tv_sec .tv_nsec
struct timespec time_t ?? long ?7?

The visibility of declaration struct stardate is the same as for struct person. A
struct itself (here, person) defines no new scope for a struct (here, stardate) that is
defined within the {3} of the outermost struct declaration. This may be much different
from the rules of other programming languages, such as C++.

42Unfortunately, even the semantics of time_t are different here. In particular, tv_sec may be used in
arithmetic.
[Exs 43lwrite a function timespec_diff that computes the difference between two timespec values.

on

78 1. ACQUAINTANCE

Takeaway 1.6.3.6 All struct declarations in a nested declaration have the same scope
of visibility.

That is, if the previous nested struct declarations appear globally, both struct s are
subsequently visible for the whole C file. If they appear inside a function, their visibility is
bound to the {3} block in which they are found.

So, a more adequate version would be as follows:

struct stardate {
struct tm date;
struct timespec precision;
i
struct person {
char name[256];
struct stardate bdate;
3

This version places all struct s on the same level, because they end up there, anyhow.

6.4. New names for types: type aliases. As we saw in the previous section, a struc-
ture not only introduces a way to aggregate differing information into one unit, but also
introduces a new type name for the beast. For historical reasons (again!), the name that we
introduce for the structure always has to be preceded by the keyword struct, which makes
its use a bit clumsy. Also, many C beginners run into difficulties with this when they forget
the struct keyword and the compiler throws an incomprehensible error at them.

There is a general tool that can help us avoid that, by giving a symbolic name to an
otherwise existing type: typedef. Using it, a type can have several names, and we can
even reuse the tag name® that we used in the structure declaration:

typedef struct birdStruct birdStructure;
typedef struct birdStruct birdStruct;

Then, struct birdStruct,birdStruct, and birdStructure can all be used interchange-
ably. My favorite use of this feature is the following idiom:

typedef struct birdStruct birdStruct;
struct birdStruct {

B8

That is, to precede the proper struct declaration by a typedef using exactly the same
name. This works because in the combination of struct with a following name, the tag®
is always valid, a forward declaration® of the structure.

Takeaway 1.6.4.1 Forward-declare a struct within a typedef using the same identifier
as the tag name.

C++ follows a similar approach by default, so this strategy will make your code easier
to read for people who come from there.

The typedef mechanism can also be used for types other than structures. For arrays,
this could look like

typedef double vector[64];
typedef vector vecvec[16];
vecvec A;

typedef double matrix[16]1[64];
matrix B;

double C[16]1[64];

SUMMARY 79

Here, typedef only introduces a new name for an existing type, so A, B, and C have exactly
the same type: double[16][64].

Takeaway 1.6.4.2 A typedef only creates an alias for a type, but never a new type.

The C standard also uses typedef a lot internally. The semantic integer types such
as size_t that we saw in subsection are declared with this mechanism. The standard
often uses names that terminate with _t for typedef. This naming convention ensures that
the introduction of such a name in an upgraded version of the standard will not conflict
with existing code. So you shouldn’t introduce such names yourself in your code.

Takeaway 1.6.4.3 Identifier names terminating with _t are reserved.

Summary

Arrays combine several values of the same base type into one object.
Pointers refer to other objects, are null, or are indeterminate.
Structures combine values of different base types into one object.
typedefs provide new names for existing types.

80 1. ACQUAINTANCE

7. Functions

This section covers

e Introduction to simple functions
e Working with main
e Understanding recursion

We have already seen the different means that C offers for conditional execution: exe-
cution that, based on a value, chooses one branch of the program over another to continue.
The reason for a potential “jump” to another part of the program code (for example, to
an else branch) is a runtime decision that depends on runtime data. This section starts
with a discussion of unconditional ways to transfer control to other parts of our code: by
themselves, they do not require any runtime data to decide where to go.

The code examples we have seen so far often used functions from the C library that
provided features we did not want (or were not able) to implement ourselves, such as
printf for printing and strlen for computing the length of a string. The idea behind this
concept of functions is that they implement a certain feature, once and for all, and that we
then can rely on that feature in the rest of our code.

A function for which we have seen several definitions is main, the entry point of
execution into a program. In this section, we will look at how to write functions ourselves
that may provide features just like the functions in the C library.

The main reasons motivating the concept of functions are modularity and code factor-
ization:

e Functions avoid code repetition. In particular they avoid easily introduced copy-
and-paste errors and spare the effort of editing in multiple places if you modify a
piece of functionality. Thereby, functions increase readability and maintainabil-
ity.

e Use of functions decreases compilation times. A given code snippet that we
encapsulate in a function is compiled only once, not at each point where it is
used.

e Functions simplify future code reuse. Once we have extracted code into a func-
tion that provides certain functionality, it can easily be applied in other places
that we did not even think of when implementing the function.

e Functions provide clear interfaces. Function arguments and return types clearly
specify the origin and type of data that flows into and out of a computation.
Additionally, functions allow us to specify invariants for a computation: pre-
and post-conditions.

e Functions provide a natural way to formulate algorithms that use a “stack” of
intermediate values.

In addition to functions, C has other means of unconditional transfer of control, which

are mostly used to handle error conditions or other forms of exceptions from the usual
control flow:

e exit, _Exit, quick_exit, and abort terminate the program execution (see sub-
section[3.7)).

e goto transfers control within a function body (see subsections[13.2.2]and [I4.3).

e setjmp and longjmp can be used to return unconditionally to a calling context
(see subsection[T7.5).

e Certain events in the execution environment or calls to the function raise may
raise signals that pass control to a specialized function, a signal handler.

7.1. Simple functions. We have used a lot of functions and seen some their decla-
rations (for example in section [6.1.5) and definitions (such as listing [6.3)). In all of these
functions, parentheses () play an important syntactical role. They are used for function

S O 03N W

7. FUNCTIONS 81

declarations and definitions, to encapsulate the list of parameter declarations. For function
calls, they hold the list of arguments for that concrete call. This syntactic role is similar
to [] for arrays: in declarations and definitions, they contain the size of the corresponding
dimension. In a designation like A[i], they are used to indicate the position of the accessed
element in the array.

All the functions we have seen so far have a prototype®: their declaration and def-
inition, including a parameter type-list and a return type. To see that, let us revisit the
leapyear function from listing @

yday.c

bool leapyear(unsigned year) {
/* All years that are divisible by 4 are leap years,
unless they start a new century, provided they
are not divisible by 400. =*/
return !(year % 4) && ((year % 100) || !(year % 400));

A declaration of that function (without a definition) could look as follows:

‘bool leapyear (unsigned year);
L

Alternatively, we could even omit the name of the parameter and/or add the storage speci-
fier extern@

‘extern bool leapyear(unsigned);
L

Important for such a declaration is that the compiler sees the types of the argument(s) and
the return type, so here the prototype of the function is “function receiving an unsigned
and returning an bool.”

There are two special conventions that use the keyword void:

e If the function is to be called with no parameter, the list is replaced by the key-
word void, like main in our very first example (listing[T.T).
o If the function doesn’t return a value, the return type is given as void: for exam-
ple, swap_double.
Such a prototype helps the compiler in places where the function is to be called. It only
has to know about the parameters the function expects. Have a look at the following:

extern double fbar (double);

double fbar2 = fbar(2)/2;

Here, the call fbar(2) is not directly compatible with the expectation of function
fbar: it wants a double but receives a signed int. But since the calling code knows
this, it can convert the signed int argument 2 to the double value 2.0 before calling the
function. The same holds for the use of the return value in an expression: the caller knows
that the return type is double, so floating-point division is applied for the result expression.

C has obsolete ways to declare functions without prototype, but you will not see them
here. You shouldn’t use them; they will be retired in future versions.

Takeaway 1.7.1.1 All functions must have prototypes.

A notable exception to that rule are functions that can receive a varying number of pa-
rameters, such as printf. They use a mechanism for parameter handling called a variable
argument list©, which comes with the header stdargs.h.

4More details on the keyword extern will be provided in subsection|13.2

<stdargs.h>

82 1. ACQUAINTANCE

We will see later (subsection[16.5.2) how this works, but this feature is to be avoided
in any case. Already from your experience with printf you can imagine why such an
interface poses difficulties. You, as the programmer of the calling code, have to ensure
consistency by providing the correct "%XX" format specifiers.

In the implementation of a function, we must watch that we provide return values for
all functions that have a non-void return type. There can be several return statements in
a function:

Takeaway 1.7.1.2 Functions have only one entry but can have several return s.

All return s in a function must be consistent with the function declaration. For a
function that expects a return value, all return statements must contain an expression;
functions that expect none, mustn’t contain expressions.

Takeaway 1.7.1.3 A function return must be consistent with its type.

But the same rule as for the parameters on the calling side holds for the return value.
A value with a type that can be converted to the expected return type will be converted
before the return happens.

If the type of the function is void, the return (without expression) can even be omit-
ted:

Takeaway 1.7.1.4 Reaching the end of the {} block of a function is equivalent to a
return statement without an expression.

Because otherwise a function that returns a value would have an indeterminate value
to return, this construct is only allowed for functions that do not return a value:

Takeaway 1.7.1.5 Reaching the end of the {3} block of a function is only allowed for
void functions.

7.2. main is special. Perhaps you have noted some particularities about main. It has
a very special role as the entry point into your program: its prototype is enforced by the
C standard, but it is implemented by the programmer. Being such a pivot between the
runtime system and the application, main has to obey some special rules.

First, to suit different needs, it has several prototypes, one of which must be imple-
mented. Two should always be possible:

int main(void);
int main(int argc, charx argv[argc+1]);

Then, any C platform may provide other interfaces. Two variations are relatively common:

e On some embedded platforms where main is not expected to return to the runtime
system, the return type may be void.
e On many platforms, a third parameter can give access to the “environment.”

You should not rely on the existence of such other forms. If you want to write portable
code (which you do), stick to the two “official” forms. For these, the return value of
int gives an indication to the runtime system if the execution was successful: a value
of EXIT_SUCCESS or EXIT_FAILURE indicates success or failure of the execution from the
programmer’s point of view. These are the only two values that are guaranteed to work on
all platforms.

Takeaway 1.7.2.1 Use EXIT_SUCCESS and EXIT_FAILURE as return values for main.

7. FUNCTIONS 83

In addition, there is a special exception for main, as it is not required to have an explicit
return statement:

Takeaway 1.7.2.2 Reaching the end of main is equivalent to a return with value EXIT_SUCCESS.

Personally, I am not much of a fan of such exceptions without tangible gain; they just make
arguments about programs more complicated.

The library function exit has a special relationship with main. As the name indicates,
a call to exit terminates the program. The prototype is as follows:

[|
‘_Noreturn void exit(int status);

This functions terminates the program exactly as a return from main would. The
status parameter has the role that the return expression in main would have.

Takeaway 1.7.2.3 Calling exit(s) is equivalent to the evaluation of return s in main.

We also see that the prototype of exit is special because it has a void type. Just like
a return statement, exit never fails.

Takeaway 1.7.2.4 exit never fails and never returns to its caller.

The latter is indicated by the special keyword _Noreturn. This keyword should only
be used for such special functions. There is even a pretty-printed version of it, the macro
noreturn, which comes with the header stdnoreturn.h.

There is another feature in the second prototype of main: argv, the vector of command-
line arguments. We looked at some examples where we used this vector to communicate
values from the command line to the program. For example, in listing[3.T} these command-
line arguments were interpreted as double data for the program:

Lol 0] Large]

argv charx* charx s charx
!) !
"./heron” "@.785" IR
So each of the argv[i] for¢ = 0, ..., argc is a pointer similar to those we encoun-

tered earlier. As an easy first approximation, we can see them as strings.

Takeaway 1.7.2.5 All command-line arguments are transferred as strings.

It is up to us to interpret them. In the example, we chose the function strtod to decode
a double value that was stored in the string.
Of the argv strings, two elements hold special values:

Takeaway 1.7.2.6 Of the arguments to main, argv[@] holds the name of the program
invocation.

There is no strict rule about what program name should be, but usually it is the name
of the program executable.

Takeaway 1.7.2.7 Of the arguments to main, argv[argc] is .

In the argv array, the last argument could always be identified using this property, but
this feature isn’t very useful: we have argc to process that array.

<stdnoreturn.h>

<assert.h>

10
11
12
13

84 1. ACQUAINTANCE

7.3. Recursion. An important feature of functions is encapsulation: local variables
are only visible and alive until we leave the function, either via an explicit return or
because execution falls out of the last enclosing brace of the function’s block. Their iden-
tifiers (names) don’t conflict with other similar identifiers in other functions, and once we
leave the function, all the mess we leave behind is cleaned up.

Even better: whenever we call a function, even one we have called before, a new set of
local variables (including function parameters) is created, and these are newly initialized.
This also holds if we newly call a function for which another call is still active in the
hierarchy of calling functions. A function that directly or indirectly calls itself is called
recursive, and the concept is called recursion.

Recursive functions are crucial for understanding C functions: they demonstrate and
use primary features of the function call model and are only fully functional with these
features. As a first example, we will look at an implementation of Euclid’s algorithm to
compute the greatest common divisor (gcd) of two numbers:

euclid.h

size_t gcd2(size_t a, size_t b) {
assert(a <= b);
if (!'a) return b;
size_t rem = b % a;
return gcd2(rem, a);

As you can see, this function is short and seemingly nice. But to understand how
it works, we need to thoroughly understand how functions work, and how we transform
mathematical statements into algorithms.

Given two integers a,b > 0, the gcd is defined as the greatest integer ¢ > 0 that
divides into both a and b. Here is the formula:

gcd(a, b) = max{c € N | c|a and c|b}
If we also assume that a < b, we can easily see that two recursive formulas hold:
(2) gcd(a, b) = ged(a, b — a)
3) ged(a, b) = ged(a, b%a)

That is, the gcd doesn’t change if we subtract the smaller integer or if we replace the larger
of the two with the modulus of the other. These formulas have been used to compute the
gcd since the days of ancient Greek mathematics. They are commonly attributed to Euclid
(E0xAeldne, around 300 B.C.) but may have been known even before him.

Our C function gcd2 uses equation . First (line E]), it checks if a precondition for
the execution of this function is satisfied: whether the first argument is less than or equal to
the second. It does this by using the assert macro from assert.h. This would abort the
program with an informative message if the function was called with arguments that didn’t
satisfy that condition (we will see more explanations of assert in sybsection [8.7).

Takeaway 1.7.3.1 Make all preconditions for a function explicit.

Then, line [10[checks whether a is @, in which case it returns b. This is an important
step in a recursive algorithm:

Takeaway 1.7.3.2 In a recursive function, first check the termination condition.

A missing termination check leads to infinite recursion; the function repeatedly calls
new copies of itself until all system resources are exhausted and the program crashes. On
modern systems with large amounts of memory, this may take some time, during which
the system will be completely unresponsive. You’d better not try it.

15

16
17
18
19
20
21
22

7. FUNCTIONS 85

FIGURE 7.1. Recursive call gcd2(18, 30)

Call level 0

a =18

b = 30

la = false
rem = 12
gcd2(12, 18) | =
Call level 1

a=12
b =18
la = false
rem = 6
gcd2(6, 12) | =
Call level 2
a==o
b =12
la — false
rem = @
gcd2(0, 6) —
Call level 3
a=20
b =26
la = true

<=6 | return 6

<=6 | return 6

<=6 | return 6

return 6

Otherwise, we compute the remainder rem of b modulo a (line[TT). Then the function
is called recursively with rem and a, and the return value of that is directly returned.

Figure[7.T|shows an example of the different recursive calls that are issued from an ini-
tial call gcd2(18, 30). Here, the recursion goes four levels deep. Each level implements
its own copies of the variables a, b, and rem.

For each recursive call, modulo arithmetic (takeaway guarantees that the pre-
condition is always fulfilled automatically. For the initial call, we have to ensure this
ourselves. This is best done by using a different function, a wrapper®:

euclid.h

size_t gcd(size_t a, size_t b) {
assert(a);
assert(b);
if (a < b)
return gcd2(a, b);
else
return gcd2(b, a);

Takeaway 1.7.3.3 Ensure the preconditions of a recursive function in a wrapper func-
tion.

This avoids having to check the precondition at each recursive call: the assert macro is
such that it can be disabled in the final production object file.

86 1. ACQUAINTANCE

Another famous example of a recursive definition of an integer sequence are Fibon-
nacci numbers, a sequence of numbers that appeared as early as 200 B.C. in Indian texts.
In modern terms, the sequence can be defined as

“4) =1
(5) F=1
(6) F,=F,_ 1+ F,_»o foralli > 2

The sequence of Fibonacci numbers is fast-growing. Its first elements are 1, 1, 2, 3, 5,
8, 13, 21, 34, 55, 89, 144, 377, 610, 987.
With the golden ratio

1
©) 0= L+vh 1.61803...

it can be shown that
) F,=2 7
and so, asymptotically, we have

) F, ~

So the growth of F}, is exponential.
The recursive mathematical definition can be translated in a straightforward manner
into a C function:

fibonacci.c

size_t fib(size_t n) {
if (n < 3)
return 1;
else
return fib(n-1) + fib(n-2);

NeliecREN Bo) RRU TN

Here, again, we first check for the termination condition: whether the argument to the
call, n, is less than 3. If it is, the return value is 1; otherwise we return the sum of calls with
argument values n-1 and n-2.

Figure shows an example of a call to fib with a small argument value. We see
that this leads to three levels of stacked calls to the same function with different arguments.
Because equation (6) uses two different values of the sequence, the scheme of the recursive
calls is much more involved than the one for gcd2. In particular, there are three leaf calls:
calls to the function that fulfill the termination condition, and thus by themselves not go
into recursion.

Implemented like that, the computation of the Fibonacci numbers is quite slow.
In fact, it is easy to see that the recursive formula for the function itself also leads to an
analogous formula for the function’s execution time:

(10) Ttincy = Co
(11) Ttib2y = Co
(12) Trineiy = Trinci-1) + Trib-2) + C1 foralli >3

where C and C'; are constants that depend on the platform.

[Exs 45]ghow that a call fib(n) induces F, leaf calls.
[Exs 46]\feasure the times for calls to f ib(n) with n set to different values. On POSIX systems, you can use
/bin/time to measure the run time of a program’s execution.

7. FUNCTIONS 87

FIGURE 7.2. Recursive call fib(4)

Call level 0
n=4
n<3 = false
fib(3) —
Call level 1
n=3
n<3 = false
fib(2) -
Call level 2
n=2
n<3 = true
<=1 | return 1
fib(1) =
Call level 2
n=1
n<3 = true
<=1 | return 1
<=2 |return 1 + 1
fib(2) —
Call level 1
n=2
n<3 = true
<=1 | return 1
return 2 + 1

It follows that regardless of the platform and the cleverness of our implementation, the
function’s execution time will always be something like

Co+C
(13) Tribimy = Fn(Co + Ch) = o™ - % =" - Cy

with another platform-dependent constant Cs. So the execution time of fib(n) is expo-
nential in n, which usually rules out using such a function in practice.

Takeaway 1.7.3.4 Multiple recursion may lead to exponential computation times.

If we look at the nested calls in table [72] we see that we have the call fib(2)
twice, and thus all the effort to compute the value for fib(2) is repeated. The following
fibCacheRec function avoids such repetitions. It receives an additional argument, cache,
which is an array that holds all values that have already been computed:

fibonacciCache.c

/* Compute Fibonacci number n with the help of a cache that may
hold previously computed values. =*/
size_t fibCacheRec(size_t n, size_t cache[n]) {
if (!cachel[n-1]) {
cachel[n-1]
= fibCacheRec(n-1, cache) + fibCacheRec(n-2, cache);
}
return cachel[n-17;

}

13
14
15
16
17
18
19
20
21
22
23
24

11
12
13
14
15
16
17

03N b

88 1. ACQUAINTANCE

size_t fibCache(size_t n) {
if (n+1 <= 3) return 1;
/* Set up a VLA to cache the values. x/
size_t cachel[n];
/* A VLA must be initialized by assignment. =x/
cache[@] = 1; cache[1] = 1;
for (size_t i = 2; i < n; ++i)
cachel[i] = 0;
/* Call the recursive function. =/
return fibCacheRec(n, cache);

By trading storage against computation time, the recursive calls are affected only if
the value has not yet been computed. Thus the fibCache(i) call has an execution time
that is linear in n

(14) Ttibcacheny = 1 - Cs3

for a platform-dependent parameter Cg Just by changing the algorithm that
implements our sequence, we are able to reduce the execution time from exponential to
linear! We didn’t (and wouldn’t) discuss implementation details, nor did we perform con-
crete measurements of execution time. @

Takeaway 1.7.3.5 A bad algorithm will never lead to a implementation that performs
well.

Takeaway 1.7.3.6 Improving an algorithm can dramatically improve performance.

For the fun of it, fib2Rec shows a third implemented algorithm for the Fibonacci
sequence. It gets away with a fixed-length array (FLA) instead of a variable-length array
(VLA).

fibonacci2.c

void fib2rec(size_t n, size_t buf[2]) {
if (n > 2) ¢
size_t res = buf[@] + buf[1];
buf[1] = buf[e];
buf[@] = res;
fib2rec(n-1, buf);

3

size_t fib2(size_t n) {
size_t resf[2] = { 1, 1, };
fib2rec(n, res);
return res[0];

Proving that this version is still correct is left as an exercise Also, up to now we
have only had rudimentary tools to assess whether this is “faster” in any sense we might

want to give the term

[Exs 47prove equation (T4).
[Exs 481nfeasure times for fibCache(n) call with the same values as for fib.

LExs 491Jse an iteration statement to transform fib2rec into a nonrecursive function fib2iter.

Exs S0IVeasure times for fib2 (n) calls with the same values as fib .

SUMMARY 89

CHALLENGE 9 (factorization). Now that we’ve covered functions, see if you can imple-
ment a program factor that receives a number N on the command line and prints out

N: Fo F1 F2

where F@ and so on are all the prime factors of N.

The core of your implementation should be a function that, given a value of type size_t,
returns its smallest prime factor.

Extend this program to receive a list of such numbers and output such a line for each of
them.

Summary

e Functions have a prototype that determines how they can be called.

e Terminating main and calling exit are the same.

e Each function call has its own copy of local variables and can be called recur-
sively.

90 1. ACQUAINTANCE

8. Clibrary functions

This section covers

Doing math, handling files, and processing strings
Manipulating time

Managing the runtime environment

Terminating programs

The functionality that the C standard provides is separated into two big parts. One is
the proper C language, and the other is the C library. We have looked at several functions
that come with the C library, including printf, puts, and strtod, so you should have a
good idea what to expect: basic tools that implement features that we need in everyday
programming and for which we need clear interfaces and semantics to ensure portability.

On many platforms, the clear specification through an application programming inter-
face (API) also allows us to separate the compiler implementation from the library imple-
mentation. For example, on Linux systems, we have a choice of different compilers, most
commonly gcc and clang, and different C library implementations, such as the GNU C li-
brary (glibc), dietlibc, or musl; potentially, any of these choices can be used to produce
an executable.

We will first discuss the general properties and tools of the C library and its inter-
faces, and then describe some groups of functions: mathematical (numerical) functions,
input/output functions, string processing, time handling, access to the runtime environ-
ment, and program termination.

8.1. General properties of the C library and its functions. Roughly, library func-
tions target one or two purposes:

Platform abstraction layer. Functions that abstract from the specific properties and
needs of the platform. These are functions that need platform-specific bits to implement
basic operations such as 10, which could not be implemented without deep knowledge of
the platform. For example, puts has to have some concept of a “terminal output” and how
to address it. Implementing these functionalities would exceed the knowledge of most C
programmers, because doing so requires OS- or even processor-specific magic. Be glad
that some people did that job for you.

Basic tools. Functions that implement a task (such as strtod) that often occurs in
programming in C and for which it is important that the interface is fixed. These should
be implemented relatively efficiently, because they are used a lot, and they should be well
tested and bug free so we can rely safely on them. Implementing such functions should in
principle be possible for any confirmed C programmer/ = '}

A function like printf can be viewed as targeting both purposes: it can effectively be
separated into a formatting phase providing a basic tool and an output phase that is platform
specific. There is a function snprintf (explained much later, in subsection [I4.T) that
provides the same formatting functionalities as printf but stores the result in a string.
This string could then be printed with puts to give the same output as printf as a whole.
In the following sections, we will discuss the different header files that declare the
interfaces of the C library (subsection [8.1.1)), the different types of interfaces it provides
(subsection [8.1.7), the various error strategies it applies (subsection [8.1.3), an optional
series of interfaces intended to improve application safety (subsection [8.1.4), and tools
that we can use to assert platform-specific properties at compile time (subsection [8.1.5).

[Exs 51\rite a function my_strtod that implements the functionality of strtod for decimal floating-point con-
stants.

8. C LIBRARY FUNCTIONS

TABLE 8.1. C library headers

91

Name Description Section
<assert.h> Asserting runtime conditions 8.7
<complex.h> Complex numbers 5.7.7
<ctype.h> Character classification and conversion 8.4
<errno.h> Error codes 8.1.3
<fenv.h> Floating-point environment

<float.h> Properties of floating-point types

<inttypes.h> Formatting conversion of integer types

<iso0646.h> Alternative spellings for operators

<limits.h> Properties of integer types

<locale.h> Internationalization

<math.h> Type-specific mathematical functions

<setjmp.h> Non-local jumps

<signal.h> Signal-handling functions

<stdalign.h> Alignment of objects

<stdarg.h> Functions with varying numbers of arguments

<stdatomic.h>
<stdbool.h>

Atomic operations
Booleans

<stddef.h> Basic types and macros

<stdint.h> Exact-width integer types
<stdio.h> Input and output

<stdlib.h> Basic functions

<stdnoreturn.h> Non-returning functions
<string.h> String handling

<tgmath.h> Type-generic mathematical functions
<threads.h> Threads and control structures
<time.h> Handling time

<uchar.h> Unicode characters

<wchar.h> Wide strings

<wctype.h> Wide character classification and conversion

8.1.1. Headers. The C library has a lot of functions, far more than we can handle in

this book. A header® file bundles interface descriptions for a number of features, mostly
functions. The header files that we will discuss here provide features of the C library, but
later we can create our own interfaces and collect them in headers (section [T0).

On this level, we will discuss the functions from the C library that are necessary for
basic programming with the elements of the language we have seen so far. We will com-
plete this discussion on higher levels, when we discuss a range of concepts. Table 8.1 has
an overview of the standard header files.

8.1.2. Interfaces. Most interfaces in the C library are specified as functions, but im-
plementations are free to chose to implement them as macros, where doing so is appropri-
ate. Compared to those we saw in subsection[5.6.3] this uses a second form of macros that
are syntactically similar to functions, function-like macros®:

[
‘#define putchar (A) putc(A, stdout)
L

As before, these are just textual replacements, and since the replacement text may
contain a macro argument several times, it would be bad to pass any expression with side
effects to such a macro or function. Hopefully, our previous discussion about side effects
(takeaway [[.4.2.2) has already convinced you not to do that.

92 1. ACQUAINTANCE

TABLE 8.2. Error return strategies for C library functions. Some func-
tions may also indicate a specific error condition through the value of the
errno macro.

Failure return Test Typical case Example

0 !value Other values are valid fopen

Special error code value == code | Other values are valid puts, clock,
mktime,
strtod, fclose

Nonzero value value Value otherwise unneeded | fgetpos,
fsetpos

Special success code | value != code | Case distinction for failure | thrd_create

condition
] Negative value value < @ \ Positive value is a counter | printf

Some of the interfaces we will look at have arguments or return values that are point-
ers. We can’t handle these completely yet, but in most cases we can get away with passing
in known pointers or @ for pointer arguments. Pointers as return values will only occur in
situations where they can be interpreted as an error condition.

8.1.3. Error checking. C library functions usually indicate failure through a special
return value. What value indicates the failure can be different and depends on the function
itself. Generally, you have to look up the specific convention in the manual page for the
functions. Table[8.2] gives a rough overview of the possibilities. There are three categories
that apply: a special value that indicates an error, a special value that indicates success,
and functions that return some sort of positive counter on success and a negative value on
failure.

Typical error-checking code looks like the following:

if (puts("hello_world”) == EOF) {
perror ("can’t_output_to_terminal:");
exit (EXIT_FAILURE);

3

Here we see that puts falls into the category of functions that return a special value
<stdio.h> on error, EOF, “end-of-file.” The perror function from stdio. h is then used to provide an
additional diagnostic that depends on the specific error. exit ends the program execution.

Don’t wipe failures under the carpet. In programming,

Takeaway 1.8.1.1 Failure is always an option.

Takeaway 1.8.1.2 Check the return value of library functions for errors.

An immediate failure of the program is often the best way to ensure that bugs are
detected and get fixed early in development.

Takeaway 1.8.1.3 Fail fast, fail early, and fail often.

C has one major state variable that tracks errors of C library functions: a dinosaur
called errno. The perror function uses this state under the hood, to provide its diagnostic.
If a function fails in a way that allows us to recover, we have to ensure that the error state
% also is reset; otherwise, the library functions or error checking might get confused:

8. C LIBRARY FUNCTIONS 93

void puts_safe(char const s[static 1]) {
static bool failed = false;

if (!failed && puts(s) == EOF) {
perror("can’t_output_to_terminal:");
failed = true;
errno = 0;

}

8.1.4. Bounds-checking interfaces. Many of the functions in the C library are vulner-
able to buffer overflow® if they are called with an inconsistent set of parameters. This led
(and still leads) to a lot of security bugs and exploits and is generally something that should
be handled very carefully.

C11 addressed this sort of problems by deprecating or removing some functions from
the standard and by adding an optional series of new interfaces that check consistency of
the parameters at runtime. These are the bounds-checking interfaces of Annex K of the C
standard. Unlike most other features, this doesn’t come with its own header file but adds
interfaces to others. Two macros regulate access to theses interfaces: __STDC_LIB_EXT1__
tells whether this optional interfaces is supported, and
__STDC_WANT_LIB_EXT1__ switches it on. The latter must be set before any header files
are included:

#if ! __STDC_LIB_EXT1__

error "This_code_needs_bounds_checking_interface_Annex_K"
#endif

#define __STDC_WANT_LIB_EXT1__ 1

#include <stdio.h>

/* Use printf_s from here on. x/

This mechanism was (and still is) open to much debate, and therefore Annex K is an
optional feature. Many modern platforms have consciously chosen not to support it. There
even has been an extensive study by |O’Donell and Sebor] [2015] that concluded that the
introduction of these interfaces has created much more problems than it solved. In the
following, such optional features are marked with a gray background.

The bounds-checking functions usually use the suffix _s on the name of the library
function they replace, such as printf_s for printf. So you should not use that suffix for
code of your own.

Takeaway 1.8.1.4 Identifier names terminating with _s are reserved.

If such a function encounters an inconsistency, a runtime constraint violation®, it
usually should end program execution after printing a diagnostic.

8.1.5. Platform preconditions. An important goal of programming with a standard-
ized language such as C is portability. We should make as few assumptions about the
execution platform as possible and leave it to the C compiler and library to fill in the gaps.
Unfortunately, this is not always an option, in which case we should clearly identify code
preconditions.

Takeaway 1.8.1.5 Missed preconditions for the execution platform must abort compila-
tion.

Annex K

<assert.h>

<math.h>
<tgmath.h>

94 1. ACQUAINTANCE

The classic tools to achieve this are preprocessor conditionals© , as we saw earlier:

#if ! __STDC_LIB_EXT1__
error "This_code_needs_bounds_checking_interface_Annex_K"
#endif

As you can see, such a conditional starts with the token sequence # if on a line and
terminates with another line containing the sequence # endif. The # error directive in
the middle is executed only if the condition (here ! __STDC_LIB_EXT1__) is true. It aborts
the compilation process with an error message. The conditions that we can place in such a
construct are limited [F*>7]

Takeaway 1.8.1.6 Only evaluate macros and integer literals in a preprocessor condi-
tion.

As an extra feature in these conditions, identifiers that are unknown evaluate to 0. So,
in the previous example, the expression is valid, even if __STDC_LIB_EXT1__ is unknown
at that point.

Takeaway 1.8.1.7 In preprocessor conditions, unknown identifiers evaluate to 0.

If we want to test a more sophisticated condition, _Static_assert (a keyword) and
static_assert (a macro from the header assert.h) have a similar effect and are at our
disposal:

#include <assert.h>
static_assert(sizeof(double) == sizeof(long double),
"Extra_precision_needed_for_convergence.");

8.2. Mathematics. Mathematical functions come with the math.h header, but it is
much simpler to use the type-generic macros that come with tgmath.h. Basically, for all
functions, it has a macro that dispatches an invocation such as sin(x) or pow(x, n) to the
function that inspects the type of x in its argument and for which the return value is of that
same type.

The type-generic macros that are defined are far too many to describe in detail here.
Table B3] gives an overview of the functions that are provided.

Table 8.3: Mathematical functions. Type-generic macros are printed in
red, and plain functions in green.

Function Description

abs, labs, 11abs || for integers

acosh Hyperbolic arc cosine
acos Arc cosine

asinh Hyperbolic arc sine

asin Arc sine

atan2 Arc tangent, two arguments
atanh Hyperbolic arc tangent
atan Arc tangent

cbrt Jx

ceil [x]

copysign Copies the sign from y to
cosh Hyperbolic cosine

cos Cosine function, cos x

[Exs 52lyyrite a preprocessor condition that tests whether int has two’s complement sign representation.

8. C LIBRARY FUNCTIONS 95

Table 8.3: Mathematical functions, continued.

Function Description

div, 1div, 11div Quotient and remainder of integer division
erfc Complementary error function, 1 — % fOI et dt
erf Error function, % Iy et dt

exp2 2%

expm1 et —1

exp er

fabs || for floating point

fdim Positive difference

floor |z|

fmax Floating-point maximum

fma rT-y+z

fmin Floating-point minimum

fmod Remainder of floating-point division
fpclassify Classifies a floating-point value
frexp Significand and exponent

hypot Va? +y?

ilogb [loge, 1 raorx 2] as integer

isfinite Checks if finite

isinf Checks if infinite

isnan Checks if NaN

isnormal Checks if normal

ldexp x-2Y

lgamma log, I'(x)

log10 log

loglp log,.(1+)

log2 logy

logb logg 1 gaorx 2 as floating point

log log, =

modf, modff, modfl
nan, nanf, nanl
nearbyint

nextafter, nexttoward
pow

remainder

remquo

rint, 1rint, 11lrint
round, 1round, 11round
scalbn, scalbln
signbit

sinh

sin

sqrt

tanh

tan

tgamma

trunc

Integer and fractional parts

Not-a-number (NaN) of the corresponding type
Nearest integer using the current rounding mode
Next representable floating-point value

Y

Signed remainder of division

Signed remainder and the last bits of the division
Nearest integer using the current rounding mode
sign(x) -||x| + 0.5]

x - FLT_RADIXY

Checks if negative

Hyperbolic sine

Sine function, sin z

Jx

Hyperbolic tangent

Tangent function, tan x

Gamma function, I'(x)

sign(x) -|Ja]

Nowadays, implementations of numerical functions should be high quality, be effi-

cient, and have well-controlled numerical precision. Although any of these functions could

<stdio.h>

om

96 1. ACQUAINTANCE

be implemented by a programmer with sufficient numerical knowledge, you should not try
to replace or circumvent them. Many of them are not just implemented as C functions
but also can use processor-specific instructions. For example, processors may have fast
approximations of sqrt and sin functions, or implement a floating-point multiply add,
fma, in a low-level instruction. In particular, there is a good chance that such low-level
instructions are used for all functions that inspect or modify floating-point internals, such
as carg, creal, fabs, frexp, 1dexp, 11round, 1round, nearbyint, rint, round, scalbn,
and trunc. So, replacing them or reimplementing them in handcrafted code is usually a
bad idea.

8.3. Input, output, and file manipulation. We have seen some of the IO functions
that come with the header file stdio.h: puts and printf. Whereas the second lets you
format output in a convenient fashion, the first is more basic: it just outputs a string (its
argument) and an end-of-line character.

8.3.1. Unformatted text output. There is an even more basic function than puts:
putchar, which outputs a single character. The interfaces of these two functions are as
follows:

int putchar(int c¢);
int puts(char const s[static 1]);

The type int as a parameter for putchar is a historical accident that shouldn’t hurt
you much. In contrast to that, having a return type of int is necessary so the function can
return errors to its caller. In particular, it returns the argument c if successful and a specific
negative value EOF (End Of File) that is guaranteed not to correspond to any character on
failure.

With this function, we could actually reimplement puts ourselves:

int puts_manually(char const s[static 1]) {
for (size_t i = 0; s[i]; ++i) {

if (putchar(s[i]) == EOF) return EOF;
}
if (putchar(’\n’) == EOF) return EOF;
return 0;

This is just an example; it is probably less efficient than the puts that your platform
provides.

Up to now, we have only seen how to output to the terminal. Often, you’ll want to write
results to permanent storage, and the type FILE* for streams® provides an abstraction for
this. There are two functions, fputs and fputc, that generalize the idea of unformatted
output to streams:

int fputc(int c, FILEx stream);
int fputs(char const s[static 1], FILEx stream);

Here, the * in the FILE* type again indicates that this is a pointer type, and we won’t
go into the details. The only thing we need to know for now is that a pointer can be tested
whether it is null (takeaway [I.6.2.4), so we will be able to test whether a stream is valid.

The identifier FILE represents an opaque type® , for which we don’t know more than
is provided by the functional interfaces that we will see in this section. The fact that it is
implemented as a macro, and the misuse of the name “FILE” for a stream is a reminder
that this is one of the historical interfaces that predate standardization.

Takeaway 1.8.3.1 Opagque types are specified through functional interfaces.

Takeaway 1.8.3.2 Don'’t rely on implementation details of opaque types.

8. C LIBRARY FUNCTIONS 97

If we don’t do anything special, two streams are available for output: stdout and
stderr. We have already used stdout implicitly: this is what putchar and puts use
under the hood, and this stream is usually connected to the terminal. stderr is similar and
also is linked to the terminal by default, with perhaps slightly different properties. In any
case, these two are closely related. The purpose of having two of them is to be able to
distinguish “usual” output (stdout) from “urgent” output (stderr).

We can rewrite the previous functions in terms of the more general ones:

int putchar_manually(int c) {
return fputc(c, stdout);

3

int puts_manually(char const s[static 1]) {
if (fputs(s, stdout) == EOF) return EOF;
if (fputc(’\n’, stdout) == EOF) return EOF;
return 0;

}

Observe that fputs differs from puts in that it doesn’t append an end-of-line character
to the string.

Takeaway 1.8.3.3 puts and fputs differ in their end-of-line handling.

8.3.2. Files and streams. If we want to write output to real files, we have to attach the
files to our program execution by means of the function fopen:

FILE* fopen(char const path[static 1], char const mode[static 1]);
FILE* freopen(char const path[static 1], char const mode[static 117,
FILE *xstream);

This can be used as simply as here:

int main(int argc, char* argv[largc+1]) {
FILE* logfile = fopen("mylog.txt", "a");
if (!logfile) {
perror ("fopen_failed”");
return EXIT_FAILURE;
}
fputs("feeling_fine_today\n"”, logfile);
return EXIT_SUCCESS;
}

This opens a file® called "mylog.txt” in the file system and provides access to it
through the variable logfile. The mode argument "a"” opens the file for appending: that
is, the contents of the file are preserved, if they exist, and writing begins at the current end
of that file.

There are multiple reasons why opening a file might not succeed: for example, the file
system might be full, or the process might not have permission to write at the indicated
place. We check for such an error condition (takeaway [I.8.1.2) and exit the program if
necessary.

As we have seen, the codeperror function is used to give a diagnostic of the error that
occurred. It is equivalent to something like the following:

[|
\fputs(“fopenufailed:usome—diagnostic\n”, stderr);
L |

This “some-diagnostic” might (but does not have to) contain more information that helps
the user of the program deal with the error.

Annex K

98 1. ACQUAINTANCE

TABLE 8.4. Modes and modifiers for fopen and freopen. One of the
first three must start the mode string, optionally followed by one or more
of the other three. See table [8.3]for all valid combinations.

Mode Memo File status after fopen

a’ Append w | File unmodified; position at end

w’ Write w | Content of file wiped out, if any

r’ Read r | File unmodified; position at start

Modifier | Memo Additional property

T+’ Update rw | Opens file for reading and writing

b’ Binary Views as a binary file; otherwise a text file

x’ Exclusive Creates a file for writing if it does not yet exist

There are also bounds-checking replacements fopen_s and freopen_s, which ensure
that the arguments that are passed are valid pointers. Here, errno_t is a type that comes
with stdlib.h and encodes error returns. The restrict keyword that also newly appears
only applies to pointer types and is out of our scope for the moment:

errno_t fopen_s(FILEx restrict streamptr[restrict],
char const filename[restrict], char const mode[restrict])

errno_t freopen_s(FILE* restrict newstreamptr[restrict],
char const filename[restrict], char const mode[restrict
i
FILE* restrict stream);

There are different modes to open a file; "a” is only one of several possibilities. Ta-
ble [8.4] contains an overview of the characters that may appear in that string. Three base
modes regulate what happens to a pre-existing file, if any, and where the stream is posi-
tioned. In addition, three modifiers can be appended to them. Table[8.5]has a complete list
of the possible combinations.

These tables show that a stream can be opened not only for writing but also for reading;
we will see shortly how that can be done. To know which of the base modes opens for
reading or writing, just use your common sense. For a’ and ’"w’, a file that is positioned
at its end can’t be read, since there is nothing there; thus these open for writing. For "r’,
file content that is preserved and positioned at the beginning should not be overwritten
accidentally, so this is for reading.

The modifiers are used less commonly in everyday coding. “Update” mode with ’+’
should be used carefully. Reading and writing at the same time is not easy and needs some
special care. For ’b’, we will discuss the difference between text and binary streams in
more detail in subsection [[4.4

There are three other principal interfaces to handle streams, freopen, fclose, and
fflush:

int fclose(FILE* fp);
int fflush(FILE* stream);

The primary uses for freopen and fclose are straightforward: freopen can associate
a given stream to a different file and eventually change the mode. This is particular useful
to associate the standard streams to a file. E.g our little program from above could be
rewritten as

8. C LIBRARY FUNCTIONS 99

TABLE 8.5. Mode strings for fopen and freopen. These are the valid
combinations of the characters in table[8.4]

"a" Creates an empty text file if necessary; open for writing at end-
of-file

"w" Creates an empty text file or wipes out content; open for writing

"t Opens an existing text file for reading

"at" Creates an empty text file if necessary; open for reading and

writing at end-of-file
"w+" Creates an empty text file or wipes out content; open for reading
and writing

n n

r+ Opens an existing text file for reading and writing at beginning
of file
"ab" "rb" "wb" Same as above, but for a binary file instead of a text file
"a+b" "ab+"
"r+b" "rb+"
"w+b" "wh+"
"wx " "wtx"” Same as above, but error if the file exists prior to the call
"whx" "w+bx"
"wb+x"

int main(int argc, char* argv[largc+1]) {

if (!freopen(”"mylog.txt”, "a", stdout)) {
perror ("freopen_failed"”);
return EXIT_FAILURE;

3

puts("feeling_fine_today");

return EXIT_SUCCESS;

}

8.3.3. Text 10. Output to text streams is usually buffered®: that is, to make more
efficient use of its resources, the IO system can delay the physical write of to a stream.
If we close the stream with fclose, all buffers are guaranteed to be flushed® to where it
is supposed to go. The function fflush is needed in places where we want to see output
immediately on the terminal, or where don’t want to close the file yet but want to ensure
that all content we have written has properly reached its destination. Listing [8.I] shows an
example that writes 10 dots to stdout with a delay of approximately one second between
all writes

The most common form of 10 buffering for text files in line buffering® . In that mode,
output is only physically written if the end of a text line is encountered. So usually, text that
is written with puts appears immediately on the terminal; fputs waits until it encounters
an ’\n’ in the output. Another interesting thing about text streams and files is that there
is no one-to-one correspondence between characters that are written in the program and
bytes that land on the console device or in the file.

Takeaway 1.8.3.4 Text input and output converts data.

This is because internal and external representations of text characters are not nec-
essarily the same. Unfortunately, there are still many different character encodings; the
C library is in charge of doing the conversions correctly, if it can. Most notoriously, the
end-of-line encoding in files is platform dependent:

[Exs 53]0bserve the behavior of the program by running it with zero, one, and two command-line arguments.

0N N AW~

100 1. ACQUAINTANCE

LISTING 8.1. flushing buffered output

#include <stdio.h>

/* delay execution with some crude code,
should use thrd_sleep, once we have that =*/
void delay(double secs) {
double const magic = 4E8; // works just on my machine
unsigned long long const nano = secs * magic;
for (unsigned long volatile count = 0;
count < nano;
++count) {
/* nothing here =*/
}
3

int main(int argc, char* argv[argc+1]) {
fputs(”"waiting._10_seconds._for_you_to_stop_me"”, stdout);
if (argc < 3) fflush(stdout);
for (unsigned i = 0; i < 10; ++i) {

fputc(’.’, stdout);
if (argc < 2) fflush(stdout);
delay (1.0);

}
fputs(”"\n", stdout);
fputs (”"You_did_ignore_me,_so_bye_bye\n", stdout);

Takeaway 1.8.3.5 There are three commonly used conversion to encode end-of-line.

C gives us a very suitable abstraction in using ’\n’ for this, regardless of the platform.
Another modification you should be aware of when doing text 10 is that white space that
precedes the end of line may be suppressed. Therefore, the presence of trailing white
space® such as blank or tabulator characters cannot be relied upon and should be avoided:

Takeaway 1.8.3.6 Text lines should not contain trailing white space.

The C library additionally also has very limited support for manipulating files within
the file system:

int remove(char const pathname[static 1]);
int rename(char const oldpath[static 1], char const newpath[static 1]);

These basically do what their names indicate.

8.3.4. Formatted output. We have covered how to use printf for formatted output.
The function fprintf is very similar to that, but it has an additional parameter that allows
us to specify the stream to which the output is written:

int printf(char const format[static 1], ...);
int fprintf(FILEx stream, char const format[static 11, ...);
The syntax with the three dots . . . indicates that these functions may receive an arbi-

trary number of items that are to be printed. An important constraint is that this number
must correspond exactly to the *%’ specifiers; otherwise the behavior is undefined:

8. C LIBRARY FUNCTIONS 101

TABLE 8.6. Format specifications for printf and similar functions,
with the general syntax "%[FFI[WW][.PPI[LL]SS", where [] surround-
ing a field denotes that it is optional.

FF Flags Special form of conversion
WW Field width minimum width

PP Precision

LL Modifier Select width of type

SS Specifier Select conversion

TABLE 8.7. Format specifiers for printf and similar functions

’d” or i’ Decimal Signed integer
u’ Decimal Unsigned integer
o’ Octal Unsigned integer
"x” or ’X’ Hexadecimal Unsigned integer
e’ or ’E’ [-]d.ddd e=dd, “scientific” Floating point
"f7or’F’ [-1d.ddd Floating point
g’ or G’ generic e or f Floating point
’a’ or ’A’ [-]0@xh.hhhh p=d, Hexadecimal Floating point
"%’ "%’ character No argument is converted.
¢’ Character Integer

’s’ Characters String

p’ Address voidx pointer

Takeaway 1.8.3.7 Parameters of printf must exactly correspond to the format speci-

fiers.

With the syntax %[FFI[WW][.PP][LL]SS, a complete format specification can be com-
posed of five parts: flags, width, precision, modifiers, and specifier. See table 8.6 for
details.

The specifier is not optional and selects the type of output conversion that is performed.
See table 8.7 for an overview.

As you can see, for most types of values, there is a choice of format. You should chose
the one that is most appropriate for the meaning of the value that the output is to convey.
For all numerical values, this should usually be a decimal format.

Takeaway 1.8.3.8 Use "%d" and "%u" formats to print integer values.

If, on the other hand, you are interested in a bit pattern, use the hexadecimal format
over octal. It better corresponds to modern architectures that have 8-bit character types.

Takeaway 1.8.3.9 Use the "%x" format to print bit patterns.

Also observe that this format receives unsigned values, which is yet another incentive
to only use unsigned types for bit sets. Seeing hexadecimal values and associating the
corresponding bit pattern requires training. Table [8.8 has an overview of the digits, the
values and the bit pattern they represent.

For floating-point formats, there is even more choice. If you do not have specific
needs, the generic format is the easiest to use for decimal output.

Takeaway 1.8.3.10 Use the "%g" format to print floating-point values.

102 1. ACQUAINTANCE

Digit Value Pattern Digit Value Pattern
0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 A 10 1010
3 3 0011 B 11 1011
4 4 0100 C 12 1100
5 5 0101 D 13 1101
6 6 0110 E 14 1110
7 7 011 F 15 1111

TABLE 8.8. Hexadecimal values and bit patterns

TABLE 8.9. Format modifiers for printf and similar functions. float
arguments are first converted to double.

Character | Type Conversion
"hh" char types Integer

"h" short types Integer

" signed, unsigned Integer

"1 long integer types integer

"11" long long integer types | Integer

"3 intmax_t, uintmax_t Integer

"z" size_t Integer

"t ptrdiff_t Integer

"L long double Floating point

The modifier part is important to specify the exact type of the corresponding argu-
ment. Table gives the codes for the types we have encountered so far. This modifier
is particularly important because interpreting a value with the wrong modifier can cause
severe damage. The printf functions only have knowledge about their arguments through
the format specifiers, so giving a function the wrong size may lead it to read more or fewer
bytes than provided by the argument or to interpret the wrong hardware registers.

Takeaway 1.8.3.11 Using an inappropriate format specifier or modifier makes the be-
havior undefined.

A good compiler should warn about wrong formats; please take such warnings seri-
ously. Note also the presence of special modifiers for the three semantic types. In partic-
ular, the combination "%zu" is very convenient because we don’t have to know the base
type to which size_t corresponds.

The width (WW) and precision (. PP) can be used to control the general appearance of a
printed value. For example, for the generic floating-point format "%g", the precision con-
trols the number of significant digits. A format of "%20.10g" specifies an output field of 20
characters with at most 10 significant digits. How these values are interpreted specifically
differs for each format specifier.

The flag can change the output variant, such as prefixing with signs ("%+d"), @x for
hexadecimal conversion ("%#X"), @ for octal ("%#0"), padding with @, or adjusting the
output within its field to the left instead of the right. See table [§.10] Remember that
a leading zero for integers is usually interpreted as introducing an octal number, not a
decimal. So using zero padding with left adjustment "%-0" is not a good idea because it
can confuse the reader about the convention that is applied.

8. C LIBRARY FUNCTIONS 103

TABLE 8.10. Format flags for printf and similar functions

Character | Meaning Conversion

" Alternate form, such as prefix 0x "aAeEfFgGoxX"
"Q" Zero padding Numeric

v Left adjustment Any

"L ’’ for positive values, * -’ for negative | Signed

"+ "+’ for positive values, ’-’ for negative | Signed

If we know that the numbers we write will be read back in from a file later, the forms
"%+d" for signed types, "%#X" for unsigned types, and "%a" for floating point are the most
appropriate. They guarantee that the string-to-number conversions will detect the correct
form and that the storage in a file will not lose information.

Takeaway 1.8.3.12 Use "%+d", "%#X", and "%a" for conversions that have to be read
later.

The optional interfaces printf_s and fprintf_s check that the stream, the format,
and any string arguments are valid pointers. They don’t check whether the expressions in
the list correspond to correct format specifiers:

[|
| int printf_s(char const format[restrictl, ...);

‘int fprintf_s(FILE *restrict stream,

| char const format[restrictl, ...);

L |

Here is a modified example for reopening stdout:

int main(int argc, charx argv[largc+1]) {

int ret = EXIT_FAILURE;

fprintf_s(stderr, "freopen_of_%s:", argv[1]);

if (freopen(argv[1], "a", stdout)) {
ret = EXIT_SUCCESS;
puts(”"feeling_fine_today");

3

perror(0);

return ret;

3

This improves the diagnostic output by adding the filename to the output string. fprintf_s
is used to check the validity of the stream, the format, and the argument string. This
function may mix the output of the two streams if they are both connected to the same
terminal.

8.3.5. Unformatted text input. Unformatted input is best done with fgetc for a single
character and fgets for a string. The stdin standard stream is always defined and usually
connects to terminal input:

int fgetc(FILE* stream);
charx fgets(char s[restrict], int n, FILE* restrict stream);
int getchar(void);

Annex K

Annex K

0N N W=

NS T NS T N6 T NG T N6 T NG T N i S e e T T T T e ey
AN W~ OWVWXIANWNPRWND—= O\

104 1. ACQUAINTANCE

In addition, there are also getchar and gets_s, which read from stdin but don’t add
much to the previous interfaces that are more generic:

[|
\char* gets_s(char s[static 1], rsize_t n);
L |

Historically, in the same spirit in which puts specializes fputs, the prior version of
the C standard had a gets interface. This has been removed because it was inherently
unsafe.

Takeaway 1.8.3.13 Don’t use gets.

The following listing shows a function that has functionality equivalent to fgets.

LISTING 8.2. Implementing fgets in terms of fgetc
charx fgets_manually(char s[restrict], int n,
FILExrestrict stream) {
if (!stream) return 0;
if (!n) return s;
/* Reads at most n-1 characters =x/
for (size_t pos = 0; pos < n-1; ++pos) {
int val = fgetc(stream);
switch (val) {

/* EOF signals end-of-file or error =x/
case EOF: if (feof(stream)) {
s[i] = 0;
/* Has been a valid call =*/
return s;
} else {
/* Error =/
return 0;
}
/* Stop at end-of-line. */
case '\n’: s[i] = val; s[i+1] = @; return s;

/* Otherwise just assign and continue. x/
default: s[i] = val;
}
3
s[n-1] = 0;
return s;

}

Again, such example code is not meant to replace the function, but to illustrate prop-
erties of the functions in question: here, the error-handling strategy.

Takeaway 1.8.3.14 fgetc returns int to be able to encode a special error status, EOF,
in addition to all valid characters.

Also, detecting a return of EOF alone is not sufficient to conclude that the end of the
stream has been reached. We have to call feof to test whether a stream’s position has
reached its end-of-file marker.

Takeaway 1.8.3.15 End of file can only be detected after a failed read.

Listing [8:3] presents an example that uses both input and output functions.

8. C LIBRARY FUNCTIONS

105

LISTING 8.3. A program to dump multiple text files to stdout

1 |#include <stdlib.h>

2 |#include <stdio.h>

3 |#include <errno.h>

4

5 |enum { buf_max = 32, };

6

7 | int main(int argc, charx argv[argc+1]) {

8 int ret = EXIT_FAILURE;

9 char buffer[buf_max] = { 0 };

10 for (int i = 1; i < argc; ++i) { // Processes args
11 FILEx instream = fopen(argv[il, "r"); // as filenames
12 if (instream) {

13 while (fgets(buffer, buf_max, instream)) {

14 fputs (buffer, stdout);

15 3}

16 fclose(instream);

17 ret = EXIT_SUCCESS;

18 } else {

19 /* Provides some error diagnostic. */

20 fprintf(stderr, "Could_not_open_%s:.", argv[il);

21 perror (90) ;

22 errno = 0; // Resets the error code
23 }

24 }

25 return ret;

26 |}

This is a small implementation of cat that reads a number of files that are given on
the command line and dumps the contents to stdout[=*S >*=xs 2> fExs S0RExs 57]

8.4. String processing and conversion. String processing in C has to deal with the
fact that the source and execution environments may have different encodings. It is there-
fore crucial to have interfaces that work independently of the encoding. The most important
tools are given by the language itself: integer character constants such as ’a’ and ’\n’ and
string literals such as "hello:\tx" should always do the right thing on your platform. As
you perhaps remember, there are no constants for types that are narrower than int; and,
as an historical artifact, integer character constants such as ’a’ have type int, not char as
you would probably expect.

Handling such constants can become cumbersome if you have to deal with character
classes.

Therefore, the C library provides functions and macros that deal with the most com-
monly used classes through the header ctype.h. It has the classifiers isalnum, isalpha,
isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace, isupper,
and isxdigit, and conversions toupper and tolower. Again, for historical reasons, all
of these take their arguments as int and also return int. See table [8.11] for an overview
of the classifiers. The functions toupper and tolower convert alphabetic characters to the
corresponding case and leave all other characters as they are.

The table has some special characters such as ’\n’ for a new-line character, which
we have encountered previously. All the special encodings and their meaning are given in
table[8.12]

[Exs S4lUnder what circumstances will this program finish with success or failure return codes?
[Exs 55]Surprisingly, this program even works for files with lines that have more than 31 characters. Why?
[Exs 56]Have the program read from stdin if no command-line argument is given.
[Exs 57lHave the program precede all output lines with line numbers if the first command-line argument is "-n".

<ctype.h>

106 1. ACQUAINTANCE
TABLE 8.11. Character classifiers. The third column indicates whether
C implementations may extend these classes with platform-specific char-
acters, such as '3’ as a lowercase character or '€’ as punctuation.
Name Meaning C locale Extended
islower Lowercase 'a’ - 77 Yes
isupper Uppercase A2 Yes
isblank Blank AN ¢ Yes
isspace Space YL NE \n T, 0\, 0\, A\ Yes
isdigit Decimal Q- 79 No
isxdigit Hexadecimal Q7 .- 797 78 e T N L R No
iscntrl Control "Na’, ’\b’, ’\f’, ’\n’, ’\r’, ’\t’, "\v’ Yes
isalnum Alphanumeric isalpha(x)||isdigit(x) Yes
isalpha Alphabet islower(x) | |isupper(x) Yes
isgraph Graphical ('iscntrl(x)) && (x != ’_.") Yes
isprint Printable liscntrl(x) Yes
ispunct Punctuation isprint(x)&&! (isalnum(x) | |isspace(x)) Yes

"\’ | Quote

"\"” | Double quotes
’\?’ | Question mark
"\\’ | Backslash

"\a’ | Alert

"\b’ | Backspace
"\f’ | Form feed
’\n’ | New line

"\r’ | Carriage return
’\t’ | Horizontal tab
"\v’ | Vertical tab

TABLE 8.12. Special characters in character and string literals

Integer character constants can also be encoded numerically: as an octal value of the
form ’\@37’ or as a hexadecimal value in the form ’\xFFFF’. In the first form, up to three
octal digits are used to represent the code. For the second, any sequence of characters after
the x that can be interpreted as a hex digit is included in the code. Using these in strings
requires special care to mark the end of such a character: "\xdeBruyn" is not the same
as "\xde" "Bruyn”lﬂ but corresponds to "\xdeB" "ruyn”, the character with code 3563
followed by the four characters "r’, u’, ’y’, and ’n’. Using this feature is only portable
in the sense that it will compile on all platforms as long as a character with code 3563
exists. Whether it exists and what that character actually is depends on the platform and
the particular setting for program execution.

Takeaway 1.8.4.1 The interpretation of numerically encoded characters depends on the
execution character set.

So, their use is not fully portable and should be avoided.

58But remember that consecutive string literals are concatenated (takeaway|1.5.3.1).

8. C LIBRARY FUNCTIONS

107

The following function hexatridecimal uses some of these functions to provide a
base 36 numerical value for all alphanumerical characters. This is analogous to hexadeci-
[Exs 60]

mal constants, only all other letters have a value in base 36, too: [Exs 59

strtoul.c

8 | /* Supposes that lowercase characters are contiguous.

*/

9 |static_assert(’z’-’a’ == 25,
10 "alphabetic_characters_not_contiguous”);

11 |#include <ctype.h>

12 | /* Converts an alphanumeric digit to an unsigned =*/
13 [/* 0’ 9’ => 0 9u */
14 | /x A’ 2’ => 10 35u %/
15 /% ’a’> ... 7z’ => 10 35u x/
16 | /* Other values => Greater =/

17 |unsigned hexatridecimal (int a) {
18 if (isdigit(a)) {

19 /* This is guaranteed to work: decimal digits
20 are consecutive, and isdigit is not

21 locale dependent. x/

22 return a - ’'0’;

23 } else {

24 /* Leaves a unchanged if it is not lowercase */
25 a = toupper(a);

26 /* Returns value >= 36 if not Latin uppercase */
27 return (isupper(a)) ? 10 + (a - ’A’) =9

28 3

29 |}

In addition to strtod, the C library has strtoul, strtol, strtoumax, strtoimax,
strtoull, strtoll, strtold, and strtof to convert a string to a numerical value. Here
the characters at the end of the names correspond to the type: u for unsigned, 1 (the letter
“el”) for long, d for double, f for float, and [i|ulmax for intmax_t and uintmax_t.

The interfaces with an integral return type all have three parameters, such as strtoul

unsigned long int strtoul (char const nptr[restrict],
charxx restrict endptr,
int base);

which interprets a string nptr as a number given in base base. Interesting values for
base are 9, 8, 10, and 16. The last three correspond to octal, decimal, and hexadecimal
encoding, respectively. The first, @, is a combination of these three, where the base is
chosen according to the usual rules for the interpretation of text as numbers: "7" is decimal,
"007" is octal, and "@x7" is hexadecimal. More precisely, the string is interpreted as
potentially consisting of four different parts: white space, a sign, the number, and some
remaining data.

The second parameter can be used to obtain the position of the remaining data, but
this is still too involved for us. For the moment, it suffices to pass a @ for that parameter
to ensure that everything works well. A convenient combination of parameters is often
strtoul(S, @, 0), which will try to interpret S as representing a number, regardless of
the input format. The three functions that provide floating-point values work similarly,
only the number of function parameters is limited to two.

[Exs 39The second return of hexatridecimal makes an assumption about the relation between a and ’A’. What
is it?
[Exs 60l egcribe an error scenario in which this assumption is not fulfilled.
[Exs 61Eix this bug: that is, rewrite this code such that it makes no assumption about the relation between a and
AT

31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

60

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
71
78
79

108 1. ACQUAINTANCE

Next, we will demonstrate how such functions can be implemented from more basic
primitives. Let us first look at Strtoul_inner. It is the core of a strtoul implementation
that uses hexatridecimal in a loop to compute a large integer from a string:

strtoul.c

unsigned long Strtoul_inner(char const s[static 1],
size_t i,
unsigned base) {
unsigned long ret = 0;
while (s[i]) {
unsigned ¢ = hexatridecimal (s[i]);
if (c >= base) break;
/* Maximal representable value for 64 bit is
3wbel11264sgsf in base 36 */
if (ULONG_MAX/base < ret) {
ret = ULONG_MAX;
errno = ERANGE;
break;
}
ret x= base;
ret += c;
++1;
}

return ret;

If the string represents a number that is too big for an unsigned long, this function
returns ULONG_MAX and sets errno to ERANGE.

Now Strtoul gives a functional implementation of strtoul, as far as this can be done
without pointers:

strtoul.c
unsigned long Strtoul (char const s[static 1], unsigned base) {
if (base > 36u) { /* Tests if base */
errno = EINVAL; /* Extends the specification */
return ULONG_MAX;
}
size_t i = strspn(s, "_\f\n\r\t\v"); /x Skips spaces */
bool switchsign = false; /* Looks for a sign */
switch (s[il]) {
case -’ : switchsign = true;
case '+’ : ++i;
}
if (!base || base == 16) { /* Adjusts the base */
size_t adj = find_prefix(s, i, "0x");
if (!base) base = (unsigned[]){ 10, 8, 16, }[adj];
i += adj;
}
/* Now, starts the real conversion */
unsigned long ret = Strtoul_inner(s, i, base);
return (switchsign) ? -ret : ret;
3

It wraps Strtoul_inner and does the previous adjustments that are needed: it skips
white space, looks for an optional sign, adjusts the base in case the base parameter was 0,

8. C LIBRARY FUNCTIONS 109

and skips an eventual @ or @x prefix. Observe also that if a minus sign has been provided,
it does the correct negation of the result in terms of unsigned long arithmetic

To skip the spaces, Strtoul uses strspn, one of the string search functions provided
by string.h. This function returns the length of the initial sequence in the first parameter
that entirely consists of any character from the second parameter. The function strcspn
(“c” for “complement”) works similarly, but it looks for an initial sequence of characters
not present in the second argument.

This header provides at lot more memory and string search functions: memchr, strchr,
strpbrk strrchr, strstr, and strtok. But to use them, we would need pointers, so we
can’t handle them yet.

8.5. Time. The first class of “times” can be classified as calendar times, times with a
granularity and range that would typically appear in a human calendar for appointments,
birthdays, and so on. Here are some of the functional interfaces that deal with times and
that are all provided by the time.h header:

time_t time(time_t xt);
double difftime(time_t timel, time_t time®);
time_t mktime(struct tm tm[1]);
size_t strftime(char s[static 1], size_t max,
char const format[static 1],
struct tm const tm[static 1]);
int timespec_get(struct timespec ts[static 1], int base);

The first simply provides us with a timestamp of type time_t of the current time.
The simplest form uses the return value of time(@). As we have seen, two such times
taken from different moments during program execution can then be used to express a time
difference by means of difftime.

Let’s see what all this is doing from the human perspective. As we know, struct tm
structures a calendar time mainly as you would expect. It has hierarchical date members
such as tm_year for the year, tm_mon for the month, and so on, down to the granularity of
a second. It has one pitfall, though: how the members are counted. All but one start with
0: for example, tm_mon set to @ stands for January, and tm_wday 0 stands for Sunday.

Unfortunately, there are exceptions:

e tm_mday starts counting days in the month at 1.

e tm_year must add 1900 to get the year in the Gregorian calendar. Years repre-
sented that way should be between Gregorian years 0 and 9999.

e tm_sec is in the range from O to 60, inclusive. The latter is for the rare occasion
of leap seconds.

Three supplemental date members are used to supply additional information to a time
value in a struct tm:

e tm_wday for the week day.

e tm_yday for the day in the year.

e tm_isdst is a flag that informs us whether a date is considered to be in DST for
the local time zone.

The consistency of all these members can be enforced with the function mktime. It
operates in three steps:

(1) The hierarchical date members are normalized to their respective ranges.

(2) tm_wday and tm_yday are set to the corresponding values.

(3) If tm_isday has a negative value, this value is modified to 1 if the date falls into
DST for the local platform, or to @ otherwise.

[Exs 62l plement a function find_prefix as needed by Strtoul.

<string.h>

<time.h>

Annex K

110 1. ACQUAINTANCE

mktime also serves an extra purpose. It returns the time as a time_t. time_t represents
the same calendar times as struct tm but is defined to be an arithmetic type, more suited
to compute with such types. It operates on a linear time scale. A time_t value of 0 at the
beginning of time_t is called the epoch® in the C jargon. Often this corresponds to the
beginning of Jan 1, 1970.

The granularity of time_t is usually to the second, but nothing guarantees that. Some-
times processor hardware has special registers for clocks that obey a different granularity.
difftime translates the difference between two time_t values into seconds that are repre-
sented as a double value.

Other traditional functions that manipulate time in C are a bit dangerous because they
operate on global state. We will not discuss them here, but variants of these interfaces have
been reviewed in Annex K in an _s form:

errno_t asctime_s(char s[static 1], rsize_t maxsize,
struct tm const timeptr[static 1]);
errno_t ctime_s(char s[static 1], rsize_t maxsize,
const time_t timer[static 1]);
struct tm *gmtime_s(time_t const timer[restrict static 1],
struct tm result[restrict static 11]);
struct tm *xlocaltime_s(time_t const timer[restrict static 1],
struct tm result[restrict static 1]);

Figure [8.1|shows how all these functions interact:

0,
@ NS
| QE" RN
gl N'€
al & .
Bl < N ___
al @ struct timespec:

difftime

|
1
struct tm - + i [E——
_ mktime time_t tv_sec | —
| e :
-/ o tvmec 7
gmtime_s L - - !

localtime_s

FIGURE 8.1. Time conversion functions

Two functions for the inverse operation from time_t into struct tm come into view:

e localtime_s stores the broken-down local time.
e gmtime_s stores the broken time, expressed as universal time, UTC.

As indicated, they differ in the time zone they assume for the conversion. Under nor-
mal circumstances, localtime_s and mktime should be inverse to each other; gmtime_s
has no direct counterpart in the inverse direction.

Textual representations of calendar times are also available. asctime_s stores the date
in a fixed format, independent of any locale, language (it uses English abbreviations), or
platform dependency. The format is a string of the form

"Www_Mmm_DD_HH:MM: SS_YYYY\n"
strftime is more flexible and allows us to compose a textual representation with format
specifiers.

8. C LIBRARY FUNCTIONS 111

It works similarly to the printf family but has special %-codes for dates and times; see
table Here, the Locale column indicates that different environment settings, such as
preferred language or time zone, may influence the output. How to access and eventually
set these will be explained in subsection[8.6 strftime receives three arrays: a char[max]
array that is to be filled with the result string, another string that holds the format, and a
struct tm const[1] that holds the time to be represented. The reason for passing in an
array for the time will only become apparent when we know more about pointers.

The opaque type time_t (and as a consequence time itself) only has a granularity of
seconds.

If we need more precision than that, struct timespec and the timespec_get func-
tion can be used. With that, we have an additional member tv_nsec that provides nanosec-
ond precision. The second argument, base, has only one value defined by the C standard:
TIME_UTC. You should expect a call to timespec_get with that value to be consistent with
calls to time. They both refer to Earth’s reference time. Specific platforms may provide
additional values for base that specify a clock that is different from a clock on the wall. An
example of such a clock could be relative to the planetary or other physical system your
computer system is involved withlgj Relativity and other time adjustments can be avoided
by using a monotonic clock that only refers to the startup time of the system. A CPU clock
could refer to the time the program execution had been attributed processing resources.

For the latter, there is an additional interface that is provided by the C standard library:

iclock_t clock(void);

L |
For historical reasons, this introduces yet another type, clock_t. It is an arithmetic time
that gives the processor time in CLOCKS_PER_SEC units per second.

Having three different interfaces, time, timespec_get, and clock, is a bit unfortu-
nate. It would have been beneficial to provide predefined constants such as

TIME_PROCESS_TIME and TIME_THREAD_TIME for other forms of clocks.

CHALLENGE 10 (Performance comparison of sorting algorithms). Can you compare the
time efficiency of your sorting programs (challenge[I) with data sizes of several orders of
magnitude?

Be careful to check that you have some randomness in the creation of the data and that the
data size does not exceed the available memory of your computer.

For both algorithms, you should roughly observe a behavior that is proportional to
Nlog N, where N is the number of elements that are sorted.

8.6. Runtime environment settings. A C program can access an environment list®:
a list of name-value pairs of strings (often called environment variables®) that can transmit
specific information from the runtime environment. There is a historical function getenv
to access this list:

[]
\char* getenv(char const name[static 1]); \
L |

Given our current knowledge, with this function we are only able to test whether a name is
present in the environment list:

63Be aware that objects that move fast relative to Earth, such as satellites and spacecraft, may perceive rela-
tivistic time shifts compared to UTC.

112

1. ACQUAINTANCE

TABLE 8.13. strftime format specifiers. Those selected in the Locale
column may differ dynamically according to locale runtime settings; see
subsection[8.6] Those selected in the ISO 8601 column are specified by

that standard.
Spec | Meaning Locale | ISO 8601
"%S" | Second ("00" to "60")
"%M" | Minute ("00" to "59")
"%H" | Hour (700" to "23").
"%1" | Hour ("01" to "12").
"%e" | Day of the month ("_1" to "31")
"%d" | Day of the month ("01" to "31")
"%m" | Month ("01" to "12")
"%B" | Full month name X
"%b" | Abbreviated month name X
"%h" | Equivalent to "%b" X
"%Y" | Year
"%y" | Year ("00" to "99")
"%C" | Century number (year/100)
"%G" | Week-based year; the same as "%Y", except if the ISO X
week number belongs another year
"%g" | Like "%G", ("0@" to "99") X
"%u" | Weekday ("1" to "7"), Monday being "1"
"%w" | Weekday ("0" to "6", Sunday being "0"
"%A" | Full weekday name X
"%a" | Abbreviated weekday name X
"%j" | Day of the year ("001" to "366")
"%U" | Week number in the year ("00" to "53"), starting at Sun-
day
"%W" | Week number in the year ("00" to "53"), starting at Mon-
day
"%V" | Week number in the year ("01" to "53"), starting with X
first four days in the new year
"%Z" | Timezone name X
"%z" | "+hhmm" or "-hhmm”, the hour and minute offset from
UTC
"%n" | Newline
"%t" | Horizontal tabulator
"%%" | Literal "%"
"%x" | Date X
"%D" | Equivalent to "%m/%d/%y"
"%F" | Equivalent to "%Y-%m-%d" X
"%X" | Time X
"%p" | Either "AM" or "PM": noon is "PM", midnight is "AM" X
"%r" | Equivalent to "%I:%M:%S_%p" X
"%R" | Equivalent to "%H: %M"
"%T" | Equivalent to "%H:%M: %S" X
"%c" | Preferred date and time representation X

8. C LIBRARY FUNCTIONS 113

bool havenv(char const name[static 1]) {
return getenv(name);

3

Instead, we use the secured function getenv_s:

errno_t getenv_s(size_t * restrict len,
char valuel[restrict],
rsize_t maxsize,
char const name[restrict]);

This function copies the value that corresponds to name (if any) from the environment
into value, a char[maxsize], provided that it fits. Printing such a value can look as this:

void printenv(char const name[static 1]) {
if (getenv(name)) {
char value[256] = { 0, }I;
if (getenv_s (0, value, sizeof value, name)) {
fprintf (stderr,
"%s:_.value_is_longer_than_%zu\n",
name, sizeof value);

} else {
printf("%s=%s\n", name, value);
3
} else {
fprintf (stderr, "%s_not_in_environment\n", name);
3
}

As you can see, after detecting whether the environment variable exists, getenv_s
can safely be called with the first argument set to @. Additionally, it is guaranteed that the
value target buffer will only be written if the intended result fits in it. The 1len parameter
could be used to detect the real length that is needed, and dynamic buffer allocation could
be used to print out even large values. We will wait until higher levels to see such usages.

Which environment variables are available to programs depends heavily on the oper-
ating system. Commonly provided environment variables include "HOME" for the user’s
home directory, "PATH" for the collection of standard paths to executables, and "LANG" or
"LC_ALL" for the language setting.

The language or locale® setting is another important part of the execution environment
that a program execution inherits. At startup, C forces the locale setting to a normalized
value, called the "C" locale. It has basically American English choices for numbers or
times and dates.

The function setlocale from locale.h can be used to set or inspect the current
value:

‘char* setlocale(int category, char const locale[static 1]);
L

In addition to "C", the C standard prescribes the existence of one other valid value for
locale: the empty string "". This can be used to set the effective locale to the systems
default. The category argument can be used to address all or only parts of the language
environment. Table [8.14] gives an overview over the possible values and the part of the C
library they affect. Additional platform-dependent categories may be available.

8.7. Program termination and assertions. We have looked at the simplest way to
terminate a program: a regular return from main.

Annex K

<locale.h>

114 1. ACQUAINTANCE
TABLE 8.14. Categories for the setlocale function

LC_COLLATE String comparison through strcoll and strxfrm

LC_CTYPE Character classification and handling functions; see subsection
LC_MONETARY Monetary formatting information, localeconv

LC_NUMERIC Decimal-point character for formatted I/O, localeconv

LC_TIME strftime; see subsection

LC_ALL All of the above

Takeaway 1.8.7.1 Regular program termination should use a return from main.

Using the function exit from within main is kind of senseless, because it can be done
just as easily with a return.

Takeaway 1.8.7.2 Use exit from a function that may terminate the regular control flow.

The C library has three other functions that terminate program execution, in order of
severity:

_Noreturn void quick_exit(int status);
_Noreturn void _Exit(int status);
_Noreturn void abort(void);

Now, return from main (or a call to exit) already provides the possibility to specify
whether the program execution is considered to be a success. Use the return value to
specify that; as long as you have no other needs or you don’t fully understand what these
other functions do, don’t use them. Really: don’t.

Takeaway 1.8.7.3 Don’t use functions other than exit for program termination, unless
you have to inhibit the execution of library cleanups.

Cleanup at program termination is important. The runtime system can flush and close
files that are written or free other resources that the program occupied. This is a feature
and should rarely be circumvented.

There is even a mechanism to install your own handlers® that are to be executed at
program termination. Two functions can be used for that:

int atexit(void func(void));
int at_quick_exit(void func(void));

These have a syntax we have not yet seen: function parameters®. For example, the
first reads “function atexit that returns an int and that receives a function func as a
parameter.

We will not go into detail here. An example will show how this can be used:

void sayGoodBye (void) {
if (errno) perror(”terminating_with_error_condition”);
fputs ("Good_Bye\n", stderr);

3

int main(int argc, char* argv[largc+1]) {
atexit(sayGoodBye);

64 fact, in C, such a notion of a function parameter func to a function atexit is equivalent to passing
a function pointer®. In descriptions of such functions, you will usually see the pointer variant. For us, this
distinction is not yet relevant; it is simpler to think of a function being passed by reference.

SUMMARY 115

This uses the function atexit to establish the exit-handler sayGoodBye. After normal
termination of the program code, this function will be executed and give the status of the
execution. This might be a nice way to impress your co-workers if you are in need of
some respect. More seriously, this is the ideal place to put all kinds of cleanup code,
such as freeing memory or writing a termination timestamp to a log file. Observe that
the syntax for calling is atexit(sayGoodBye). There are no () for sayGoodBye itself:
here, sayGoodBye is not called at that point; only a reference to the function is passed to
atexit.

Under rare circumstances, you might want to circumvent these established atexit
handlers. There is a second pair of functions, quick_exit and at_quick_exit, that can
be used to establish an alternative list of termination handlers. Such an alternative list may
be useful if the normal execution of the handlers is too time consuming. Use with care.

The next function, _Exit, is even more severe: it inhibits both types of application-
specific handlers to be executed. The only things that are executed are the platform-specific
cleanups, such as file closure. Use this with even more care.

The last function, abort, is even more intrusive. Not only doesn’t it call the appli-
cation handlers, but also it inhibits the execution of some system cleanups. Use this with
extreme care.

At the beginning of this section, we looked at _Static_assert and
static_assert, which should be used to make compile-time assertions. They can test for
any form of compile-time Boolean expression. Two other identifiers come from assert.h
and can be used for runtime assertions: assert and NDEBUG. The first can be used to test for
an expression that must hold at a certain moment. It may contain any Boolean expression,
and it may be dynamic. If the NDEBUG macro is not defined during compilation, every
time execution passes by the call to this macro, the expression is evaluated. The functions
gcd and gcd2 from subsection show typical use cases of assert: a condition that is
supposed to hold in every execution.

If the condition doesn’t hold, a diagnostic message is printed, and abort is called.
So, none of this should make it through into a production executable. From the earlier
discussion, we know that the use of abort is harmful, in general, and also an error message

such as
Terminal

assertion failed in file euclid.h, function gcd2(), line 6

is not very helpful for your customers. It is helpful during the debugging phase, where it
can lead you to spots where you make false assumptions about the values of variables.

Takeaway 1.8.7.4 Use as many assert s as you can to confirm runtime properties.

As mentioned, NDEBUG inhibits the evaluation of the expression and the call to abort.
Please use it to reduce overhead.

Takeaway 1.8.7.5 In production compilations, use NDEBUG fo switch off all assert.

Summary

e The C library is interfaced via a bunch of header files.

e Mathematical functions are best used via the type-generic macros from tgmath. h.

o Input and output (I0) are interfaced via stdio.h. There are functions that do IO
as text or as raw bytes. Text IO can be direct or structured by formats.

e String processing uses functions from ctype. h for character classification, from
stdlib for numerical conversion, and from string.h for string manipulation.

<assert.h>

116 1. ACQUAINTANCE

e Time handling in time.h has calendar time that is structured for human inter-
pretation, and physical time that is structured in seconds and nanoseconds.

e Standard C only has rudimentary interfaces to describe the execution environ-
ment of a running program; getenv provides access to environment variables,
and locale.h regulates the interface for human languages.

CHALLENGE 11 (Image segmentation). In addition to the C standard library, there are
many other support libraries out there that provide very different features. Among those are
a lot that do image processing of some kind. Try to find a suitable such image-processing
library that is written in or interfaced to C and that allows you to treat grayscale images
as two-dimensional matrices of base type unsigned char.

The goal of this challenge is to perform a segmentation of such an image: to group the pix-
els (the unsigned char elements of the matrix) into connected regions that are “similar”
in some sense or another. Such a segmentation forms a partition of the set of pixels, much
as we saw in challenge 4| Therefore, you should use a Union-Find structure to represent
regions, one per pixel at the start.

Can you implement a statistics function that computes a statistic for all regions? This
should be another array (the third array in the game) that for each root holds the number
of pixels and the sum of all values.

Can you implement a merge criterion for regions? Test whether the mean values of two
regions are not too far apart: say, no more than five gray values.

Can you implement a line-by-line merge strategy that, for each pixel on a line of the image,
tests whether its region should be merged to the left and/or to the top?

Can you iterate line by line until there are no more changes: that is, such that the resulting
regions/sets all test negatively with their respective neighboring regions?

Now that you have a complete function for image segmentation, try it on images with
assorted subjects and sizes, and also vary your merge criterion with different values for
the the mean distance instead of five.

LEVEL 2
Y,

-

//ﬂz Cognition

The Eurasian jay may be solitary or found in pairs. It is known for its
mimicry of other bird calls, for its alertness, and for its dispersal of
seeds that contribute to forest expansion.

Now we are advanced enough to go to the heart of C. Completing this level should
enable you to write C code professionally; it therefore begins with an essential discussion
about the writing and organization of C programs. Then it fills in the gaps for the major C
constructs that we have skipped so far: it fully explains pointers, familiarizes you with C’s
memory model and with dynamic memory allocation, and allows you to understand most
of C’s library interface.

117

118 2. COGNITION

9. Style

This section covers

e Writing readable code
e Formatting code
e Naming identifiers

Programs serve both sides: first, as we have already seen, they serve to give instruc-
tions to the compiler and the final executable. But equally important, they document the
intended behavior of a system for the people (users, customers, maintainers, lawyers, and
so on) who have to deal with it.

Therefore, we have a prime directive:

Takeaway C All C code must be readable.

The difficulty with that directive is knowing what constitutes “readable.” Not all ex-
perienced C programmers agree, so we will begin by trying to establish a minimal list of
necessities. The first things we must have in mind when discussing the human condition is
that it is constrained by two major factors: physical ability and cultural baggage.

Takeaway 2.9.0.1 Short-term memory and the field of vision are small.

Torvalds et al|[[1996], the coding style for the Linux kernel, is a good example that
insists on that aspect and certainly is worth a detour, if you haven’t read it yet. Its main
assumptions are still valid: a programming text has to be represented in a relatively small
“window” (be it a console or a graphical editor) that consists of roughly 30 lines of 80
columns, making a “surface” of 2,400 characters. Everything that doesn’t fit has to be
memorized. For example, our very first program in listing [T.1]fits into these constraints.

By its humorous reference to |Kernighan and Ritchie| [[1978]], the Linux coding style
also refers to another fundamental fact:

Takeaway 2.9.0.2 Coding style is not a question of taste but of culture.

Ignoring this easily leads to endless and fruitless debates about not much at all.

Takeaway 2.9.0.3 When you enter an established project, you enter a new cultural space.

Try to adapt to the habits of the inhabitants. When you create your own project, you
have a bit of freedom to establish your own rules. But be careful if you want others to
adhere to them; you must not deviate too much from the common sense that reigns in the
corresponding community.

9.1. Formatting. The C language itself is relatively tolerant of formatting issues.
Under normal circumstances, a C compiler will dumbly parse an entire program that is
written on a single line with minimal white space and where all identifiers are composed
of the letter 1 and the digit 1. The need for code formatting originates in human incapacity.

Takeaway 2.9.1.1 Choose a consistent strategy for white space and other text format-
ting.

Formatting concerns indentation, placement of parentheses and all kinds of brackets
({3, [1,and ()), spaces before and after operators, trailing spaces, and multiple new lines.
The human eye and brain are quite peculiar in their habits, and to ensure that they work
properly and efficiently, everything must be in sync.

In the introduction for level [T] you saw a lot of the coding style rules applied to the
code in this book. Take them as an example of one style; you will most likely encounter
other styles as you go along. Let us recall some of the rules and introduce some others that
have not yet been presented:

9. STYLE 119

e We use prefix notation for code blocks: that is, an opening { is at the end of a
line.

e We bind type modifiers and qualifiers to the left.

e We bind function () to the left, but () of conditions are separated from their
keyword (such as if or for) with a space.

e A ternary expression has spaces around the ? and the :.

e Punctuation marks (:, ;, and ,) have no space before them but either one space
or a new line after.

As you see, when written out, these rules can appear quite cumbersome and arbitrary.
They have no value as such; they are visual aids that help you and your collaborators
understand new code in the blink of an eye. They are not meant to be meticulously typed
by you directly, but you should acquire and learn the tools that can help you with them.

Takeaway 2.9.1.2 Have your text editor automatically format your code correctly.

I personally use Emacs (//gnu.org/software/emacs/) for that task (yes, I am that old).
For me, it is ideal since it understands a lot of the structure of a C program by itself. Your
mileage will probably vary, but don’t use a tool in everyday life that gives you less. Text
editors, integrated development environments (IDEs), and code generators are there for us,
not the other way around.

In bigger projects, you should enforce such a formatting policy for all the code that
circulates and is read by others. Otherwise, it will become difficult to track differences
between versions of programming text. This can be automated by command-line tools
that do the formatting. Here, I have a long-time preference for astyle |(artistic style
http://sourceforge.net/projects/astyle/). Again, your mileage may vary; choose
anything that ensures the task.

9.2. Naming. The limit of such automatic formatting tools is reached when it comes
to naming.

Takeaway 2.9.2.1 Choose a consistent naming policy for all identifiers.

There are two different aspects to naming: technical restrictions on one hand and
semantic conventions on the other. Unfortunately, they are often mixed up and the subject
of endless ideological debate.

For C, various technical restrictions apply; they are meant to help you, so take them
seriously. First of all, we target all identifiers: types (struct or not), struct and union
members, variables, enumerations, macros, functions, function-like macros. There are so
many tangled name spaces® that you have to be careful.

In particular, the interaction between header files and macro definitions can have sur-
prising effects. Here is a seemingly innocent example:

[
1 \double memory_sum(size_t N, size_t I, double strip[NJ[I]);
L

e Nis a capitalized identifier, and thus your collaborator could be tempted to define
a macro N as a big number.

e I is used for the root of —1 as soon as someone includes complex. h.

o The identifier strip might be used by a C implementation for a library function
Or macro.

e The identifier memory_sum might be used by the C standard for a type name in
the future.

Takeaway 2.9.2.2 Any identifier that is visible in a header file must be conforming.

<complex.h>

https://www.gnu.org/software/emacs/
http://sourceforge.net/projects/astyle/
http://sourceforge.net/projects/astyle/

<time.h>

120 2. COGNITION

Here, conforming is a wide field. In C jargon, an identifier is reserved® if its meaning
is fixed by the C standard and you may not redefine it otherwise:

e Names starting with an underscore and a second underscore or a capital letter are
reserved for language extensions and other internal use.

e Names starting with an underscore are reserved for file scope identifiers and for
enum, struct and union tags.

e Macros have all-caps names.

o All identifiers that have a predefined meaning are reserved and cannot be used in
file scope. This includes a lot of identifiers, such as all functions in the C library,
all identifiers starting with str (like our strip, earlier), all identifiers starting
with E, all identifiers ending in _t, and many more.

What makes all of these rules relatively difficult is that you might not detect any vio-
lation for years; and then, all of a sudden, on a new client machine, after the introduction
of the next C standard and compiler or after a simple system upgrade, your code explodes.

A simple strategy to keep the probability of naming conflicts low is to expose as few
names as possible.

Takeaway 2.9.2.3 Don’t pollute the global space of identifiers.

Expose only types and functions as interfaces that are part of the application pro-
gramming interface® (APIC): that is, those that are supposed to be used by users of your
code.

A good strategy for a library that is used by others or in other projects is to use naming
prefixes that are unlikely to create conflicts. For example, many functions and types in the
POSIX thread API are prefixed with pthread_. For my tool box P99, I use the prefixes
p99_ and P99_ for API interfaces and p@@_ and P@@_ for internals.

There are two sorts of names that may interact badly with macros that another pro-
grammer writes and which you might not think of immediately:

e Member names of struct and union
e Parameter names in function interfaces.

The first point is the reason why the members in standard structures usually have
a prefix to their names: struct timespec has tv_sec as a member name, because an
uneducated user might declare a macro sec that would interfere in unpredictable way when
including time. h. For the second point, we saw an example earlier. In P99, I would specify
such a function something like this:

double p99_memory_sum(size_t p0@_n, size_t poo_i,
double p@@_strip[p0@_nl[po0_il);

This problem gets worse when we are also exposing program internals to the public
view. This happens in two cases:

e So-called inline functions, which are functions whose definition (not only dec-
laration) is visible in a header file
e Function-like macros

We will discuss these features much later, see sections[I5.1]and [T6}
Now that we have clarified the technical points of naming, we will look at the semantic
aspect.

Takeaway 2.9.2.4 Names must be recognizable and quickly distinguishable.

That has two parts: distinguishable and quickly. Compare the following:
For your personal taste, the answers on the right side of this table may be different.
This reflects my taste: an implicit context for such names is part of my personal expectation.

9. STYLE

Recognizable | Distinguishable | Quickly
11111111011 | 1111111lell No No No
myLineNumber | myLimeNumber Yes Yes No
n m Yes Yes Yes
ffs clz No Yes Yes
lowBit highBit Yes Yes Yes
p0a0rb pooUrb No Yes No
p0d_orb p0d_urb Yes Yes Yes

121

The difference between n and m on one side and for ffs and c1z on the other is an implicit
semantic.

For me, because I have a heavily biased mathematical background, single-letter vari-
able names from i to n, such as n and m, are integer variables. These usually occur inside
a quite restricted scope as loop variables or similar. Having a single-letter identifier is fine
(we always have the declaration in view), and they are quickly distinguished.

The function names ffs and clz are different because they compete with all other
three-letter acronyms that could potentially be used for function names. Accidentally, here,
ffs is shorthand for find first (bit) set, but this is not immediately obvious to me. What
that it would mean is even less clear: which bit is first, the most significant bit or the least
significant?

There are several conventions that combine multiple words in one identifier. Among
the most commonly used are the following:

o Camel case®, using internalCapitalsToBreakWords

o Snake case®, using internal_underscores_to_break_words

e Hungarian notationcwhich encodes type information in the prefix of the iden-
tifiers, such as szName, where sz stands for string and zero terminated

As you might imagine, none of these is ideal. The first two tend to obscure our view:

they easily clog up a whole precious line of programming text with an unreadable expres-
sion:

return theVerySeldomlyUsedConstant*theVerySeldomlyUsedConstant/
number_of_elements;

Hungarian notation, in turn, tends to use obscure abbreviations for types or concepts,
produces unpronounceable identifiers, and completely breaks down if you have an API
change.

So, in my opinion, none of these rules or strategies have absolute values. I encourage
you to take a pragmatic approach to the question.

Takeaway 2.9.2.5 Naming is a creative act.

It is not easily subsumed by simple technical rules.

Obviously, good naming is more important the more widely an identifier is used. So,
it is particularly important for identifiers for which the declaration is generally out of view
of the programmer: global names that constitute the APL

Takeaway 2.9.2.6 File-scope identifiers must be comprehensive.

What constitutes comprehensive here should be derived from the type of the identi-
fier. Type names, constants, variables, and functions generally serve different purposes, so
different strategies apply.

nvented in Simonyi|[[1976], the PhD thesis of Simonyi Kdroly

122 2. COGNITION

Takeaway 2.9.2.7 A type name identifies a concept.

Examples of such concepts are time for struct timespec, size for size_t, a col-
lection of corvidae for enum corvid, person for a data structure that collects data about
people, list for a chained list of items, dictionary for a query data structure, and so on. If
you have difficulty coming up with a concept for a data structure, an enumeration, or an
arithmetic type, you should probably revisit your design.

Takeaway 2.9.2.8 A global constant identifies an artifact.

That is, a constant stands out for some reason from the other possible constants of the
same type: it has a special meaning. It may have this meaning for some external reason
beyond our control (M_PI for), because the C standard says so (false, true), because
of a restriction of the execution platform (SIZE_MAX), to be factual (corvid_num), for a
reason that is culturally motivated (fortytwo), or as a design decision.

Generally, we will see shortly that file-scope variables (globals) are much frowned
upon. Nevertheless, they are sometimes unavoidable, so we have to have an idea how to
name them.

Takeaway 2.9.2.9 A global variable identifies state.

Typical names for such variables are toto_initialized to encode the fact that library
toto has already been initialized, onError for a file-scope but internal variable that is set
in a library that must be torn down, and visited_entries for a hash table that collects
shared data.

Takeaway 2.9.2.10 A function or functional macro identifies an action.

Not all, but many, of the functions in the C standard library follow that rule and use
verbs as a component of their names. Here are some examples:

e A standard function that compares two strings is strcmp.

A standard macro that queries for a property is isless.

A function that accesses a data member could be called toto_getFlag.
The corresponding one that sets such a member would be toto_setFlag.
A function that multiples two matrices is matrixMult.

Summary

e Coding style is a matter of culture. Be tolerant and patient.

e Code formatting is a matter of visual habits. It should be automatically provided
by your environment such that you and your co-workers can read and write code
effortlessly.

e Naming of variables, functions, and types is an art and plays a central role in the
comprehensiveness of your code.

FROS I NS =

10. ORGANIZATION AND DOCUMENTATION 123

10. Organization and documentation

This section covers

e How to document interfaces
e How to explain implementations

Being an important societal, cultural, and economic activity, programming needs a
certain form of organization to be successful. As with coding style, beginners tend to
underestimate the effort that should be put into code and project organization and docu-
mentation: unfortunately, many of us have to go through the experience of reading our own
code some time after we wrote it, and not having any clue what it was all about.

Documenting or, more generally, explaining program code is not an easy task. We
have to find the right balance between providing context and necessary information and
boringly stating the obvious. Let’s have a look at the two following lines:

u = fundyou(u, i, 33, 28); // ;)
++1; // incrementing i

The first line isn’t good, because it uses magic constants, a function name that doesn’t tell
what is going on, and a variable name that does not have much meaning, at least to me.
The smiley comment indicates that the programmer had fun when writing this, but it is not
very helpful to the casual reader or maintainer.

In the second line, the comment is superfluous and states what any even not-so-
experienced programmer knows about the ++ operator.

Compare this to the following:

/* 33 and 28 are suitable because they are coprime. =*/

u = nextApprox(u, i, 33, 28);

/* Theorem 3 ensures that we may move to the next step. =*/
++1;

Here we may deduce a lot more. I’d expect u to be a floating-point value, probably
double: that is, subject to an approximation procedure. That procedure runs in steps, in-
dexed by i, and needs some additional arguments that are subject to a primality condition.

Generally, we have the what, what for, how, and in which manner rules, in order of
their importance:

Takeaway 2.10.0.1 (what) Function interfaces describe what is done.
Takeaway 2.10.0.2 (what for) Interface comments document the purpose of a function.
Takeaway 2.10.0.3 (how) Function code tells how the function is organized.

Takeaway 2.10.0.4 (in which manner) Code comments explain the manner in which func-
tion details are implemented.

In fact, if you think of a larger library project that is used by others, you’d expect that
all users will read the interface specification (such as in the synopsis part of a man page),
and most of them will read the explanation about these interfaces (the rest of the man page).
Much fewer of them will look at the source code and read about how or in which manner a
particular interface implementation does things the way it does them.

A first consequence of these rules is that code structure and documentation go hand
in hand. The distinction between interface specification and implementation is expecially
important.

116

117
118
119
120

121
122
123
124
125
126
127
128
129
130
131

124 2. COGNITION

Takeaway 2.10.0.5 Separate interface and implementation.

This rule is reflected in the use of two different kinds of C source files: header files
usually ending with ”.h"; and translation units® (TU), ending with " .c".

Syntactical comments have two distinct roles in those two kinds of source files that
should be separated:

Takeaway 2.10.0.6 Document the interface — explain the implementation.

10.1. Interface documentation. In contrast to more recent languages such as Java
and Perl, C has no “built-in” documentation standard. But in recent years, a cross-platform
public domain tool has been widely adopted in many projects: doxygen (http://www.
doxygen.nl/). It can be used to automatically produce web pages, PDF manuals, depen-
dency graphs, and a lot more. But even if you don’t use doxygen or another equivalent
tool, you should use its syntax to document interfaces.

Takeaway 2.10.1.1 Document interfaces thoroughly.

Doxygen has a lot of categories that help with that, but an extended discussion goes
far beyond the scope of this book. Just consider the following example:

heron_k.h

/* %
*%x @brief use the Heron process to approximate @a a to the
** power of “1/k°

x

% Or in other words this computes the @f$k{th}@f$ root of @a a
** As a special feature, if @ k is '-1° it computes the

*%x multiplicative inverse of @a a.

**

% @param a must be greater than '0.0°
*% @param k should not be '0° and otherwise be between

*%x "DBL_MIN_EXP*xFLT_RDXRDX and
%% "DBL_MAX_EXPxFLT_RDXRDX .

* %

% @see FLT_RDXRDX

*%/

double heron(double a, signed k);

Doxygen produces online documentation for that function that looks similar to fig-
ure [T0.T]and also is able to produce formatted text that we can include in this book:

heron_k.h

heron: use the Heron process to approximate a to the power of 1/k

Or in other words this computes the k' root of a. As a special feature, if k is -1 it
computes the multiplicative inverse of a.

Parameters:

a | must be greater than 0.0
k | should not be © and otherwise be between
DBL_MIN_EXP*FLT_RDXRDX and DBL_MAX_EXPxFLT_RDXRDX.

See also: [FLT _RDXRDX|

double heron(double a, signed k);

http://www.doxygen.nl/
http://www.doxygen.nl/

NN R W=

10. ORGANIZATION AND DOCUMENTATION 125

heron_k.h

FLT_RDXRDX: the radix base 2 of FLT_RADIX

This is needed internally for some of the code below.

define FLT_RDXRDX something

As you have probably guessed, words starting with @ have a special meaning for doxy-
gen: they start its keywords. Here we have @param, @a, and @brief. The first documents a
function parameter, the second refers to such a parameter in the rest of the documentation,
and the last provides a brief synopsis of the function.

double heron [double a,
signed k
|
use the Heron process to approximate ato the power of 1/k

Or in other words this computes the kth root of a. As a special feature, if kis -1 it computes the muttiplicative inverse of a.

Parameters
a must be greater than 0. 0
k should net be O and otherwise be between DBL_MIN EXP*FLT_RDXRDX and DEL_MAX_ EXP+FLT_RDXRDX.

Definition at line 194 of file heron_k.c.
References expk(), heron(), and heronlf).
Referenced by heron(), and main().

Here i the call graph for this function:
vy [s]
heron
heron1 |—p| heron1_astimate_chr

heron1_estimate_cir_05

/

heron1_estimate_dir_10

Here is the caller graph for this function:

()

heron

FIGURE 10.1. Documentation produced by doxygen

Additionally, we see that there is some markup capacity inside comments, and also
that doxygen was able to identify the place in translation unit "heron_k.c" that defines
the function and the call graph of the different functions involved in the implementation.

To provide good project organization, it is important that users of your code be able to
easily find connected pieces and not have to search all over the place.

Takeaway 2.10.1.2 Structure your code in units that have strong semantic connections.

Most often, this is simply done by grouping all functions that treat a specific data type
in one header file. A typical header file "brian.h” for struct brian would be like this:

#ifndef BRIAN_H
#define BRIAN_H 1
#include <time.h>

/** @file
*%x @brief Following Brian the Jay
*%x/

10
11

12
13
14
15
16
17
18
19
20
21
22
23
24
25

126 2. COGNITION

typedef struct brian brian;
enum chap { sct, en, 3};
typedef enum chap chap;

struct brian {
struct timespec ts; /**< point in time =x/

unsigned counter; /*x< wealth */
chap masterof; /**x< occupation */
};
/**
** @brief get the data for the next point in time
x%x/

brian brian_next(brian);

#endif

That file comprises all the interfaces that are necessary to use the struct. It also includes
other header files that might be needed to compile these interfaces and protect against
multiple inclusion with include guardsc, here the macro BRIAN_H.

10.2. Implementation. If you read code that is written by good programmers (and
you should do that often!), you’ll notice that it is often scarcely commented. Nevertheless,
it may be quite readable, provided the reader has basic knowledge of the C language.
Good programming only needs to explain the ideas and prerequisites that are not obvious
(the difficult part). The structure of the code shows what it does and how.

Takeaway 2.10.2.1 Implement literally.

A C program is a descriptive text about what is to be done. The rules for naming
entities that we introduced earlier play a crucial role in making that descriptive text readable
and clear. Another requirement is to have an obvious flow of control through visually
clearly distinctive structuring in {} blocks that are linked together with comprehensive
control statements.

Takeaway 2.10.2.2 Control flow must be obvious.

There are many possibilities to obfuscate control flow. The most important are as
follows:

Buried jumps: — break, continue, return, and gotcﬂ statements that are buried in a
complicated nested structure of if or switch statements, eventually combined
with loop structures.

Flyspeck expressions: — Controlling expressions that combine a lot of operators in an un-
usual way (for example, ! ! ++*p--ora -->) such that they must be examined
with a magnifying glass to understand where the control flow goes from here.

In the following subsection, we will focus on two concepts that can be crucial for
readability and performance of C code. A macro can be a convenient tool to abbreviate
a certain feature, but, if used carelessly, may also obfuscate code that uses it and trigger
subtle bugs (subsection[I0.2.1). As we saw previously, functions are the primary choice in
C for modularization. Here, a particular property of some functions is especially important:
a function that is pure only interacts with the rest of the program via its interface. Thereby,

2These will be discussed in subsections|13.2.2|and

—

OO 01NN AW~

1
2
3
4

10. ORGANIZATION AND DOCUMENTATION 127

pure functions are easily understandable by humans and compilers and generally lead to
quite efficient implementations (subsection [10.2.2).

10.2.1. Macros. We already know one tool that can be abused to obfuscate control
flow: macros. As you hopefully remember from subsections[5.6.3]and [8.1.2} macros define
textual replacements that can contain almost any C text. Because of the problems we
will illustrate here, many projects ban macros completely. This is not the direction the
evolution of the C standard goes, though. As we have seen, for example, type-generic
macros are the modern interface to mathematical functions (see @); macros should be
used for initialization constants ([5.6.3) or used to implement compiler magic (errno,
section [§:T.3).

So instead of denying it, we should try to tame the beast and set up some simple rules
that confine the possible damage.

Takeaway 2.10.2.3 Macros should not change control flow in a surprising way.

Notorious examples that pop up in discussion with beginners from time to time are
things like these:

#define begin {

#define end }

#define forever for (;;)

#define ERRORCHECK (CODE) if (CODE) return -1

forever
begin
// do something
ERRORCHECK (x) ;
end

Don’t do that. The visual habits of C programmers and our tools don’t easily work with
something like that, and if you use such things in complicated code, they will almost cer-
tainly go wrong.

Here, the ERRORCHECK macro is particularly dangerous. Its name doesn’t suggest that
a nonlocal jump such as a return might be hidden in there. And its implementation is
even more dangerous. Consider the following two lines:

if (a) ERRORCHECK (x);
else puts("a_is_0!");

These lines are rewritten as

if (a) if (x) return -1;
else puts("a_is_0!");

The else-clause (a so-called dangling else®) is attached to the innermost if, which we
don’t see. So this is equivalent to

i (a) (
. if (x) return -1;

| else puts(”a.is_0!");
|

L

}

which is probably quite surprising to the casual reader.

This doesn’t mean control structures shouldn’t be used in macros at all. They just
should not be hidden and should have no surprising effects. This macro by itself is probably
not as obvious, but its use has no surprises:

AW =

F S I NS I

128 2. COGNITION

#define ERROR_RETURN(CODE) \
do { \

if (CODE) return -1; \
} while (false)

The name of the following macro makes it explicit that there might be a return. The
dangling else problem is handled by the replaced text:

if (a) ERROR_RETURN(x);
else puts("a_is_0!");

The next example structures the code as expected, with the else associated with the
first if:

if (a) do {

if (CODE) return -1;
} while (false);
else puts("a_is_0!");

The do-while(false)-trick is obviously ugly, and you shouldn’t abuse it. But it is a
standard trick to surround one or several statements with a {} block without changing the
block structure that is visible to the naked eye.

Takeaway 2.10.2.4 Function-like macros should syntactically behave like function calls.

Possible pitfalls are:

if without else: — Already demonstrated.

Trailing semicolons: — These can terminate an external control structure in a surprising
way.

Comma operators: The comma is an ambiguous fellow in C. In most contexts, it is used as
a list separator, such as for function calls, enumerator declarations, or initializers.
In the context of expressions, it is a control operator. Avoid it.

Continuable expressions: — Expressions that will bind to operators in an unexpected way
when put into a nontrivial context In the replacement text, put parentheses
around parameters and expressions.

Multiple evaluation: — Macros are textual replacements. If a macro parameter is used
twice (or more), its effects are done twice ™7

10.2.2. Pure functions. Functions in C such as size_min (subsection [.4) and gcd
(subsection , which we declared ourselves, have a limit in terms of what we are able to
express: they don’t operate on objects but rather on values. In a sense, they are extensions
of the value operators in tabled.T|and not of the object operators in table .2}

Takeaway 2.10.2.5 Function parameters are passed by value.

That is, when we call a function, all parameters are evaluated, and the parameters (vari-
ables that are local to the function) receive the resulting values as initialization. The func-
tion then does whatever it has to do and sends back the result of its computation through
the return value.

For the moment, the only possibility that we have for two functions to manipulate the
same object is to declare an object such that the declaration is visible to both functions.
Such global variables® have a lot of disadvantages: they make code inflexible (the object
to operate on is fixed), are difficult to predict (the places of modification are scattered all
over), and are difficult to maintain.

[Exs 3]Consider a macro sum(a, b) that is implemented as a+b. What is the result of sum(5, 2)*7?
[Exs 411 o max(a, b) beimplemented as ((a) < (b) ? (b) : (a)). What happens for max (i++, 5)?

10
11
12

10. ORGANIZATION AND DOCUMENTATION 129

Takeaway 2.10.2.6 Global variables are frowned upon.

A function with the following two properties is called pure®':

e The function has no effects other than returning a value.

e The function return value only depends on its parameters.
The only interest in the execution of a pure function is its result, and that result only de-
pends on the arguments that are passed. From the point of view of optimization, pure
functions can be moved around or even executed in parallel to other tasks. Execution can
start at any point when its parameters are available and must be finished before the result
is used.

Effects that would disqualify a function from being pure would be all those that change

the abstract state machine other than by providing the return value. For example,

e The function reads part of the program’s changeable state by means other than
through its arguments.

e The function modifies a global object.

e The function keeps a persistent internal state between callsE]

e The function does 10

Pure functions are a very good model for functions that perform small tasks, but they
are pretty limited once we have to perform more complex ones. On the other hand, optimiz-
ers love pure functions, since their impact on the program state can simply be described by
their parameters and return value. The influence on the abstract state machine that a pure
function can have is very local and easy to describe.

Takeaway 2.10.2.7 Express small tasks as pure functions whenever possible.

With pure functions, we can go surprisingly far, even for an object-oriented program-
ming style, if for a first approach we are willing to accept a little bit of copying data
around. Consider the following structure type rat that is supposed to be used for rational
arithmetic:

struct rat {
bool sign;
size_t num;
size_t denom;

»s

This is a direct implementation of such a type, and nothing you should use as a library
outside the scope of this learning experience. For simplicity, it has a numerator and de-
nominator of identical type (size_t) and keeps track of the sign of the number in member
.sign. A first (pure) function is rat_get, which takes two numbers and returns a rational
number that represents their quotient:

As you can see, the function is quite simple. It just initializes a compound literal
with the correct sign and numerator and denominator values. Notice that if we define a
rational number this way, several representations will represent the same rational number.
For example, the number - is the same as 2.

To deal with this equivalence in the representations, we need functions that do main-
tenance. The main idea is that such rational numbers should always be normalized: that

SPersistent state between calls to the same function can be established with local static variables. We will
see this concept in subsection@}
6Such an 10 would occur, for example, by using printf.

SO 01NN B~ W

—

12
13
14
15
16
17

19
20
21
22
23

25
26
27
28
29
30
31
32

130 2. COGNITION

rationals.c

rat rat_get(long long num, unsigned long long denom) {
rat ret = {
.sign = (num < 0),
.num = (num < @) ? -num : num,

.denom = denom,
B

return ret;

is, use the representation such that numerator and denominator have the fewest factors.
Not only is this easier for humans to capture, but it also may avoid overflows while doing
arithmetic:

rationals.c

rat rat_get_normal(rat x) {
size_t ¢ = gcd(x.num, x.denom);
X.num /= c;
x.denom /= c;
return x;

Here, the gcd function is as we described earlier.
Another function does the inverse of normalization; it multiplies the numerator and
denominator by a redundant factor:

rationals.c

rat rat_get_extended(rat x, size_t f) {
X.num *= f;
x.denom *= f;
return x;

This way, we may define functions that are supposed to be used by others: rat_get_prod
and rat_get_sum.
Have a look at rat_get_prod:

rationals.c

rat rat_get_prod(rat x, rat y) {
rat ret = {
.sign = (x.sign != y.sign),
.num = X.num * y.num,
.denom = x.denom * y.denom,
B

return rat_get_normal(ret);

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

10. ORGANIZATION AND DOCUMENTATION 131

It first computes a representation of the result in a simple way: by just multiplying
numerators and denominators, respectively. Then, the resulting representation might not
be normalized, so we call rat_get_normal when we return the result.

Now rat_get_sum is a bit more complicated. We have to find the common denomi-
nator before we can compute the numerator of the result:

rationals.c

rat rat_get_sum(rat x, rat y) {
size_t ¢ = gcd(x.denom, y.denom);
size_t ax = y.denom/c;
size_t bx = x.denom/c;
X = rat_get_extended(x, ax);
y = rat_get_extended(y, bx);
assert(x.denom == y.denom);

if (x.sign == y.sign) {
X.num += y.num;

} else if (x.num > y.num) {
X.num -= y.num;

} else {
X.Nnum = y.num - X.num;
X.sign = !x.sign;

}

return rat_get_normal(x);

Also, we have to keep track of the signs of the two rational numbers to see how we
should add up the numerators.

As you can see, the fact that these are all pure functions ensures that they can be easily
used, even in our own implementation here. The only thing we have to watch is to always
assign the return values of our functions to a variable, such as on line[38] Otherwise, since
we don’t oerate on the object x but only on its value, changes during the function would
be lost [P 7[E=3]

As mentioned earlier, because of the repeated copies, this may result in compiled code
that is not as efficient as it could. But this is not dramatic at all: the overhead from the
copy operation can be kept relatively low by good compilers. With optimization switched
on, they usually can operate directly on the structure in place, as it is returned from such a
function. Then such worries might be completely premature, because your program is short
and sweet anyhow, or because its real performance problems lay elsewhere. Usually this
should be completely sufficient for the level of programming skills that we have reached so
far. Later, we will learn how to use that strategy efficiently by using the inline functions
(subsection[15.1)) and link-time optimization that many modern tool chains provide.

Listing lists all the interfaces of the rat type that we have seen so far (first group).
We have already looked at the interfaces to other functions that work on pointers to rat.
These will be explained in more detail in subsection[T1.2]

[EXs TIThe function rat_get_prod can produce intermediate values that may cause it to produce wrong results,
even if the mathematical result of the multiplication is representable in rat. How is that?

[Exs 81Reimplement the rat_get_prod function such that it produces a correct result every time the mathematical
result value is representable in a rat. This can be done with two calls to rat_get_normal instead of one.

0N N AW~

132

2. COGNITION

LISTING 10.1. A type for computation with rational numbers.

B8

rat
rat
rat
rat
rat

void
ratx*

ratx*
rat*
rat*
ratx*
/* F
char

char

ratx*

#ifndef RATIONALS_H

define RATIONALS_H 1
include <stdbool.h>
include "euclid.h”

typedef struct rat rat;
struct rat {
bool sign;

size_t num;
size_t denom;

/* Functions that return a value of type rat. =x/

rat_get(long long num, unsigned long long denom);
rat_get_normal(rat x);

rat_get_extended(rat x, size_t f);
rat_get_prod(rat x, rat y);

rat_get_sum(rat x, rat y);

/* Functions that operate on pointers to rat. =*/

rat_destroy(rat*x rp);
rat_init(ratx rp,

long long num,

unsigned long long denom);
rat_normalize(rat*x rp);
rat_extend(ratx rp, size_t f);
rat_sumup(rat* rp, rat y);
rat_rma(rat* rp, rat x, rat y);

unctions that are implemented as exercises. =*/

/** @brief Print @a x into @a tmp and return tmp. *x/

const* rat_print(size_t len, char tmp[len], rat const* x);

/*x @brief Print @a x normalize and print. xx/

const* rat_normalize_print(size_t len, char tmp[len],
rat const* x);
rat_dotproduct(rat rp[static 1], size_t n,
rat const A[n], rat const B[nl]);

#tendif

Summary

e For each part of a program, we have to distinguish the object (what are we do-
ing?), the purpose (what are we doing it for?), the method (how are we doing it?)
and the implementation (in which manner are we doing it?).

e The function and type interfaces are the essence of software design. Changing
them later is expensive.

e Animplementation should be as literal as possible and obvious in its control flow.
Complicated reasoning should be avoided and made explicit where necessary.

11. POINTERS 133

11. Pointers

This section covers

e Introduction to pointer operations
e Using pointers with structs, arrays, and functions

Pointers are the first real hurdle to a deeper understanding of C. They are used in
contexts where we have to be able to access objects from different points in the code, or
where data is structured dynamically on the fly.

The confusion of inexperienced programmers between pointers and arrays is notori-
ous, so be warned that you might encounter difficulties in getting the terms correct. On the
other hand, pointers are one of the most important features of C. They are a big plus to help
us abstract from the bits and odds of a particular platform and enable us to write portable
code. So please, equip yourself with patience when you work through this section, because
it is crucial for the understanding of most of the rest of this book.

The term pointer® stands for a special derived type construct that “points” or “refers”
to something. We have seen the syntax for this construct, a type (the referenced type®)
that is followed by a * character. For example, p@ is a pointer to a double:

idouble* po; i

The idea is that we have one variable (the pointer) that points to the memory of another

object:
0 —

An import distinction that we will have to make throughout this section is between the
pointer (on the left of the arrow) and the unnamed object that is pointed to (on the right).

Our first usage of a pointer will be to break the barrier between the code of the caller
of a function and the code inside a function, and thus allow us to write functions that are
not pure. This example will be a function with this prototype:

ivoid double_swap (double*x p0d, doublex pl);

L |
Here we see two function arguments that “point” to objects of type double. In the example,
the function double_swap is supposed to interchange (swap) the contents of these two
objects. For example, when the function is called, p@ and p1 could be pointing to double

variables d@ and d1, respectively, that are defined by the caller:

do d1
pd@ —| double 3.5 double 10 +— p1

By receiving information about two such objects, the function double_swap can effectively
change the contents of the two double objects without changing the pointers themselves:

do d1
pd@ —| double 10 double 3.5 «— p1

Using pointers, the function will be able to apply the change directly to the variables of the
calling function; a pure function without pointers or arrays would not be able to do this.
In this section, we will go into the details of different operations with pointers (sub-
section [IT.1)) and specific types for which pointers have particular properties: structures
(subsection[TT.2)), arrays (subsection[IT.3), and functions (subsection [TT.4).

11.1. Pointer operations. Pointers are an important concept, so there are several C
language operations and features just for them. Most importantly, specific operators allow
us to deal with the “pointing-to” and “pointed-to” relation between pointers and the objects

134 2. COGNITION

to which they point (subsection . Also, pointers are considered scalars®': arithmetic
operations are defined for them, offset additions (subsection and subtractions (sub-
section[TT.1.3); they have state (subsection[IT.1.4); and they have a dedicated “null” state
(subsection[TT.1.3).

11.1.1. Address-of and object-of operators. If we have to perform tasks that can’t be
expressed with pure functions, things get more involved. We have to poke around in objects
that are not variables of the function. Pointers are a suitable abstraction to do this.

So, let us use the function double_swap from earlier to swap the contents of two
double objects do and d1. For the call, we use the unary address-of° operator “&”. It
allows us to refer to an object through its address©. A call to our function could look like
this:

1 double_swap (&d0, &d1);

The type that the address-of operator returns is a pointer type© and can be specified
with the * notation that we have seen. An implementation of the function could look like
this: Inside the function, pointers p@ and p1 hold the addresses of the objects on which

void double_swap(double* p@, doublex p1) {
double tmp = *po;
*p@ = xpl;
*pl tmp;

3

the function is supposed to operate: in our example, the addresses of do and d1. But the
function knows nothing about the names of the two variables d@ and d1; it only knows p@
and p1.

<unknown> <unknown>

50 —[double 3.5 [double 10— p

To access them, another construct that is the inverse of the address-of operator is used:
the unary object-of© operator “*”: *p@ then is the object corresponding to the first argu-
ment. With the previous call, that would be d@, and similarly *p1 is the object d1

*po *p1

50 —[double 3.5 [double 10— p

Please note that the * character plays two different roles in the definition of double_swap.
In a declaration, it creates a new type (a pointer type), whereas in an expression it dereferences
the object to which a pointer refers®. To help distinguish these two usages of the same
symbol, we usually flush the * to the left with no blanks in between if it modifies a type
(such as double=) and to the right if it dereferences a pointer (*p@).

Remember from subsection [6.2] that in addition to holding a valid address, pointers
may also be null or indeterminate.

c

Takeaway 2.11.1.1 Using * with an indeterminate or null pointer has undefined behav-
ior.

In practice, though, both cases will usually behave differently. The first might access a
random object in memory and modify it. Often this leads to bugs that are difficult to trace
because it will poke into objects it is not supposed to. The second, if the pointer is null,
will manifest early during development and nicely crash our program. Consider this to be
a feature.

[Exs 91\rite a function that receives pointers to three objects and that shifts the values of these objects cyclically.

11. POINTERS 135

11.1.2. Pointer addition. We already have seen that a valid pointer holds the address
of an object of its reference type, but actually C assumes more than that:

Takeaway 2.11.1.2 A valid pointer refers to the first element of an array of the reference
type.

Or, in other words, a pointer may be used to refer not only to one instance of the
reference type, but also to an array of an unknown length n.

0 n—1
po —[double |- - -

This entanglement between the concept of pointers and arrays is taken an important step
further in the syntax. In fact, for the specification of the function double_swap, we
wouldn’t even need the pointer notation. In the notation we have used so far, it can equally
be written as

void double_swap(double po[static 1], double pi[static 1]) {
double tmp = po[0];
po[e] = pi1[e];
p1[0] = tmp;

3

Both the use of array notation for the interface and the use of [@] to access the first element
are simple rewrite operations® that are built into the C language. We will see more of this
later.

Simple additive arithmetic allows us to access the following elements of this array.
This function sums all elements of an array:

double sumo(size_t len, double constx a) {
double ret = 0.0;
for (size_t i = 0; i < len; ++i) {
ret += *(a + i);
}

return ret;

Here, the expression a+1i is a pointer that points to the i" element in the array:

0 7 len—1
a— [double| --------- [double]--r-rr-.
/]\
a+i

Pointer addition can be done in different ways, so the following functions sum up the
array in exactly the same order:

double sumil(size_t len, double const* a) {
double ret = 0.0;
for (double constx p = a; p < at+len; ++p) {
ret += *p;
}

return ret;

double sum2(size_t len, double constx* a) {
double ret = 0.0;
for (double constxconst aStop = a+len; a < aStop; ++a) {

136 2. COGNITION

\ ret += %a; ‘
| 2 \
| return ret; \
\ \
L |

}

In iteration ¢ of function sum1, we have the following picture:

0 [len—1
a— [double| .- ---. [double] - --.--
T T
p atlen

The pointer p walks through the elements of the array until it is greater than or equal to
a+len, the first pointer value that lies beyond the array.
For function sum2, we have the following picture:

0 i len—1

.........
) T
a aStop

Here, a refers to the i'" element of the array. The 0" element is not referenced again inside
the function, but the information about the end of the array is kept in the variable aStop.
These functions can then be called analogously to the following:

double A[7]

{e, 1,2 3,4,5,6, 1}

double s@_7 = sum@ (7, &A[0Q]); // For the whole
double s1_6 = sum@ (6, &A[1]1); // For the last 6
double s2_3 = sum@ (3, &A[2]); // For the 3 in the middle

Unfortunately, there is no way to know the length of the array that is hidden behind
a pointer, so we have to pass it as a parameter into the function. The trick with sizeof,
which we saw in subsection [6.1.3] doesn’t work.

Takeaway 2.11.1.3 The length of an array object cannot be reconstructed from a pointer.

So here, we see a first important difference from arrays.

Takeaway 2.11.1.4 Pointers are not arrays.

If we pass arrays through pointers to a function, it is important to retain the real length
of the array. This is why we prefer the array notation for pointer interfaces throughout this
book:

double sumo(size_t len, double const al[lenl]);
double suml(size_t len, double const al[len]);
double sum2(size_t len, double const al[lenl]);

These specify exactly the same interfaces as shown earlier, but they clarify to the casual
reader of the code that a is expected to have len elements.

11.1.3. Pointer subtraction and difference. Pointer arithmetic we have discussed so
far concerned addition of an integer and a pointer. There is also an inverse operation that
can subtract an integer from a pointer. If we wanted to visit the elements of the array
downward, we could use this:

[|
| double sum3(size_t len, double const* a) {

‘ double ret = 0.0;

| double const* p = a+tlen-1;

11. POINTERS 137

| do {

\ ret += #*p;

\ ==

‘ } while (p > a);
| return ret;

\

L

}

Here, p starts out at a+(len-1), and in the " iteration the picture is:

0 (len—1)—1 len—1
a—>[dowble] -+ oerrr [double| -wevee...
1) T
p at(len-1)

Note that the summation order in this function is inverted["]

There is also an operation, pointer difference®, that takes two pointers and evaluates
to an integer value their distance apart in number of elements. To see that, we extend
sum3 to a new version that checks for an error condition (one of the array elements being
an infinity). In that case, we want to print a comprehensive error message and return the
culprit to the callerﬂ

double sum4(size_t len, double constx a) {
double ret = 0.0;
double const* p = atlen-1;

do {
if (isinf(xp)) {
fprintf (stderr,
"element_\%tu_of_array_at_\%p_is_infinite\n",
p-a, // Pointer difference!
(voidx)a); // Prints the pointer value
return *p;
3
ret += xp;

TP
} while (p > a);
return ret;

3

Here, we use the expression p-a to compute the position of the actual element in the array.
This is allowed only if the two pointers refer to elements of the same array object:

Takeaway 2.11.1.5 Only subtract pointers from elements of an array object.

The value of such a difference then is simply the difference of the indices of the cor-
responding array elements:

double A[4] = { 0.0, 1.0, 2.0, -3.0, };
doublex p = &A[1];
doublex g = &A[3];
assert(p-q == -2);

We have stressed the fact that the correct type for sizes of objects is size_t, an un-
signed type that on many platforms is different from unsigned. This has its correspon-
dence in the type of a pointer difference: in general, we cannot assume that a simple int
is wide enough to hold the possible values. Therefore, the standard header stddef . h pro-
vides us with another type. On most architectures, it is just the signed integer type that
corresponds to size_t, but we shouldn’t care much.

10Because of differences in rounding, the result might be slightly different than for the first three functions in
this series.

i sinf comes from the math. h header.

<stddef.h>

138 2. COGNITION
Takeaway 2.11.1.6 All pointer differences have type ptrdiff_t.

Takeaway 2.11.1.7 Use ptrdiff_t to encode signed differences of positions or sizes.

Function sum4 also shows a recipe to print a pointer value for debugging purposes. We
use the format character %p, and the pointer argument is cast by (void#*)a to the obscure
type void*. For the moment, take this recipe as a given; we do not yet have all the baggage
to understand it in full (more details will follow in subsection [12.4).

Takeaway 2.11.1.8 For printing, cast pointer values to voidx, and use the format %p.

11.1.4. Pointer validity. Earlier (takeaway 2.1T.1.1)), we saw that we must be careful
about the address that a pointer contains (or does not contain). Pointers have a value, the
address they contain, and that value can change.

Setting a pointer to 0 if it does not have a valid address is very important and should
not be forgotten. It helps to check and keep track of whether a pointer has been set.

Takeaway 2.11.1.9 Pointers have truth.

To avoid clunky comparisons (takeaway [I.3.1.3), in C programs you often will see
code like this:

char constx name = 0;

// Do something that eventually sets name

if (name) {
printf("today’s_name_is_%s\n", name);

} else {
printf(”today_we_are_anonymous\n");

3

Therefore, it is important to control the state of all pointer variables. We have to ensure
that pointer variables are always null, unless they point to a valid object that we want to
manipulate.

Takeaway 2.11.1.10 Set pointer variables to @ as soon as you can.

In most cases, the simplest way to ensure this is to initialize pointer variables explicitly
(takeaway [1.6.2.6).

We have seen some examples of representations of different types: that is, the way the
platform stores the value of a particular type in an object. The representation of one type,
size_t, say, could be completely senseless to another type, for example double. As long
as we only use variables directly, C’s type system will protect us from any mixup of these
representations; a size_t object will always be accessed as such and never be interpreted
as a (senseless) double.

If we did not use them carefully, pointers could break that barrier and lead us to code
that tries to interpret the representation of a size_t as double. More generally, C even has
coined a term for bit patterns that are nonsense when they are interpreted as a specific type:
a trap representation® for that type. This choice of words (trap) is meant to intimidate.

Takeaway 2.11.1.11 Accessing an object that has a trap representation of its type has
undefined behavior.

Ugly things can happen if you do, so please don’t try.
Thus, not only must a pointer be set to an object (or null), but such an object also must
have the correct type.

11. POINTERS 139

Takeaway 2.11.1.12 When dereferenced, a pointed-to object must be of the designated
type.

As a direct consequence, a pointer that points beyond array bounds must not be deref-
erenced:

double A[2] = { 0.0, 1.0, 3};
doublex p = &A[0];
printf(”"element_%g\n", *p); // Referencing object

t+p; // Valid pointer
printf(”"element_%g\n", *p); // Referencing object
t+p; // Valid pointer, no object

printf(”"element_%g\n", *p); // Referencing non-object
// Undefined behavior

Here, on the last line, p has a value that is beyond the bounds of the array. Even if
this might be the address of a valid object, we don’t know anything about the object it is
pointing to. So even if p is valid at that point, accessing the contents as a type of double
makes no sense, and C generally forbids such access.

In the previous example, the pointer addition itself is correct, as long as we don’t
access the object on the last line. The valid values of pointers are all addresses of array
elements and the address beyond the array. Otherwise, for loops with pointer addition as
in the example wouldn’t work reliably.

Takeaway 2.11.1.13 A pointer must point to a valid object or one position beyond a
valid object or be null.

So the example only worked up to the last line because the last ++p left the pointer
value just one element after the array. This version of the example still follows a similar
pattern as the one before:

double A[2] = { 0.0, 1.0, };

doublex p = &A[0Q];

printf(”"element_%g\n", *p); // Referencing object

p += 2; // Valid pointer, no object

printf(”"element_%g\n", *p); // Referencing non-object
// Undefined behavior

Whereas this last example may crash at the increment operation:

double A[2] = { 0.0, 1.0, };

doublex p = &A[0];

printf(”"element_%g\n", *p); // Referencing object

p += 3; // Invalid pointer addition
// Undefined behavior

11.1.5. Null pointers. You may have wondered why, in all this discussion about point-
ers, the macro NULL has not yet been used. The reason is that, unfortunately, the simple
concept of a “generic pointer of value 0” didn’t succeed very well.

C has the concept of a null pointer® that corresponds to a 0 value of any pointer

typeE| Here,

double constxconst nix = 0;
double constxconst nax = nix;

nix and nax would be pointer objects of value 0. But unfortunately, a null pointer constant®
is then not what you’d expect.

2Note the different capitalization of null versus NULL.

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24

140 2. COGNITION

First, here the term constant refers to a compile-time constant, not to a const-qualified
object. So for that reason, both pointer objects are not null pointer constants. Second, the
permissible type for these constants is restricted: it may be any constant expression of
integer type or of type void*. Other pointer types are not permitted, and we will learn
about pointers of that “type” in subsection [12.4]

The definition in the C standard of a possible expansion of the macro NULL is quite
loose; it just has to be a null pointer constant. Therefore, a C compiler could choose any
of the following for it:

Expansion Type

ou unsigned

0 signed

"o’

Enumeration constant of value @

ouL unsigned long

oL signed long

oQULL unsigned long long
oLL signed long
(void*)0 voidx

Commonly used values are @, 0L, and (void*)@E]

It is important that the type behind NULL is not prescribed by the C standard. Often,
people use it to emphasize that they are talking about a pointer constant, which it simply
isn’t on many platforms. Using NULL in a context that we have not mastered completely is
even dangerous. This will in particular appear in the context of functions with a variable
number of arguments, which will be discussed in subsection For the moment, we
will go for the simplest solution:

Takeaway 2.11.1.14 Don’t use NULL.

NULL hides more than it clarifies. Either use @ or, if you really want to emphasize that
the value is a pointer, use the magic token sequence (void=*)@ directly.

11.2. Pointers and structures. Pointers to structure types are crucial for most cod-
ing in C, so some specific rules and tools have been put in place to ease this typical usage.
For example, let us consider the task of normalizing a struct timespec as we have en-
countered it previously. The use of a pointer parameter in the following function allows us
to manipulate the objects directly:

timespec.c

/**
**x @brief compute a time difference
**

*% This uses a @c double to compute the time. If we want to

*%x be able to track times without further loss of precision
*%x and have @c double with 52 bit mantissa, this

*% corresponds to a maximal time difference of about 4.5E6
**x seconds, or 52 days.

**

*%/

double timespec_diff(struct timespec const* later,
struct timespec constx sooner){
/* Be careful: tv_sec could be an unsigned type =*/
if (later->tv_sec < sooner->tv_sec)
return -timespec_diff (sooner, later);

B theory, there are even more possible expansions for NULL, such as ((char)+0) and ((short)-0).

25
26
27
28
29
30

95
96
97

99
100
101
102
103
104

106
107
108
109

11. POINTERS 141

| else |
\ return |
\ (later->tv_sec - sooner->tv_sec) \
\ /* tv_nsec is known to be a signed type. */ \
\ + (later->tv_nsec - sooner->tv_nsec) * 1E-9; \
| |
L |

For convenience, here we use a new operator, —>. Its arrow-like symbol is meant to
represent a pointer as the left operand that “points” to a member of the underlying struct
as the right operand. It is equivalent to a combination of x and .. To have the same effect,
we would have to use parentheses and write (*a).tv_sec instead of a->tv_sec. This
could quickly become a bit clumsy, so the -> operator is what everybody uses.

tv_sec tv_nsec

-
| |

| a->tv_nsec
a->tv_sec

Observe that a construct like a->tv_nsec is not a pointer, but an object of type long, the
number itself.

As another example, let us again consider the type rat for rational numbers that we
introduced in subsection [[0.2.2] The functions operating on pointers to that type in list-
ing[T0.T] could be written as follows:

rationals.c

void rat_destroy(ratx rp) {
if (rp) *rp = (rat){ @ };
3

The function rat_destroy ensures that all data that might be present in the object is erased
and set to all-bits 0:

rationals.c

rat* rat_init(ratx rp,
long long num,
unsigned long long denom) {
if (rp) *rp = rat_get(num, denom);
return rp;

}

rationals.c

rat* rat_normalize(rat* rp) {
if (rp) xrp = rat_get_normal (*rp);
return rp;

142 2. COGNITION

rationals.c

111 | ratx rat_extend(rat* rp, size_t f) {

112 if (rp) *rp = rat_get_extended(xrp, f);
113 return rp;

114 |}

The other three functions are simple wrappers® around the pure functions that we
already know. We use two pointer operations to test validity and then, if the pointer is
valid, to refer to the object in question. So, these functions can be safely used, even if the
pointer argument is null

All four functions check and return their pointer argument. This is a convenient strat-
egy to compose such functions, as we can see in the definitions of the following two arith-

metic functions:
. rationals.c
135 | rat* rat_rma(ratx rp, rat x, rat y) {

136 return rat_sumup(rp, rat_get_prod(x, y)); \
137 | 3} \
|

The function rat_rma (“rational multiply add””) comprehensively shows its purpose:
to add the product of the two other function arguments to the object referred to by rp. It
uses the following function for the addition:

rationals.c

116 | rat* rat_sumup(rat* rp, rat y) {
117 size_t ¢ = gcd(rp->denom, y.denom);
118 size_t ax = y.denom/c;

119 size_t bx = rp->denom/c;

120 rat_extend(rp, ax);

121 y = rat_get_extended(y, bx);
122 assert(rp->denom == y.denom);
123

124 if (rp->sign == y.sign) {

125 rp->num += y.num;

126 } else if (rp->num > y.num) {
127 rp->num -= y.num;

128 } else {

129 rp->num = y.num - rp->num;
130 rp->sign = lrp->sign;

131 }

132 return rat_normalize(rp);

133 |}

The function rat_sumup is a more complicated example, where we apply two main-
tenance functions to the pointer arguments

Another special rule applies to pointers to structure types: they can be used even if
the structure type itself is unknown. Such opaque structures® are often used to strictly
separate the interface of a library and its implementation. For example, a fictive type toto
could be presented in an include file as follows:

[Exs 14]Implement function rat_print as declared in listing This function should use -> to access the mem-
bers of its ratx argument. The printout should have the form +nom/denum.
[Exs 15]Implemem rat_print_normalized by combining rat_normalize and rat_print.

(Exs]6]Implement the function rat_dotproduct from listing such that it computes Z?;ol Ali] = Bl[i] and
returns that value in *rp.

11. POINTERS 143

/* forward declaration of struct toto */
struct toto;

struct totox toto_get(void);

void toto_destroy(struct totox);

void toto_doit(struct totox, unsigned);

Neither the programmer nor the compiler would need more than that to use the type
struct toto. The function toto_get could be used to obtain a pointer to an object of
type struct toto, regardless how it might have been defined in the compilation unit that
defines the functions. And the compiler gets away with it because it knows that all point-
ers to structures have the same representation, regardless of the specific definition of the
underlying type.

Often, such interfaces use the fact that null pointers are special. In the previous ex-
ample, toto_doit(@, 42) could be a valid use case. This is why many C programmers
don’t like it if pointers are hidden inside typedef:

/* forward declaration of struct toto_s and user type toto */
typedef struct toto_s* toto;

toto toto_get(void);

void toto_destroy(toto);

void toto_doit(toto, unsigned);

This is valid C, but it hides the fact that @ is a special value that toto_doit may
receive.

Takeaway 2.11.2.1 Don’t hide pointers in a typedef.

This is not the same as just introducing a typedef name for the struct, as we have
done before:

/* forward declaration of struct toto and typedef toto =/
typedef struct toto toto;

toto* toto_get(void);

void toto_destroy(totox*);

void toto_doit(toto*, unsigned);

Here, the fact that the interface receive a pointer is still sufficiently visible.

CHALLENGE 12 (text processor). For a text processor, can you use a doubly linked list
to store text? The idea is to represent a “blob” of text through a struct that contains a
string (for the text) and pointers to preceding and following blobs.

Can you build a function that splits a text blob in two at a given point?

One that joins two consecutive text blobs?

One that runs through the entire text and puts it in the form of one blob per line?

Can you create a function that prints the entire text or prints until the text is cut off due to
the screen size?

11.3. Pointers and arrays. We are now able to attack the major hurdles to under-
standing the relationship between arrays and pointers: the fact that C uses the same syntax
for pointer and array element access and that it rewrites array parameters of functions to
pointers. Both features provide convenient shortcuts for the experienced C programmer
but also are a bit difficult for novices to digest.

144 2. COGNITION

11.3.1. Array and pointer access are the same. The following statement holds regard-
less of whether A is an array or a pointer:

Takeaway 2.11.3.1 The two expressions ALi] and x (A+1) are equivalent.

If it is a pointer, we understand the second expression. Here, it just says that we may
write the same expression as A[i]. Applying this notion of array access to pointers should
improve the readability of your code. The equivalence does not mean that all of the sudden
an array object appears where there was none. If A is null, A[i] should crash nicely, as
should *(A+1).

If A is an array, * (A+1i) shows our first application of one of the most important rules
in C, called array-to-pointer decay®:

Takeaway 2.11.3.2 (array decay) Evaluation of an array A returns &AL0].

In fact, this is the reason there are no “array values” and all the difficulties they entail
(takeaway [[.6.1.3). Whenever an array occurs that requires a value, it decays to a pointer,
and we lose all additional information.

11.3.2. Array and pointer parameters are the same. Because of the decay, arrays can-
not be function arguments. There would be no way to call such a function with an array
parameter; before any call to the function, an array that we feed into it would decay into a
pointer, and thus the argument type wouldn’t match.

But we have seen declarations of functions with array parameters, so how did they
work? The trick C gets away with is to rewrite array parameters to pointers.

Takeaway 2.11.3.3 In a function declaration, any array parameter rewrites to a pointer.

Think of this and what it means for a while. Understanding this “chief feature” (or
character flaw) is central for coding easily in C.

To come back to our examples from subsection [6.1.5] the functions that were written
with array parameters could be declared as follows:

size_t strlen(char constx*x s);
charx strcpy(charx target, char const* source);
signed strcmp(char constx s@, char const* s1);

These are completely equivalent, and any C compiler should be able to use both forms
interchangeably.

Which one to use is a question of habit, culture, or other social contexts. The rule
that we follow in this book to use array notation if we suppose it can’t be null, and pointer
notation if it corresponds to a single item of the base type that also can be null to indicate
a special condition.

If semantically a parameter is an array, we also note what size we expect the array to
be, if possible. And to make it possible, it is usually better to specify the length before the
arrays/pointers. An interface such as

double double_copy(size_t len,
double target[len],
double const source[lenl]);

tells a whole story. This becomes even more interesting if we handle two-dimensional
arrays. A typical matrix multiplication could look as follows:

11. POINTERS 145

void matrix_mult(size_t
double
double
double
for (size_t i = 0; i
for (size_t j = 0;
CL[il[j1 = @.0;
for (size_t 1 =
CLilLj]
3
}
3

0;
+= A[iJ[11*BL1IL]1;

n, size_t k,
CCnlCml,
ALn1Ck1,
BLkI[ml) {

< n; ++i) {
Jj<m; o++3) {

size_t m,

1 < k; ++1) {

The prototype is equivalent to the less readable

void matrix_mult(size_t
double
double
double

n, size_t k,
(CCn1)[m],
(ALn1) k],
(BLk1)I[mI);

size_t m,

and

void matrix_mult(size_t
double
double

n, size_t k,
(xC)[m1,
(*A)[k],

size_t m,

double

(xB)Im1);

Observe that once we have rewritten the innermost dimension as a pointer, the parameter
type is not an array anymore, but a pointer to array. So there is no need to rewrite the
subsequent dimensions.

Takeaway 2.11.3.4 Only the innermost dimension of an array parameter is rewritten.

Finally, we have gained a lot by using array notation. We have without any trou-
ble problems passed pointers to VLAs into the function. Inside the function, we can use
conventional indexing to access the elements of the matrices. Not much in the way of
acrobatics is required to keep track of the array lengths:

Takeaway 2.11.3.5 Declare length parameters before array parameters.

They simply have to be known at the point where you use them first.
Unfortunately, C generally gives no guarantee that a function with array-length pa-
rameters is always called correctly.

Takeaway 2.11.3.6 The validity of array arguments to functions must be guaranteed by
the programmer.

If the array lengths are known at compile time, compilers may be able to issue warn-
ings, though. But when array lengths are dynamic, you are mostly on your own: be careful.

11.4. Function pointers. There is yet another construct for which the address-of op-
erator & can be used: functions. We saw this concept pop up when discussing the atexit
function (section , which is a function that receives a function argument. The rule is
similar to that for array decay, which we described earlier:

Takeaway 2.11.4.1 (function decay) A function f without a following opening (decays
to a pointer to its start.

<stdlib.h>

146 2. COGNITION

Syntactically, functions and function pointers are also similar to arrays in type decla-
rations and as function parameters:

typedef void atexit_function(void);

// Two equivalent definitions of the same type, which hides a pointer
typedef atexit_function* atexit_function_pointer;

typedef void (*atexit_function_pointer)(void);

// Five equivalent declarations for the same function

void atexit(void f(void));

void atexit(void (*f)(void));

void atexit(atexit_function f);

void atexit(atexit_functionx f);

void atexit(atexit_function_pointer f);

Which of the semantically equivalent ways of writing the function declaration is more
readable could certainly be the subject of much debate. The second version, with the (*f)
parentheses, quickly gets difficult to read; and the fifth is frowned upon because it hides a
pointer in a type. Among the others, I personally slightly prefer the fourth over the first.

The C library has several functions that receive function parameters. We have seen
atexit and at_quick_exit. Another pair of functions in stdlib.h provides generic
interfaces for searching (bsearch) and sorting (qsort):

typedef int compare_function(void constx, void constx);

void*x bsearch(void constx* key, void constx* base,
size_t n, size_t size,
compare_functionx compar);

void gsort(void* base,
size_t n, size_t size,
compare_function* compar);

Both receive an array base as argument on which they perform their task. The address
to the first element is passed as a void pointer, so all type information is lost. To be able
to handle the array properly, the functions have to know the size of the individual elements
(size) and the number of elements (n).

In addition, they receive a comparison function as a parameter that provides the in-
formation about the sort order between the elements. By using such a function pointer,
the bsearch and gsort functions are very generic and can be used with any data model
that allows for an ordering of values. The elements referred by the base parameter can be
of any type T (int, double, string, or application defined) as long as the size parameter
correctly describes the size of T and as long as the function pointed to by compar knows
how to compare values of type T consistently.

A simple version of such a function would look like this:

int compare_unsigned(void const* a, void constx b){
unsigned constx A = a;
unsigned constx B = b;
if (*A < *B) return -1;
else if (xA > %*B) return +1;
else return 0;

The convention is that the two arguments point to elements that are to be compared,
and the return value is strictly negative if a is considered less than b, 0 if they are equal,
and strictly positive otherwise.

The return type of int seems to suggest that int comparison could be done more
simply:

11. POINTERS 147

/* An invalid example for integer comparison =x/
int compare_int(void const* a, void constx* b){
int constx A = a;
int constx B = b;
return *A - *B; // may overflow!

}

But this is not correct. For example, if *A is big, say INT_MAX, and *B is negative, the
mathematical value of the difference can be larger than INT_MAX.

Because of the void pointers, a usage of this mechanism should always take care that
the type conversions are encapsulated similar to the following:

/* A header that provides searching and sorting for unsigned. =*/

/* No use of inline here; we always use the function pointer. =*/
extern int compare_unsigned(void const*, void constx);

inline
unsigned const*x bsearch_unsigned(unsigned const key[static 1],
size_t n, unsigned const basel[nmeb]) {
return bsearch(key, base, nmeb, sizeof base[@], compare_unsigned);

}

inline
void gsort_unsigned(size_t n, unsigned base[nmeb]) {
gsort (base, nmeb, sizeof base[@], compare_unsigned);

3

Here, bsearch (binary search) searches for an element that compares equal to key[@] and
returns it, or returns a null pointer if no such element is found. It supposes that array base
is already sorted consistently to the ordering that is given by the comparison function. This
assumption helps to speed up the search. Although this is not explicitly specified in the C
standard, you can expect that a call to bsearch will never make more than [log,(n)] calls
to compar.

If bsearch finds an array element that is equal to xkey, it returns the pointer to this
element. Note that this drills a hole in C’s type system, since this returns an unqualified
pointer to an element whose effective type might be const qualified. Use with care. In our
example, we simply convert the return value to unsigned const*, such that we will never
even see an unqualified pointer at the call side of bsearch_unsigned.

The name gsort is derived from the quick sort algorithm. The standard doesn’t impose
the choice of the sorting algorithm, but the expected number of comparison calls should
be of the magnitude of nlog,(n), just like quick sort. There are no guarantees for upper
bounds; you may assume that its worst-case complexity is at most quadratic, O(n?).

Whereas there is a catch-all pointer type, void#*, that can be used as a generic pointer
to object types, no such generic type or implicit conversion exists for function pointers.

Takeaway 2.11.4.2 Function pointers must be used with their exact type.

Such a strict rule is necessary because the calling conventions for functions with dif-
ferent prototypes may be quite differenﬂ and the pointer itself does not keep track of any
of this.

The following function has a subtle problem because the types of the parameters are
different than what we expect from a comparison function:

7 The platform application binary interface (ABI) may, for example, pass floating points in special hardware
registers.

148 2. COGNITION

/* Another invalid example for an int comparison function =*/
int compare_int(int constx a, int const* b){

if (xa < *b) return -1;

else if (*a > xb) return +1;

else return 0;

}

When you try to use this function with gsort, your compiler should complain that
the function has the wrong type. The variant that we gave earlier using intermediate
void const* parameters should be almost as efficient as this invalid example, but it also
can be guaranteed to be correct on all C platforms.

Calling functions and function pointers with the (...) operator has rules similar to
those for arrays and pointers and the [. ..] operator:

Takeaway 2.11.4.3 The function call operator (.. .) applies to function pointers.

double f(double a);

// Equivalent calls to f, steps in the abstract state machine

f(3); // Decay — call

(&f) (3); // Address of — call

(*f)(3); // Decay — dereference — decay — call
(*&f)(3); // Address of — dereference — decay — call
(&*f)(3); // Decay — dereference — address of — call

So technically, in terms of the abstract state machine, the pointer decay is always
performed, and the function is called via a function pointer. The first, “natural” call has a
hidden evaluation of the f identifier that results in the function pointer.

Given all this, we can use function pointers almost like functions:

// In a header

typedef int logger_function(char constx, ...);
extern logger_function* logger;

enum logs { log_pri, log_ign, log_ver, log_num };

This declares a global variable logger that will point to a function that prints out log-
ging information. Using a function pointer will allow the user of this module to choose a
particular function dynamically:

// In a .c file (TU)

extern int logger_verbose(char constx*, ...);
static
int logger_ignore(char constx*, ...) {

return 0;
}
logger_function*x logger = logger_ignore;
static

logger_functionx loggers = {
[log_pril] = printf,
[log_ign] = logger_ignore,
[log_ver] = logger_verbose,

B3

Here, we are defining tools that implement this approach. In particular, function pointers
can be used as a base type for arrays (here loggers). Observe that we use two external
functions (printf and logger_verbose) and one static function (logger_ignore) for
the array initialization: the storage class is not part of the function interface.

SUMMARY 149

The logger variable can be assigned just like any other pointer type. Somewhere at
startup we can have

‘if (LOGGER < log_num) logger = loggers[LOGGER];

Then this function pointer can be used anywhere to call the corresponding function:

\logger(”Dogweuever_seeglineu\%lu_of_fileu\%s?“, __LINE__+oUL,
L

_FILE__);

This call uses the special macros __LINE__ and __FILE__ for the line number and the
name of the source file. We will discuss these in more detail in subsection [[6.3]

When using pointers to functions, you should always be aware that doing so introduces
an indirection to the function call. The compiler first has to fetch the contents of logger
and can only then call the function at the address it found there. This has a certain overhead
and should be avoided in time-critical code.

CHALLENGE 13 (Generic derivative). Can you extend the real and complex derivatives
(challenges 2l and D)) such that they receive the function F and the value x as a parameter?
Can you use the generic real derivatives to implement Newton’s method for finding roots?
Can you find the real zeros of polynomials?

Can you find the complex zeros of polynomials?

CHALLENGE 14 (Generic sorting). Can you extend your sorting algorithms (challenge)
to other sort keys?

Can you condense your functions for different sort keys to functions that have the same
signature as qsort: that is, receive generic pointers to data, size information, and a com-
parison function as parameters?

Can you extend the performance comparison of your sorting algorithms (challenge[I0) to
the C library function qsort?

Summary

e Pointers can refer to objects and to functions.

e Pointers are not arrays but refer to arrays.

e Array parameters of functions are automatically rewritten as object pointers.

e Function parameters of functions are automatically rewritten as function point-
ers.

Function pointer types must match exactly when they are assigned or called.

150 2. COGNITION

12. The C memory model

This section covers

o Understanding object representations
o Working with untyped pointers and casts
e Restricting object access with effective types and alignment

Pointers present us with a certain abstraction of the environment and state in which
our program is executed, the C memory model. We may apply the unary operator & to
(almost) all objectﬂ to retrieve their address and use it to inspect and change the state of
our execution.

This access to objects via pointers is still an abstraction, because seen from C, no
distinction of the “real” location of an object is made. It could reside in your computer’s
RAM or on a disk file, or correspond to an IO port of a temperature sensor on the moon;
you shouldn’t care. C is supposed to do right thing, regardless.

And indeed, on modern operating systems, all you get via pointers is something called
virtual memory, basically a fiction that maps the address space of your process to physical
memory addresses of your machine. All this was invented to ensure certain properties of
your program executions:

portable: You do not have to care about physical memory addresses on a specific machine.
safe: Reading or writing virtual memory that your process does not own will affect neither
your operating system nor any other process.

The only thing C must care about is the fype of the object a pointer addresses. Each pointer
type is derived from another type, its base type, and each such derived type is a distinct
new type.

Takeaway 2.12.0.1 Pointer types with distinct base types are distinct.

In addition to providing a virtual view of physical memory, the memory model also
simplifies the view of objects themselves. It makes the assumption that each object is
a collection of bytes, the object representation (subsection @ ;[5] see figure for a
schematic view. A convenient tool to inspect that object representation is unions (subsec-
tion[I2.2). Giving direct access to the object representation (subsection [12.3) allows us to
do some fine tuning; but on the other hand, it also opens the door to unwanted or conscious
manipulations of the state of the abstract machine: tools for that are untyped pointers (sub-
section[I2.4) and casts (subsection [I2.5)). Effective types (subsection [I2.6) and alignment
(subsection describe formal limits and platform constraints for such manipulations.

12.1. A uniform memory model. Even though generally all objects are typed, the
memory model makes another simplification: that all objects are an assemblage of bytes® .
The sizeof operator that we introduced in the context of arrays measures the size of an
object in terms of the bytes that it uses. There are three distinct types that by definition use
exactly one byte of memory: the character types char, unsigned char, and signed char.

Takeaway 2.12.1.1 sizeof(char) is 1 by definition.

Not only can all objects be “accounted” in size as character types on a lower level,
they can even be inspected and manipulated as if they were arrays of such character types.
A little later, we will see how this can be achieved, but for the moment we will just note
that

18Only objects that are declared with keyword register don’t have an address; see subsection [13.2.2| on
level
19The object representation is related to but not the same thing as the binary representation that we saw in

subsection @}

12. THE C MEMORY MODEL 151

30
Semantic type int32_t —b3:2% 4+ 3 b2
=0
/l\
typedef
J
. 30)
Basic type signed int —b3:2%' + Y b;2°
1=0
.T
sign representation
i
. . [3] [2] [1] [0]
Binary representation bay - -bas ‘ ’ bas - -big ‘ ‘ bis - bs ‘ ‘ br - bo
T
endianess
+
. 5 [e] 0l [21 [31
Ob]CCt representatlon ‘ unsigned char ‘ ‘ unsigned char ’ unsigned char ‘ unsigned char ‘
unsigned char[4] i i i) i
+0 +1 +2 +3
voidx))) 0

0 3

+ +1 +2 +
OS/physial memory

FIGURE 12.1. The different levels of the value-memory model for
an int32_t. Example of a platform that maps this type to a 32-bit
signed int that has two’s complement sign representation and little-
endian object representation.

Takeaway 2.12.1.2 Every object A can be viewed as unsigned char[sizeof Al.

Takeaway 2.12.1.3 Pointers to character types are special.

Unfortunately, the types that are used to compose all other object types are derived
from char, the type we looked at for the characters of strings. This is merely a histor-

ical accident, and you shouldn’t read too much into it. In particular, you should clearly
distinguish the two different use cases. %

Takeaway 2.12.1.4 Use the type char for character and string data.

Takeaway 2.12.1.5 Use the type unsigned char as the atom of all object types.

The type signed char is of much less importance than the two others.
As we have seen, the sizeof operator counts the size of an object in terms of how
many unsigned char s it occupies.

Takeaway 2.12.1.6 The sizeof operator can be applied to objects and object types.

In the previous discussion, we can also distinguish two syntactic variants for sizeof: with
and without parentheses. Whereas the syntax for an application to objects can have both
forms, the syntax for types needs parentheses:

Takeaway 2.12.1.7 The size of all objects of type T is given by sizeof (T).

B W=

12

13
14

O 00 1NN kAW

152 2. COGNITION

12.2. Unions. Let us now look at a way to examine the individual bytes of objects.
Our preferred tool for this is the union. These are similar in declaration to struct but
have different semantics:

endianess.c

#include <inttypes.h>

typedef union unsignedInspect unsignedInspect;
union unsignedInspect {
unsigned val;
unsigned char bytes[sizeof(unsigned)];
b
unsignedInspect twofold = { .val = @xAABBCCDD, };

The difference here is that such a union doesn’t collect objects of different type into
one bigger object, but rather overlays an object with a different type interpretation. That
way, it is the perfect tool to inspect the individual bytes of an object of another type.

Let us first try to figure out what values we would expect for the individual bytes. In
a slight abuse of language, let us speak of the different parts of an unsigned number that
correspond to the bytes as representation digits. Since we view the bytes as being of type
unsigned char, they can have values @ ... UCHAR_MAX, inclusive, and thus we interpret the
number as written with a base of UCHAR_MAX+1. In the example, on my machine, a value
of type unsigned can be expressed with sizeof (unsigned) == 4 such representation
digits, and I chose the values @xAA, @xBB, @xCC, and @xDD for the highest- to lowest-order
representation digit. The complete unsigned value can be computed using the following
expression, where CHAR_BIT is the number of bits in a character type:

((OXAA << (CHAR_BIT%3))
| (0xBB << (CHAR_BIT*2))
| (dxCC << CHAR_BIT)
|@xDD)

With the union defined earlier, we have two different facets to look at the same
twofold object: twofold.val presents it as being an unsigned, and twofold.bytes
presents it as an array of unsigned char. Since we chose the length of twofold.bytes to
be exactly the size of twofold. val, it represents exactly its bytes, and thus gives us a way
to inspect the object representation® of an unsigned value: all its representation digits:

endianess.c

printf(”"value_is_0x%.08X\n", twofold.val);
for (size_t i = 0; i < sizeof twofold.bytes; ++i)
printf("bytel[%zul:_0x%.02hhX\n", i, twofold.bytes[i]);

On my computer, I receive a result as shown herem

Terminal

~/build/modernC% code/endianess
value is @xAABBCCDD

byte[@]: @xDD

byte[1]: @xCC

byte[2]: 0xBB

byte[3]: OxAA

20Test the code on your own machine.

12. THE C MEMORY MODEL 153

For my machine, we see that the output has the low-order representation digits of the
integer first, then the next-lower order digits, and so on. At the end, the highest-order digits
are printed. So the in-memory representation of such an integer on my machine has the
low-order representation digits before the high-order ones.

This is not normalized by the standard, but is an implementation-defined behavior.

Takeaway 2.12.2.1 The in-memory order of the representation digits of an arithmetic
type is implementation defined.

That is, a platform provider might decide to provide a storage order that has the
highest-order digits first, and then print lower-order digits one by one. The storage or-
der, the endianess® , as given for my machine, is called little-endian® . A system that has
high-order representation digits first is called big-endiancEr] Both orders are commonly
used by modern processor types. Some processors are even able to switch between the two
orders on the fly.

The previous output also shows another implementation-defined behavior: I used the
feature of my platform that one representation digit can be printed nicely by using two
hexadecimal digits. In other words, I assumed that UCHAR_MAX+1 is 256 and that the num-
ber of value bits in an unsigned char, CHAR_BIT, is 8. Again, this is implementation-
defined behavior: although the vast majority of platforms have these propertiesEz]there are
still some around that have wider character types.

Takeaway 2.12.2.2 On most architectures, CHAR_BIT is 8 and UCHAR_MAX is 255.

In the example, we have investigated the in-memory representation of the simplest
arithmetic base types, unsigned integers. Other base types have in-memory representations
that are more complicated: signed integer types have to encode the sign; floating-point

types have to encode the sign, mantissa, and exponent; and pointer types may follow any
internal convention that fits the underlying architecture

12.3. Memory and state. The value of all objects constitutes the state of the abstract
state machine, and thus the state of a particular execution. C’s memory model provides
something like a unique location for (almost) all objects through the & operator, and that
location can be accessed and modified from different parts of the program through pointers.

Doing so makes the determination of the abstract state of an execution much more
difficult, if not impossible in many cases:

double blub(double const* a, doublex b);

int main(void) {
double c = 35;
double d = 3.5;
printf("blub_is_%g\n", blub(&c, &d));
printf("after_blub_the_sum_is_%g\n", c + d);

03N N AW =

Here, we (as well as the compiler) only see a declaration of function blub, with no
definition. So we cannot conclude much about what that function does to the objects its
arguments point to. In particular, we don’t know if the variable d is modified, so the sum

21The names are derived from the fact that the big or small “end” of a number is stored first.
221 particular, all POSIX systems.
[Exs 23]Design a similar union type to investigate the bytes of a pointer type, such as doublex.
(Exs 241Wwith such a union, investigate the addresses of two consecutive elements of an array.
[Exs 251Compare the addresses of the same variable between different executions.

I O R

AW N =

154 2. COGNITION

¢ + dcould be anything. The program really has to inspect the object d in memory to find
out what the values after the call to b1lub are.
Now let us look at such a function that receives two pointer arguments:

double blub(double constx a, doublex b) {
double myA = xa;
*b = 2xmyA;
return *a; // May be myA or 2*xmyA

}

Such a function can operate under two different assumptions. First, if called with two
distinct addresses as arguments, *a will be unchanged, and the return value will be the
same as myA. But if both argument are the same, such as if the call is blub(&c, &c), the
assignment to *b will change *a, too.

The phenomenon of accessing the same object through different pointers is called
aliasingc; it is a common cause for missed optimization. In both cases, either that two
pointers always alias or that they never alias, the abstract state of an execution is much
reduced, and the optimizer often can take much advantage of that knowledge. Therefore,
C forcibly restricts the possible aliasing to pointers of the same type.

Takeaway 2.12.3.1 (Aliasing) With the exclusion of character types, only pointers of the
same base type may alias.

To see this rule in effect, consider a slight modification of our previous example:

size_t blob(size_t const* a, doublex b) {
size_t myA = *a;
*b = 2*myA;
return xa; // Must be myA

Because here the two parameters have different types, C assumes that they don’t ad-
dress the same object. In fact, it would be an error to call that function as blob(&e, &e),
since this would never match the prototype of blob. So at the return statement, we can be
sure that the object *a hasn’t changed and that we already hold the needed value in variable
myA.

There are ways to fool the compiler and to call such a function with a pointer that
addresses the same object. We will see some of these cheats later. Don’t do this: it is
a road to much grief and despair. If you do so, the behavior of the program becomes
undefined, so you have to guarantee (prove!) that no aliasing takes place.

In the contrary, we should try to write our programs so they protect our variables from
ever being aliased, and there is an easy way to achieve that.

Takeaway 2.12.3.2 Avoid the & operator.

Depending on the properties of a given variable, the compiler may see that the address
of the variable is never taken, and thus the variable can’t alias at all. In subsection [13.2}
we will see which properties of a variable or object may influence such decisions and
how the register keyword can protect us from taking addresses inadvertently. Later,
in subsection [I5.2] we will see how the restrict keyword allows us to specify aliasing
properties of pointer arguments, even if they have the same base type.

12.4. Pointers to unspecific objects. As we have seen, the object representation pro-
vides a view of an object X as an array unsigned char[sizeof X]. The starting address
of that array (of type unsigned char=) provides access to memory that is stripped of the
original type information.

12. THE C MEMORY MODEL 155

C has invented a powerful tool to handle such pointers more generically. These are
pointers to a sort of non-type, void.

Takeaway 2.12.4.1 Any object pointer converts to and from voidx.

Note that this only talks about object pointers, not function pointers. Think of a void=
pointer that holds the address of an existing object as a pointer into a storage instance
that holds the object; see figure[I2.I] As an analogy for such a hierarchy, you could think
of entries in a phone book: a person’s name corresponds to the identifier that refers to an
object; their categorization with a “mobile,” “home,” or “work” entry corresponds to a type;
and their phone number itself is some sort of address (in which, by itself, you typically
are not interested). But then, even the phone number abstracts away from the specific
information of where the other phone is located (which would be the storage instance
underneath the object), or of specific information about the other phone itself, for example
if it is on a landline or the mobile network, and what the network has to do to actually
connect you to the person at the other end.

Takeaway 2.12.4.2 An object has storage, type, and value.

Not only is the conversion to void* well defined, but it also is guaranteed to behave
well with respect to the pointer value.

Takeaway 2.12.4.3 Converting an object pointer to voidx and then back to the same
type is the identity operation.

So the only thing that we lose when converting to voidx is the type information; the
value remains intact.

Takeaway 2.12.4.4 (avoid?*) Avoid voidx.

It completely removes any type information that was associated with an address. Avoid
it whenever you can. The other way around is much less critical, in particular if you have
a C library call that returns a void+.

void as a type by itself shouldn’t be used for variable declarations since it won’t lead
to an object with which we could do anything.

12.5. Explicit conversions. A convenient way to look at the object representation of
object X would be to somehow convert a pointer to X to a pointer of type unsigned charx:

double X;
unsigned char* Xp = &X; // error: implicit conversion not allowed

Fortunately, such an implicit conversion of a doublex to unsigned charx is not allowed.
We would have to make this conversion somehow explicit.

We already have seen that in many places, a value of a certain type is implicitly con-
verted to a value of a different type (subsection [5.4), and that narrow integer types are first
converted to int before any operation. In view of that, narrow types only make sense in
very special circumstances:

e You have to save memory. You need to use a really big array of small values.
Really big here means potentially millions or billions. In such a situation, storing
these values may gain you something.

e You use char for characters and strings. But then you wouldn’t do arithmetic
with them.

e You use unsigned char to inspect the bytes of an object. But then, again, you
wouldn’t do arithmetic with them.

0NN AW~

15

16
17
18

156 2. COGNITION

Conversions of pointer types are more delicate, because the can change the type in-
terpretation of an object. Only two forms of implicit conversions are permitted for data
pointers: conversions from and to void#, and conversions that add a qualifier to the target
type. Let’s look at some examples:

float f = 37.0; // Conversion: to float

double a = f; // Conversion: back to double
float* pf = &f; // Exact type

float const* pdc = &f; // Conversion: adding a qualifier
void* pv = &f; // Conversion: pointer to voidx
float* pfv = pv; // Conversion: pointer from voidx
float* pd = &a; // Error: incompatible pointer type
doublex pdv = pv; // Undefined behavior if used

The first two conversions that use voidx (pv and pfv) are already a bit tricky: we convert
a pointer back and forth, but we watch that the target type of pfv is the same as f so
everything works out fine.

Then comes the erroneous part. In the initialization of pd, the compiler can protect us
from a severe fault: assigning a pointer to a type that has a different size and interpretation
can and will lead to serious damage. Any conforming compiler must give a diagnosis
for this line. As you have by now understand well that your code should not produce
compiler warnings (takeaway [0.1.2.3), you know that you should not continue until you
have repaired such an error.

The last line is worse: it has an error, but that error is syntactically correct. The reason
this error might go undetected is that our first conversion for pv has stripped the pointer
from all type information. So, in general, the compiler can’t know what type of object is
behind the pointer.

In addition to the implicit conversions that we have seen until now, C also allows us to
convert explicitly using castscm With a cast, you are telling the compiler that you know
better than it does, that the type of the object behind the pointer is not what it thinks, and
that it should shut up. In most use cases that I have come across in real life, the compiler
was right and the programmer was wrong: even experienced programmers tend to abuse
casts to hide poor design decisions concerning types.

Takeaway 2.12.5.1 Don’t use casts.

They deprive you of precious information, and if you chose your types carefully, you will
only need them for very special occasions.

One such occasion is when you want to inspect the contents of an object on the byte
level. Constructing a union around an object, as we saw in subsection [I2.2] might not
always be possible (or or may be too complicated), so here we can go for a cast:

endianess.c

unsigned val = OxAABBCCDD;

unsigned char* valp = (unsigned charx)&val;

for (size_t i = 0; i < sizeof val; ++i)
printf("byte[%zul:_0x%.02hhX\n", i, valp[il);

In that direction (from “pointer to object” to a “pointer to character type”), a cast is
mostly harmless.

12.6. Effective types. To cope with different views of the same object that pointers
may provide, C has introduced the concept of effective types. It heavily restricts how an
object can be accessed.

20 cast of an expression X to type T has the form (T)X. Think of it like “fo cast a spell.”

12. THE C MEMORY MODEL 157

Takeaway 2.12.6.1 (Effective Type) Objects must be accessed through their effective

type
or through a pointer to a character type.

Because the effective type of a union variable is the union type and none of the
member types, the rules for union members can be relaxed:

Takeaway 2.12.6.2 Any member of an object that has an effective union type can be
accessed at any time, provided the byte representation amounts to a valid
value of the access type.

For all objects we have seen so far, it is easy to determine the effective type:

Takeaway 2.12.6.3 The effective type of a variable or compound literal is the type of its
declaration.

Later, we will see another category of objects that are a bit more involved.
Note that this rule has no exceptions, and that we can’t change the type of such a
variable or compound literal.

Takeaway 2.12.6.4 Variables and compound literals must be accessed through their de-
clared type or through a pointer to a character type.

Also observe the asymmetry in all of this for character types. Any object can be seen
as being composed of unsigned char, but no array of unsigned char s can be used
through another type:

unsigned char A[sizeof (unsigned)] = { 9 };

// Valid but useless, as most casts are

unsigned* p = (unsignedx)A;

// Error: access with a type that is neither the effective type nor a
// character type

printf(”"value_\%u\n", *xp);

Here, the access *p is an error, and the program state is undefined afterward. This is in
strong contrast to our dealings with union earlier: see subsection [I2.2] where we actually
could view a byte sequences as array of unsigned char or unsigned.

The reasons for such a strict rule are multiple. The very first motivation for introducing
effective types in the C standard was to deal with aliasing, as we saw in subsection [12.3]
In fact, the Aliasing Rule (takeaway [2.12.3.1) is derived from the Effective Type Rule
(takeaway [2.12.6.1). As long as there is no union involved, the compiler knows that we
cannot access a double through a size_t*, and so it may assume that the objects are
different.

12.7. Alignment. The inverse direction of pointer conversions (from “pointer to char-
acter type” to “pointer to object”) is not harmless at all, and not only because of possible
aliasing. This has to do with another property of C’s memory model: alignment® . Objects
of most non-character types can’t start at any arbitrary byte position; they usually start at
a word boundary®. The alignment of a type then describes the possible byte positions at
which an object of that type can start.

If we force some data to a false alignment, really bad things can happen. To see that,
have a look at the following code:

[
1 |#include <stdio.h>
2 |#include <inttypes.h>
3 |#include <complex.h>

158 2. COGNITION

#include "crash.h”

4
5
6 | void enable_alignment_check(void);
7 | typedef complex double cdbl;

8

9 |int main(void) {
10 enable_alignment_check();

11 /* An overlay of complex values and bytes. */

12 union {

13 cdbl val[2];

14 unsigned char buf[sizeof(cdbl[2])];

15 } toocomplex = {

16 .val = { 0.5 + 0.5%xI, .75 + @.75xI, 3},

17 8

18 printf("size/alignment:_%zu/%zu\n",

19 sizeof (cdbl), _Alignof(cdbl));

20 /* Run over all offsets, and crash on misalignment. =*/
21 for (size_t offset = sizeof(cdbl); offset; offset /=2) {
22 printf("offset\t%zu:\t", offset);

23 fflush(stdout);

24 cdbl*x bp = (cdblx*)(&toocomplex.buf[offset]); // align!
25 printf("%g\t+%gI\t", creal(xbp), cimag(*bp));

26 fflush(stdout);

27 *bp *= *bp;

28 printf("%g\t+%gl", creal (xbp), cimag(*bp));

29 fputc(’\n’, stdout);

30 }

31 |}

This starts with a declaration of a union similar to what we saw earlier. Again, we
have a data object (of type complex double[2] in this case) that we overlay with an array
of unsigned char. Other than the fact that this part is a bit more complex, at first glance
there is no major problem with it. But if I execute this program on my machine, I get

Terminal

0 ~/.../modernC/code (master % u=) 14:45 <516>$./crash
1 size/alignment: 16/8

2 offset 16: ©.75 +0.75I @ +1.125I

3 offset 8: 0.5 +0I 0.25 +0I

4 offset 4: Bus error

The program crashes with an error indicated as a bus error, which is a shortcut for

something like “data bus alignment error.” The real problem line is

crash.c

24 \ cdbl* bp = (cdblx*) (&toocomplex.buf[offset]); // align!

On the right, we see a pointer cast: an unsigned charx* is converted to a complex
doublex. With the for loop around it, this cast is performed for byte offsets of fset from
the beginning of toocomplex. These are powers of 2: 16, 8, 4, 2, and 1. As you can see in
the output, above, it seems that complex double still works well for alignments of half of

its size, but then with an alignment of one fourth, the program crashes.

Some architectures are more tolerant of misalignment than others, and we might have
to force the system to error out on such a condition. We use the following function at the

beginning to force crashing:

SUMMARY 159

crash.c

enable_alignment_check: enable alignment check for 1386 processors
Intel’s 1386 processor family is quite tolerant in accepting misalignment of data. This
can lead to irritating bugs when ported to other architectures that are not as tolerant.

This function enables a check for this problem also for this family or processors, such
that you can be sure to detect this problem early.

I found that code on Ygdrasil’s blog: http://orchistro.tistory.com/206

void enable_alignment_check(void);

If you are interested in portable code (and if you are still here, you probably are), early
errors in the development phase are really helpfulﬂ So, consider crashing a feature. See
the blog entry mentioned in crash.h for an interesting discussion on this topic.

In the previous code example, we also see a new operator, alignof (or _Alignof, if
you don’t include stdalign.h), that provides us with the alignment of a specific type. You
will rarely find the occasion to use it in real live code.

Another keyword can be used to force allocation at a specified alignment: alignas
(respectively, _Alignas). Its argument can be either a type or expression. It can be useful
where you know that your platform can perform certain operations more efficiently if the
data is aligned in a certain way.

For example, to force alignment of a complex variable to its size and not half the size,
as we saw earlier, you could use

[
\ alignas(sizeof (complex double)) complex double z;
L

Or if you know that your platform has efficient vector instructions for float[4] arrays:

‘ alignas(sizeof (float[4])) float fvec([4];

These operators don’t help against the Effective Type Rule (takeaway [2.12.6.1). Even
with

[
\ alignas(unsigned) unsigned char A[sizeof(unsigned)] = { 9 };
L

the example at the end of section [I2.6]remains invalid.

Summary

e The memory and object model have several layers of abstraction: physical mem-
ory, virtual memory, storage instances, object representation, and binary repre-
sentation.

e Each object can be seen as an array of unsigned char.

e unions serve to overlay different object types over the same object representa-
tion.

e Memory can be aligned differently according to the need for a specific data type.
In particular, not all arrays of unsigned char can be used to represent any object

type.

2TFor the code that is used inside that function, please consult the source code of crash.h to inspect it.

<stdalign.h>

http://orchistro.tistory.com/206

<stdlib.h>

160 2. COGNITION

13. Storage

This section covers

e Creating objects with dynamic allocation
e The rules of storage and initialization

e Understanding object lifetime
e Handling automatic storage

So far, most objects we have handled in our programs have been variables: that is,
objects that are declared in a regular declaration with a specific type and an identifier that
refers to the object. Sometimes they were defined at a different place in the code than
they were declared, but even such a definition referred to them with a type and identifier.
Another category of objects that we have seen less often is specified with a type but not
with an identifier: compound literals, as introduced in subsection@

All such objects, variables or compound literals, have a lifetime® that depends on the
syntactical structure of the program. They have an object lifetime and identifier visibil-
ity that either spans the whole program execution (global variables, global literals, and
variables that are declared with static) or are bound to a block of statements inside a
function

We also have seen that for certain objects, it is important to distinguish different in-
stances: when we declare a variable in a recursive function. Each call in a hierarchy of
recursive calls has its own instance of such a variable. Therefore, it is convenient to distin-
guish another entity that is not exactly the same as an object, the storage instance.

In this section, we will handle another mechanism to create objects, called dynamic
allocation (subsection @ In fact, this mechanism creates storage instances that are are
only seen as byte arrays and do not have any interpretation as objects. They only acquire a
type, once we store something.

With this, we have an almost-complete picture of the different possibilities, and we can
thus discuss the different rules for storage duration, object lifetime, and identifier visibility
(subsection [13.2); we will also take a full dive into the rules for initialization (subsec-
tion[I3.4), as these differ significantly for differently created objects.

Additionally, we propose two digressions. The first is a more-detailed view of object
lifetime, which allows us to access objects at surprising points in the C code (subsec-
tion [13.3). The second provides a glimpse into a realization of the memory model for a
concrete architecture (subsection [I3.5) and in particular how automatic storage may be
handled on your particular machine.

13.1. malloc and friends. For programs that have to handle growing collections of
data, the types of objects that we have seen so far are too restrictive. To handle varying
user input, web queries, large interaction graphs and other irregular data, big matrices,
and audio streams, it is convenient to reclaim storage instances for objects on the fly and
then release them once they are not needed anymore. Such a scheme is called dynamic
allocation®, or sometimes just allocation for short.

The following set of functions, available with stdlib.h, has been designed to provide
such an interface to allocated storage:

#include <stdlib.h>

void*x malloc(size_t size);

void free(voidx ptr);

void* calloc(size_t nmemb, size_t size);

voidx realloc(void* ptr, size_t size);

voidx aligned_alloc(size_t alignment, size_t size);

281 fact, this is a bit of a simplification; we will see the gory details shortly.

13. STORAGE 161

The first two, malloc (memory allocate) and free, are by far the most prominent. As their
names indicate, malloc creates a storage instance for us on the fly, and free then anni-
hilates it. The three other functions are specialized versions of malloc: calloc (clear
allocate) sets all bits of the new storage to @, realloc grows or shrinks storage, and
aligned_alloc ensures nondefault alignment.

All these functions operate with void=: that is, with pointers for which no type infor-
mation is known. Being able to specify such a “non-type” for this series of functions is
probably the raison d’étre for the whole game with void* pointers. Using that, they be-
come universally applicable to all types. The following example allocates a large storage
for a vector of double s, one element for each living person

size_t length = livingPeople();
double* largeVec = malloc(length * sizeof =*largeVec);
for (size_t i = @; i < length; ++i) {
largeVec[i] = 0.0;
}
free(largeVec);

Because malloc knows nothing about the later use or type of the to-be-stored object,
the size of the storage is specified in bytes. In the idiom given here, we have specified the
type information only once, as the pointer type for largeVec. By using sizeof *largeVec
in the parameter for the malloc call, we ensure that we will allocate the right number of
bytes. Even if we change largeVec later to have type size_t+*, the allocation will adapt.

Another idiom that we will often encounter strictly takes the size of the type of the
object that we want to create: an array of length elements of type double:

[|
\double* largeVec = malloc(sizeof(double[lengthl));
L |
We already have been haunted by the introduction of casts, which are explicit conver-
sions. It is important to note that the call to malloc stands as is; the conversion from void*,

the return type of malloc, to the target type is automatic and doesn’t need any intervention.

Takeaway 2.13.1.1 Don’t cast the return of malloc and friends.

Not only is such a cast superfluous, but doing an explicit conversion can even be
counterproductive when we forget to include the header file stdlib.h: Older C compilers <stdlib.h>

/* If we forget to include stdlib.h, many compilers
still assume: x/
int malloc(); // Wrong function interface!

doublex largeVec = (void*)malloc(sizeof(double[lengthl]));
|
int <--
|

voidx <--

then suppose a return of int and trigger the wrong conversion from int to a pointer type. I
have seen many crashes and subtle bugs triggered by that error, in particular in beginners’
code whose authors have been following bad advice.

In the previous code, as a next step, we initialize the storage that we just allocated
through assignment: here, all @.0. It is only with these assignments that the individual

[Exs 291D on’t try this allocation, but compute the size that would be needed on your platform. Is allocating such a
vector feasible on your platform?

162 2. COGNITION

elements of largeVec become “objects.” Such an assignment provides an effective type
and a value.

Takeaway 2.13.1.2 Storage that is allocated through malloc is uninitialized and has no
type.

13.1.1. A complete example with varying array size. Let us now look at an example
where using a dynamic array that is allocated with malloc brings us more flexibility than a
simple array variable. The following interface describes a circular buffer of double values
called circular:

circular.h

circular: an opaque type for a circular buffer for double values

This data structure allows to add double values in rear and to take them out in front.
Each such structure has a maximal amount of elements that can be stored in it.

typedef struct circular circular;

circular.h

circular_append: Append a new element with value value to the buffer c.

Returns: c if the new element could be appended, @ otherwise.

circular* circular_append(circularx c, double value);

circular.h

circular_pop: Remove the oldest element from ¢ and return its value.

Returns: the removed element if it exists, @. @ otherwise.

double circular_pop(circular* c);

The idea is that, starting with @ elements, new elements can be appended to the buffer
or dropped from the front, as long as the number of elements that are stored doesn’t exceed
a certain limit. The individual elements that are stored in the buffer can be accessed with
the following function:

circular.h

circular_element: Return a pointer to position pos in buffer c.

Returns: a pointer to the pos’ element of the buffer, @ otherwise.

double* circular_element(circularx c, size_t pos);

Since our type circular will need to allocate and deallocate space for the circular
buffer, we will need to provide consistent functions for initialization and destruction of
instances of that type. This functionality is provided by two pairs of functions:

13. STORAGE 163

circular.h

circular_init: Initialize a circular buffer ¢ with maximally max_len elements.

Only use this function on an uninitialized buffer.

Each buffer that is initialized with this function must be destroyed with a call to

circular* circular_init(circularx c, size_t max_len);

circular.h

circular_destroy: Destroy circular buffer c.

¢ must have been initialized with a call to|circular_inif]

void circular_destroy(circular*x c);

circular.h

circular_new: Allocate and initialize a circular buffer with maximally len elements.

Each buffer that is allocated with this function must be deleted with a call to

circular* circular_new(size_t len);

circular.h

circular_delete: Delete circular buffer c.

¢ must have been allocated with a call to[circular_new|

void circular_delete(circularx c);

The first pair is to be applied to existing objects. They receive a pointer to such an
object and ensure that space for the buffer is allocated or freed. The first of the second
pair creates an object and initializes it; the last destroys that object and then deallocates the
memory space.

If we used regular array variables, the maximum number of elements that we could
store in a circular would be fixed once we created such an object. We want to be more
flexible so this limit can be raised or lowered by means of the circular_resize function
and the number of elements can be queried with circular_getlength:

circular.h

circular_resize: Resize to capacity max_len.

circularx circular_resize(circular* c, size_t max_len);

circular.h

circular_getlength: Return the number of elements stored.

size_t circular_getlength(circular* c);

Then, with the function circular_element, it behaves like an array of double s:
calling it with a position within the current length, we obtain the address of the element
that is stored in that position.

The hidden definition of the structure is as follows:

—_ O 0 0 3

—

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

164 2. COGNITION

circular.c
/** @brief the hidden implementation of the circular buffer type
*/

struct circular {

size_t start; /**< Position of element @ =*/

size_t len; /**< Number of elements stored =*/

size_t max_len; /*x*x< Maximum capacity x/

doublex tab; /**< Array holding the data */
BE

The idea is that the pointer member tab will always point to an array object of length
max_len. At a certain point in time the buffered elements will start at start, and the
number of elements stored in the buffer is maintained in member len. The position inside
the table tab is computed modulo max_len.

The following table symbolizes one instance of this circular data structure, with
max_len=10, start=2, and len=4.

Table index | 0 1 2 3 4 5 6 7 8 9

Buffer content | gy | gats | 6.0 | 7.7 | 81.0 | 99.0 | g8 | gis | S | S
Buffer position 0 1 2 3

We see that the buffer contents (the four numbers 6.0, 7.7, 81.0, and 99.0) are placed
consecutively in the array object pointed to by tab.

The following scheme represents a circular buffer with the same four numbers, but the
storage space for the elements wraps around.

Table index | O 1 2 3 4 5 6 7 8 9

Buffer content | 81.0 | 99.0 | g | gl | g | g | g | g | 6.0 | 7.7
Buffer position | 2 3 0 1

Initialization of such a data structure needs to call malloc to provide memory for the
tab member. Other than that it is

circular.c

circular* circular_init(circularx c, size_t max_len) {
if (c) {
if (max_len) {
*c = (circular){
.max_len = max_len,
.tab = malloc(sizeof (double[max_len])),
L
// Allocation failed.
if (!c->tab) c->max_len = 0;
} else {
*c = (circular){ 0 };
3
}

return c;

}

Observe that this function always checks the pointer parameter c¢ for validity. Also,
it guarantees to initialize all other members to @ by assigning compound literals in both
branches of the conditional.

29

30
31
32
33
34

50
51
52
53
54

68
69
70
71
72
73
74
75
76
71

13. STORAGE 165

The library function malloc can fail for different reasons. For example, the memory
system might be exhausted from previous calls to it, or the reclaimed size for allocation
might just be too large. In a general-purpose system like the one you are probably using
for your learning experience, such a failure will be rare (unless voluntarily provoked), but
it still is a good habit to check for it.

Takeaway 2.13.1.3 malloc indicates failure by returning a null pointer value.

Destruction of such an object is even simpler: we just have to check for the pointer,
and then we may free the tab member unconditionally.

circular.c

void circular_destroy(circularx c) {
if (c) {
free(c->tab);
circular_init(c, 0);

The library function free has the friendly property that it accepts a null parameter and
does nothing in that case.

The implementation of some of the other functions uses an internal function to com-
pute the “circular” aspect of the buffer. It is declared static so it is only visible for those
functions and doesn’t pollute the identifier name space (takeaway 2.9.2.3).

circular.c

static size_t circular_getpos(circular*x c, size_t pos) {
pos += c->start;
pos %= c->max_len;
return pos;

}

Obtaining a pointer to an element of the buffer is now quite simple.

circular.c

double* circular_element(circularx c, size_t pos) {

doublex ret = 0;
if (c) {
if (pos < c->max_len) {
pos = circular_getpos(c, pos);
ret = &c->tab[pos];
}
}
return ret;

With all of that information, you should now be able to implement all but one of the
function interfaces nicely The one that is more difficult is circular_resize. It
starts with some length calculations and then treats the cases in which the request would
enlarge or shrink the table. Here we have the naming convention of using o (old) as the

[Exs 30\rite implementations of the missing functions.

92
93
94
95
96
97
98
99
100
101
102

138
139
140
141
142
143
144
145
146
147
148

103
104

166

2. COGNITION

first character of a variable name that refers to a feature before the change, and n (new) to
its value afterward. The end of the function then uses a compound literal to compose the
new structure by using the values found during the case analysis:

circular.c

circular* circular_resize(circular* c, size_t nlen) {

if (c) {

size_t len = c->len;
if (len > nlen) return 0;
size_t olen = c->max_len;
if (nlen != olen) {
size_t ostart = circular_getpos(c, 0);
size_t nstart = ostart;
double* otab = c->tab;
double* ntab;
if (nlen > olen) {

circular.c

}

}

*c = (circular){
.max_len = nlen,
.start = nstart,
.len = len,

.tab = ntab,

B

}

return c;

Let us now try to fill the gap in the previous code and look at the first case of enlarging
an object. The essential part of this is a call to realloc:

circular.c

ntab = realloc(c->tab, sizeof(double[nlenl]));
if (!ntab) return 0;

For this call, realloc receives the pointer to the existing object and the new size the
relocation should have. It returns either a pointer to the new object with the desired size or
null. In the line immediately after, we check the latter case and terminate the function if it
was not possible to relocate the object.

The function realloc has interesting properties:

e The returned pointer may or may not be the same as the argument. It is left to
the discretion of the runtime system to determine whether the resizing can be
performed in place (if there is space available behind the object, for example, or
if a new object must be provided. But, regardless of that, even if the returned
pointer is the same, the object is considered to be a new one (with the same
data). That means in particular that all pointers derived from the original become
invalid.

13. STORAGE 167

o If the argument pointer and the returned one are distinct (that is, the object has
been copied), nothing has to be done (or even should be) with the previous
pointer. The old object is taken care of.

e As far as possible, the existing content of the object is preserved:

— If the object is enlarged, the initial part of the object that corresponds to the
previous size is left intact.

— If the object shrank, the relocated object has a content that corresponds to
the initial part before the call.

e If @ is returned (that is, the relocation request could not be fulfilled by the runtime
system), the old object is unchanged. So, nothing is lost.

Now that we know the newly received object has the size we want, we have to ensure
that tab still represents a circular buffer. If previously the situation was as in the first table,
earlier (the part that corresponds to the buffer elements is contiguous), we have nothing to
do. All data is nicely preserved.

If our circular buffer wrapped around, we have to make some adjustments:

circular.c

105 // Two separate chunks

106 if (ostart+len > olen) {

107 size_t ulen = olen - ostart;

108 size_t llen = len - ulen;

109 if (llen <= (nlen - olen)) {

110 /* Copy the lower one up after the old end. x/
111 memcpy (ntab + olen, ntab,

112 llen*sizeof (double));

113 1 else {

114 /* Move the upper one up to the new end. */
115 nstart = nlen - ulen;

116 memmove (ntab + nstart, ntab + ostart,

117 ulenxsizeof (double));

118 3

119 }

The following table illustrates the difference in the contents between before and after
the changes for the first subcase: the lower part finds enough space inside the part that was
added:

Table index | 0 1 2 3 4 5 6 7 8 9
Old content | 81.0 | 99.0 | g | oA | gt | gols | gaid | gl | 6.0 | 7.7
Old position | 2 3 0 1
New position | 2 B 0 1 2 3
New content | 81/ | 9900 | ghd | shid | oo | oA | g | g | 6.0 | 7.7 | 81.0 | 99.0 | gais
Table index | O 1 2 3 4 5 6 7 8 9 10 11 12

The other case, where the lower part doesn’t fit into the newly allocated part, is similar.
This time, the upper half of the buffer is shifted toward the end of the new table:

The handling of both cases shows a subtle difference, though. The first is handled
with memcpy; the source and target elements of the copy operation can’t overlap, so us-
ing memcpy here is save. For the other case, as we see in the example, the source and
target elements may overlap, and thus the use of the less-restrictive memmove function is

required

[Exs 31]Implemem shrinking of the table: it is important to reorganize the table contents before calling realloc.

168 2. COGNITION

Table index | 0 1 2 3 4 5 6 7 8 9
Old content | 81.0 | 99.0 | gd | oA | pats | gl | g | g | 6.0 | 7.7
Old position | 2 3 0 1
New position | 2 3 1
New content | 81.0 | 99.0 | g | gaid | oo | gas | g | gl | 6O | 6.0 | 7.7
Table index | O 1 2 3 4 5 6 7 8 9 10

13.1.2. Ensuring consistency of dynamic allocations. As in both our code examples,
calls to allocation functions such as malloc, realloc, and free should always come in
pairs. This mustn’t necessarily be inside the same function, but in most case simple count-
ing of the occurrence of both should give the same number:

Takeaway 2.13.1.4 For every allocation, there must be a free.

If not, this could indicate a memory leak®: a loss of allocated objects. This could
lead to resource exhaustion of your platform, showing itself in low performance or random
crashes.

Takeaway 2.13.1.5 For every free, there must be a malloc, calloc, aligned_alloc,
or realloc.

But be aware that realloc can easily obfuscate simple counting of allocations: be-
cause if it is called with an existing object, it serves as deallocation (for the old object) and
allocation (for the new one) at the same time.

The memory-allocation system is meant to be simple, and thus free is only allowed
for pointers that have been allocated with malloc or that are null.

Takeaway 2.13.1.6 Only call free with pointers as they are returned by malloc, calloc,
aligned_alloc, or realloc.

They must not

e Point to an object that has been allocated by other means (that is, a variable or a
compound literal)

e Have been freed yet

e Only point to a smaller part of the allocated object.

Otherwise, your program will crash. Seriously, this will completely corrupt the memory
of your program execution, which is one of the worst types of crashes you can have. Be
careful.

13.2. Storage duration, lifetime, and visibility. We have seen in different places
that visibility of an identifier and accessibility of the object to which it refers are not the
same thing. As a simple example, take the variable(s) x in listing[T3.1]

Here, the visibility scope of the identifier x that is declared in line [3] starts from that
line and goes to the end of the function main, but with a noticeable interruption: from
line|10|to[14] this visibility is shadowed® by another variable, also named x.

Takeaway 2.13.2.1 Identifiers only have visibility inside their scope, starting at their
declaration.

Takeaway 2.13.2.2 The visibility of an identifier can be shadowed by an identifier of the
same name in a subordinate scope.

13. STORAGE 169

LISTING 13.1. An example of shadowing with local variables

1 | void squareIt(doublex p) {
2 xp *= *p;
3132
4 |int main(void) {
5 double x = 35.0;
6 double*x xp = &x;
7 {
8 squarelt(&x); /* Refers to double x =*/
9 -
10 int x = 0; /* Shadow double x =*/
11 ...
12 squarelt(xp); /x Valid use of double x x*/
13
14 }
15 ...
16 squarelt (&x); /* Refers to double x =x/
17
18 |}
LISTING 13.2. An example of shadowing with an extern variable
1 |#include <stdio.h>
2
3 |unsigned i = 1;
4
5 |int main(void) {
6 unsigned i = 2; /* A new object =*/
7 if (i) {
8 extern unsigned i; /* An existing object =/
9 printf("%u\n", i);
10 } else {
11 printf("%u\n", i);
12 }
13 |3

We also see that the visibility of an identifier and the usability of the object it represents
are not the same thing. First, the double x object is used by all calls to squareIt, although
the identifier x is not visible at the point where the function is defined. Then, on line@, we
pass the address of the double x variable to the function squarelt, although the identifier
is shadowed there.

Another example concerns declarations that are tagged with the storage class extern.
These always designate an object of static storage duration that is expected to be defined
at file scopeﬁ see listing

This program has three declarations for variables named i, but only two definitions:
the declaration and definition on line [6] shadows the one on line 3} In turn, declaration
line 8| shadows line EL but it refers to the same object as the object defined on line

Takeaway 2.13.2.3 Every definition of a variable creates a new, distinct object.

32In fact, such an object can be defined at file scope in another translation unit.
[Exs 331Which value is printed by this program?

NN R W=

170 2. COGNITION

So in the following, the char arrays A and B identify distinct objects, with distinct

addresses. The expression A == B must always be false:
char const A[]l = { ’e’, 'n’, ’d’, ’\o’, };
char const B[] = { ’e’, ’n’, ’d’, ’\o’, };
char const*x ¢ = "end”;
char const* d = "end”;
char const*x e = "friend”;
char constx f = (char const[]1){ ’e’, ’'n’, ’d’, ’\@0’, };
char constx g = (char const[1){ ’e’, ’'n’, ’d’, ’'\0’, };

But how many distinct array objects are there in total? It depends. The compiler has a
lot of choices:

Takeaway 2.13.2.4 Read-only object literals may overlap.

In the previous example, we have three string literals and two compound literals.
These are all object literals, and they are read-only: string literals are read-only by def-
inition, and the two compound literals are const-qualified. Four of them have exactly the
same base type and content (’e’, ’n’, ’d’, ’\@’), so the four pointers c, d, f, and g
may all be initialized to the same address of one char array. The compiler may even save
more memory: this address may just be &[3], by using the fact that end appears at the
end of friend.

As we have seen from these examples, the usability of an object not only is a lexical
property of an identifier or of the position of definition (for literals), but also depends on
the state of execution of the program. The lifetime® of an object has a starting point and
an end point:

Takeaway 2.13.2.5 Objects have a lifetime outside of which they can’t be accessed.

Takeaway 2.13.2.6 Referring to an object outside of its lifetime has undefined behavior.

How the start and end points of an object are defined depends on the tools we use
to create it. We distinguish four different storage durations® for objects in C: static®
when it is determined at compile time, automatic® when it is automatically determined at
runtime, allocated® , when it is explicitly determined by function calls malloc and friends,
and thread® when it is bound to a certain thread of execution.

Table [T3.1] gives an overview of the complicated relationship between declarations
and their sforage classes, initialization, linkage, storage duration, and lifetime. Without
going into too much detail for the moment, it shows that the usage of keywords and the
underlying terminology are quite confusing.

First, unlike what the name suggests, the storage class extern may refer to identifiers
with external or internal linkageé Here, in addition to the compiler, an identifier with
linkage is usually managed by another external program, the linker®. Such an identifier
is initialized at startup of the program, even before it enters main, and the linker ensures
that. Identifiers that are accessed from different object files need external linkage so they all
access the same object or function, and so the linker is able to establish the correspondence.

Important identifiers with external linkage that we have seen are the functions of the C
library. They reside in a system library©, usually called something like 1ibc. so, and not
in the object file you created. Otherwise, a global, file scope, object, or function that has
no connection to other object files should have internal linkage. All other identifiers have
no linkageE]

34Note that linkage is a property of identifiers, not of the objects they represent.
35A better keyword for extern would perhaps be linkage.

13. STORAGE 171

Then, static storage duration is not the same as declaring a variable with the storage
class static. The latter is merely enforcing that a variable or function has internal linkage.
Such a variable may be declared in file scope (global) or in block scope (local). ﬁ]You
probably have not yet called the linker of your platform explicitly. Usually, its execution is
hidden behind the compiler frontend that you are calling, and a dynamic linker may only
kick in as late as program startup without being noticed.

For the first three types of storage duration, we have seen a lot of examples. Thread
storage duration (_Thread_local or thread_local) is related to C’s thread API, which
we will see later, in section[I8]

Allocated storage duration is straightforward: the lifetime of such an object starts from
the corresponding call to malloc, calloc, realloc, or aligned_alloc that creates it. It
ends with a call to free or realloc that destroys it, or, if no such call is issued, with the
end of the program execution.

The two other cases of storage duration need additional explanation, and so we will
discuss them in more length next.

13.2.1. Static storage duration. Objects with static storage duration can be defined
two ways:

e Objects that are defined in file scope. Variables and compound literals can have
that property.

36 better keyword for static in this context would perhaps be internal, with the understanding that any
form of linkage implies static storage duration.

Class Scope Definition Linkage Duration Lifetime
Initialized File Yes External Static Whole execution
extern, initialized File Yes External Static Whole execution
Compound literal File Yes N/A Static Whole execution
String literal Any Yes N/A Static Whole execution
static, initialized Any Yes Internal Static Whole execution
Uninitialized File Tentative External Static Whole execution
extern, uninitialized Any No Induced Static Whole execution
static, uninitialized Any Tentative Internal Static Whole execution
thread_local File Yes External Thread Whole thread
extern thread_local Any No External Thread Whole thread
static thread_local Any Yes internal Thread Whole thread
Compound literal N/A
Non-VLA None
Non-VLA, auto Block Yes None Automatic Block of definition
register None
VLA Block Yes None Automatic From definition to
end of block
Function return Block Yes None Automatic To the end of
with array expression

TABLE 13.1. Storage classes, scope, linkage of identifiers, and storage
duration of the associated objects. Tentative indicates that a definition is
implied only if there is no other definition with an initializer. Induced
indicates that the linkage is internal if another declaration with internal
linkage has been met prior to that declaration; otherwise, it is external.

AN N AW =

172 2. COGNITION

e Variables that are declared inside a function block and that have the storage class
specifier static.

Such objects have a lifetime that is the entire program execution. Because they are
considered alive before any application code is executed, they can only be initialized with
expressions that are known at compile time or can be resolved by the system’s process
startup procedure. Here’s an example:

double A = 37;
doublex p

= &(double){ 1.0, 3};
int main(void) {

static B;

3

This defines four objects of static storage duration, those identified with A, p, and B, and
a compound literal defined in line 3] Three of them have type double, and one has type
double*.

All four objects are properly initialized from the start; three of them are initialized
explicitly, and B is initialized implicitly with .

Takeaway 2.13.2.7 Objects with static storage duration are always initialized.

The initialization of p is an example that needs a bit more magic than the compiler
itself can offer. It uses the address of another object. Such an address can usually only be
computed when the execution starts. This is why most C implementations need the concept
of a linker, as we discussed earlier.

The example of B shows that an object with a lifetime that is the entire program exe-
cution isn’t necessarily visible in the entire program. The extern example also shows that
an object with static storage duration that is defined elsewhere can become visible inside a
narrow scope.

13.2.2. Automatic storage duration. This is the most complicated case: rules for au-
tomatic storage duration are implicit and therefore need the most explanation. There are
several cases of objects that can be defined explicitly or implicitly that fall into this cate-
gory:

e Any block-scope variables that are not declared static, that are declared as
auto (the default) or register
e Block-scope compound literals
e Some temporary objects that are returned by function calls
The simplest and most current case for the lifetime of automatic objects is when the object
is not a variable-length array (VLA).

Takeaway 2.13.2.8 Unless they are VLA or temporary objects, automatic objects have
a lifetime coxrresponding to the execution of their block of definition.

That is, most local variables are created when program execution enters the scope in
which they are defined, and they are destroyed when it leaves that scope. But, because of
recursion, several instances® of the same object may exist at the same time:

Takeaway 2.13.2.9 Each recursive call creates a new local instance of an automatic
object.

Objects with automatic storage duration have a big advantage for optimization: the
compiler usually sees the full usage of such a variable and, with this information, is able
to decide if it may alias. This is where the difference between the auto and register
variables comes into play:

B W =

13. STORAGE 173

Takeaway 2.13.2.10 The & operator is not allowed for variables declared with register.

With that, we can’t inadvertently take the address of a register variable (takeaway[2.12.3.2).
As a simple consequence, we get:

Takeaway 2.13.2.11 Variables declared with register can’t alias.

So, with register variable declarations, the compiler can be forced to tell us where
we are taking the address of a variable, so we may identify spots that may have some
optimization potential. This works well for all variables that are not arrays and that contain
no arrays.

Takeaway 2.13.2.12 Declare local variables that are not arrays in performance-critical
code as register.

Arrays play a particular role here because they decay to the address of their first ele-
ment in almost all contexts. So, for arrays, we need to be able to take addresses.

Takeaway 2.13.2.13 Arrays with storage class register are useless.

There is another case where the presence of arrays needs special treatment. Some
return values of functions can really be chimeras: objects with temporary lifetime. As you
know now, functions normally return values and as such values are not addressable. But if
the return type contains an array type, we must be able to take the address implicitly, so the
[] operator is well defined. Therefore, the following function return is a temporary object,
of which we may implicitly take an address by using the member designator .ory[@]:

struct demo { unsigned ory[1]; };
struct demo mem(void);

printf("mem().ory[0]_is_%u\n", mem().ory[0]);

The only reason objects with temporary lifetime exist in C is to be able to access
members of such a function return value. Don’t use them for anything else.

Takeaway 2.13.2.14 Objects of temporary lifetime are read-only.

Takeaway 2.13.2.15 Temporary lifetime ends at the end of the enclosing full expression.

That is, their life ends as soon the evaluation of the expression in which they occur
is terminated. For example, in the previous example, the temporary object ceases to exist
as soon as the argument for printf is constructed. Compare this to the definition of a
compound literal: a compound literal would live on until the enclosing scope of the printf
terminates.

13.3. Digression: using objects ''before' their definition. The following section
goes into more detail about how automatic objects spring to life (or not). It is a bit tough,
so if you are not up to it right now, you might skip it and come back to it later. It will
be needed in order to understand subsection [13.5]about concrete machine models, but that
subsection is a digression, too. Also, it introduces the new features goto and labels, which
we need later, in subsection @]for handling errors.

Let us get back to the rule for the lifetime of ordinary automatic objects (takeaway[2.13.2.8).
It is quite particular, if you think about it: the lifetime of such an object starts when its scope
of definition is entered, not, as one would perhaps expect, later, when its definition is first
encountered during execution.

174 2. COGNITION

LISTING 13.3. A contrived example for the use of a compound literal

void fgoto(unsigned n) {
unsigned j = 0;
unsigned* p = 0;
unsignedx* q;
AGAIN:
if (p) printf("%u:_p_and_qg_are_%s,_*xp_is_%u\n",
3,
(g == p) ? "equal” : "unequal”,
*p);
q =p;
p = &((unsigned){ j, });
++3;
if (j <= n) goto AGAIN;

}

To note the difference, let us look at listing[I3.3] which is a variant of an example that
can be found in the C standard document.

We will be particularly interested in the lines printed if this function is called as
fgoto(2). On my computer, the output looks like this:

Terminal

1: p and q are unequal, *p is @

2: p and q are equal, *p is 1

Admittedly, this code is a bit contrived. It uses a new construct that we haven’t yet
seen in action, goto. As the name indicates, this is a jump statement®. In this case, it
instructs the computer to continue execution at label® AGAIN. Later, we will see contexts
where using goto makes a bit more sense. The demonstrative purpose here is just to jump
over the definition of the compound literal.

So, let us look at what happens with the printf call during execution. For n == 2,
execution meets the corresponding line three times; but because p is @ initially, at the first
passage, the printf call itself is skipped. The values of our three variables in that line are

j| p | q | printf
0 0 Undetermined | Skipped
1 | Addr of literal of j = 0 0 | printed
2 | Addr of literal of j = 1 | Addr of literal of j = 0 | printed

Here we see that for j==2 pointers, p and g hold addresses that are obtained at different
iterations. So why, then, does my printout say that both addresses are equal? Is this just
a coincidence? Or is there undefined behavior because I am using the compound literal
lexically at a place before it is defined?

The C standard prescribes that the output shown here must be produced. In particular,
for j==2, the values of p and q are equal and valid, and the value of the object they are
pointing to is 1. Or, stated another way, in this example, the use of *p is well defined,
although lexically the evaluation of *p precedes the definition of the object. Also, there is
exactly one such compound literal, and therefore the addresses are equal for j==2.

Takeaway 2.13.3.1 For an object that is not a VLA, lifetime starts when the scope of the
definition is entered, and it ends when that scope is left.

13. STORAGE 175

Takeaway 2.13.3.2 Initializers of automatic variables and compound literals are evalu-
ated each time the definition is met.

In this example, the compound literal is visited three times and set to the values 0, 1,
and 2 in turn.
For a VLA, the lifetime is given by a different rule.

Takeaway 2.13.3.3 For a VLA, lifetime starts when the definition is encountered and
ends when the visibility scope is left.

So for a VLA, our strange trick of using goto would not be valid: we are not allowed
to use the pointer to a VLA in code that precedes the definition, even if we still are inside
the same block. The reason for this special treatment of VLASs is that their size is a runtime
property and therefore the space for it simply can’t be allocated when the block of the
declaration is entered.

13.4. Initialization. In subsection[5.5] we discussed the importance of initialization.
It is crucial to guarantee that a program starts in a well-defined state and stays so throughout
execution. The storage duration of an object determines how it is initialized.

Takeaway 2.13.4.1 Objects of static or thread-storage duration are initialized by de-
Sfault.

As you probably recall, such a default initialization is the same as initializing all mem-
bers of an object by @. In particular, default initialization works well for base types that
might have a nontrivial representation for their @ value: namely pointers and floating point

types.
For other objects, automatic or allocated, we must do something.

Takeaway 2.13.4.2 Objects of automatic or allocated storage duration must be initial-
ized explicitly.

The simplest way to achieve initialization are initializers, which put variables and
compound literals in a well-defined state as soon as they become visible. For arrays that
we allocate as VLA, or through dynamic allocation, this is not possible, so we have to
provide initialization through assignment. In principle, we could do this manually each
time we allocate such an object, but such code becomes difficult to read and to maintain,
because the initialization parts may visually separate definition and use. The easiest way
to avoid this is to encapsulate initialization into functions:

Takeaway 2.13.4.3 Systematically provide an initialization function for each of your
data types.

Here, the emphasis is on systematically: you should have a consistent convention for
how such initializing functions should work and how they should be named. To see that,
let us go back to rat_init, the initialization function for our rat data type. It implements
a specific API for such functions:

e For a type toto, the initialization function is named toto_init.

o The first argument to such a _init function is the pointer to the object that is to
be initialized.

o If that pointer to object is null, the function does nothing.

e Other arguments can be provided to pass initial values for certain members.

e The function returns the pointer to the object it received or @ if an error occurred.

With such properties, such a function can be used easily in an initializer for a pointer:

(o) NS R O R

AN AW =

176 2. COGNITION

[
\rat const* myRat = rat_init(malloc(sizeof(rat)), 13, 7);
L

Observe that this has several advantages:

o If the call to malloc fails by returning @, the only effect is that myRat is initialized
to @. Thus myRat is always in a well-defined state.

e If we don’t want the object to be changed afterward, we can qualify the pointer
target as const from the start. All modification of the new object happens inside
the initialization expression on the right side.

Since such initialization can then appear in many places, we can also encapsulate this
into another function:

ratx rat_new(long long numerator,
unsigned long long denominator) {
return rat_init(malloc(sizeof(rat)),
numerator,
denominator);

The initialization using that function becomes

[
‘rat const* myRat = rat_new(13, 7);
L

Macro addicts like myself can even easily define a type-generic macro that does such
an encapsulation once and for all:

[
‘#define PO9_NEW(T, ...) T ## _init(malloc(sizeof(T)), __VA_ARGS__)
L

With this, we could have written the earlier initialization as

\rat const* myRat = P99_NEW(rat, 13, 7);
L

This has the advantage of being at least as readable as the rat_new variant, but it
avoids the additional declaration of such a function for all types that we define.

Such macro definitions are frowned upon by many, so some projects probably will not
accept this as a general strategy, but you should at least be aware that the possibility exists.
It uses two features of macros that we have not yet encountered:

e Concatenation of tokens is achieved with the ## operator. Here, T ## _init
melds the argument T and _init into one token: with rat, this produces rat_init;
with toto, this produces toto_init.

e The construct . . . provides an argument list of variable length. The whole set of
arguments that is passed after the first is accessible inside the macro expansion
as __VA_ARGS__. That way, we can pass any number of arguments as required
by the corresponding _init function to P99_NEW.

If we have to initialize arrays by means of a for loop, things get even uglier. Here also
it is easy to encapsulate with a function:

ratx rat_vinit(size_t n, rat p[nl]) {
if (p)
for (size_t i = 0; i < n; ++i)
rat_init(p+i, 0, 1);
return p;

3

With such a function, again, initialization becomes straightforward:

13. STORAGE 177

[|
\ rat* myRatVec = rat_vinit(44, malloc(sizeof(rat[44]))); \
L |

Here, encapsulation into a function is really better, since repeating the size may easily
introduce errors:

1 |rat* rat_vnew(size_t size) {
return rat_vinit(size, malloc(sizeof(rat[sizel])));

13.5. Digression: a machine model. Up to now, we mostly argued about C code
from within, using the internal logic of the language to describe what was going on. This
section is an optional digression that deviates from that: it is a glimpse into the machine
model of a concrete architecture. We will see more in detail how a simple function is
translated into this model and, in particular, how automatic storage duration is realized. If
you really can’t bear it yet, you may skip it for now. Otherwise, remember not to panic,
and dive in.

Traditionally, computer architectures were described with the von Neumann model
In this model, a processing unit has a finite number of hardware registers that can hold
integer values, a main memory that holds the program as well as data and that is linearly
addressable, and a finite instruction set that describes the operations that can be done with
these components.

The intermediate programming languages that are usually used to describe machine in-
structions as they are understood by your CPU are called assembler®, and they still pretty
much build upon the von Neumann model. There is not one unique assembler language
(like C, which is valid for all platforms) but an entire set of dialects that take different par-
ticularities into account: of the CPU, the compiler, or the operating system. The assembler
that we use here is the one used by the gcc compiler for the x86_64 processor architec-
ture If you don’t know what that means, don’t worry; this is just an example of one
such architecture.

Listing [13.4] shows an assembler printout for the function fgoto from listing [13.3]
Such assembler code operates with instructions® on hardware registers and memory loca-
tions. For example, the line movl $0, -16(%rbp) stores (moves) the value 0 to the location
in memory that is 16 bytes below the one indicated by register %rbp. The assembler pro-
gram also contains labels© that identify certain points in the program. For example, fgoto
is the entry point® of the function, and .L_AGAIN is the counterpart in assembler to the
goto label AGAIN in C.

As you probably have guessed, the text on the right after the # character are comments
that try to link individual assembler instructions to their C counterparts.

This assembler function uses hardware registers %eax, %ecx, %edi, %edx, %esi, %rax,
%rbp, %rcx, %rdx, and %rsp. This is much more than the original von Neumann machine
had, but the main ideas are still present: we have some general-purpose registers that are
used to represent values of the state of a program’s execution. Two others have very special
roles: %rbp (base pointer) and %rsp (stack pointer).

The function disposes of a reserved area in memory, often called The Stack®, that
holds its local variables and compound literals. The “upper” end of that area is designated
by the %rbp register, and the objects are accessed with negative offsets relative to that
register. For example, the variable n is found from position -36 before %rbp encoded
as -36(%rbp). The following table represents the layout of this memory chunk that is

37 nvented around 1945 by J. Presper Eckert and John William Mauchly for the ENIAC project; first described
by John von Neumann (1903 — 1957, also known as Neumann Jdnos Lajos and Johann Neumann von Margitta),
one of the pioneers of modern science, in|von Neumann| [[1945]].

[Exs 38]pind out which compiler arguments produce assembler output for your platform.

178

2. COGNITION

LISTING 13.4. An assembler version of the fgoto function

10 .type
11 | fgoto:

12 pushqg
13 movq
14 subq
15 movl
16 movl
17 movq
18 | .L_AGAIN:

19 cmpq
20 je
21 movq
22 movl
23 movq
24 cmpq
25 jne
26 movl
27 jmp
28 | .L_YES:

29 movl
30 | .L_NO:

31 movl
32 movl
33 movq
34 movl
35 movl
36 call
37 | .L_ELSE:

38 movq
39 movq
40 movl
41 movl
42 leaq
43 movq
44 addl
45 movl
46 cmpl
47 jbe
48 leave
49 ret

fgoto, @function
%rbp
%rsp,
$48, %rsp

%edi, -36(%rbp)
$0, -4(%rbp)
$0, -16(%rbp)

%rbp

T

$0, -16(%rbp)
.L_ELSE
-16(%rbp), %rax
(%rax), %edx
-24(%rbp), %rax
-16(%rbp), %rax
.L_YES
$.L_STR_EQ,
.L_NO

++

o o

%eax

$.L_STR_NE, %eax

-4(%rbp), %esi
%edx, %ecx
%rax, %rdx
$.L_STR_FRMT,
$0, %eax
printf

%edi

ETE N T Ty

-16(%rbp), %rax
%rax, -24(%rbp)
-4(%rbp), %eax
%eax, -28(%rbp)
-28(%rbp), %rax
%rax, -16(%rbp)
$1, -4(%rbp)
-4(%rbp), %eax
-36(%rbp), %eax
.L_AGAIN

T T T T T T T T T TR Y

Save base pointer
Load stack pointer
Adjust stack pointer
fgoto#0 => n

init j
init p
if (p)
p ==> rax
*p ==> edx
C = a7
(p ==)7
Yes
No
j ==> printf#1
*p ==> printf#3
eq/ne ==> printf#2
frmt ==> printf#0

clear eax

p ==

==> q
j ==

==> cmp_lit
&cmp_lit ==

==> p
++j
if (j
<= n)

goto AGAIN

Rearange stack
return statement

reserved for function fgoto and the values that are stored there at three different points of
the execution of the function.

...printf fgoto caller...
Position —48 | —36 | —28 —24 —16 —8 | =4 | rbp
Meaning n cmp_lit | q p j
Afterinit | gdfb | gafh | 2 /dth Kith 0 /éth | 0
Afteriter O | Qdfb | afh | 2 0 0 rbp-28 | ditb | 1
Afteriter 1 | gdtb | ddfb | 2 1 rbp-28 | rbp-28 | Kiéth | 2

This example is of particular interest for learning about automatic variables and how
they are set up when execution enters the function. On this particular machine, when enter-
ing fgoto, three registers hold information for this call: %edi holds the function argument,

SUMMARY 179

n; %rbp points to the base address of the calling function; and %rsp points to the top address
in memory where this call to fgoto may store its data.

Now let us consider how the above assembler code (listing sets up things. Right
at the start, fgoto executes three instructions to set up its “world” correctly. It saves %rbp
because it needs this register for its own purpose, it moves the value from %rsp to %rbp, and
then it decrements %rsp by 48. Here, 48 is the number of bytes the compiler has computed
for all automatic objects that the fgoto needs. Because of this simple type of setup, the
space reserved by that procedure is not initialized but filled with garbage. In the three
following instructions, three of the automatic objects are then initialized (n, j, and p), but
others remain uninitialized until later.

After this setup, the function is ready to go. In particular, it can easily call another
function: %rsp now points to the top of a new memory area that a called function can use.
This can be seen in the middle part, after the label .L_NO. This part implements the call to
printf: it stores the four arguments the function is supposed to receive in registers %edi,
%esi, %ecx, %rdx, in that order; clears %eax; and then calls the function.

To summarize, the setup of a memory area for the automatic objects (without VLA)
of a function only needs a few instructions, regardless of how many automatic objects are
effectively used by the function. If the function had more, the magic number 48 would
need to be modified to the new size of the area.

As a consequence of the way this is done,

e Automatic objects are usually available from the start of a function or scope.
o Initialization of automatic variables is not enforced.

This does a good job of mapping the rules for the lifetime and initialization of automatic
objects in C.

The earlier assembler output is only half the story, at most. It was produced with-
out optimization, just to show the principle assumptions that can be made for such code
generation. When using optimization, the as-if Rule (takeaway allows us to re-
organize the code substantially. With full optimization, my compiler produces something
like listing [13.3]

As you can see, the compiler has completely restructured the code. This code just
reproduces the effects that the original code had: its output is the same as before. But it
doesn’t use objects in memory, doesn’t compare pointers for equality, and has no trace of
the compound literal. For example, it doesn’t implement the iteration for j=@ at all. This
iteration has no effect, so it is simply omitted. Then, for the other iterations, it distin-
guishes a version with j=1, where the pointers p and g of the C program are known to be
different. Then, the general case has to increment j and to set up the arguments for printf
accordingly

All we have seen here is code that doesn’t use VLA. These change the picture, because
the trick that simply modifies %rsp with a constant doesn’t work if the needed memory is
not a constant size. For a VLA, the program has to compute the size during execution from
the actual values of the bounds of the VLA, has to adjust %rsp accordingly there, and then
it has to undo that modification of %rsp once execution leaves the scope of the definition
of the VLA. So here the value of adjustment for %rsp cannot be computed at compile time,
but must be determined during the execution of the program.

Summary

e Storage for a large number of objects or for objects that are large in size can be
allocated and freed dynamically. We have to keep track of this storage carefully.

[Exs 39]Using the fact that p is assigned the same value over and over again, write a C program that gets closer to
what the optimized assembler version looks like.
[Exs 40lEven the optimized version leaves room for improvement: the inner part of the loop can still be shortened.
Write a C program that explores this potential when compiled with full optimization.

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

180

2. COGNITION

LISTING 13.5. An optimized assembler version of the fgoto function

fgoto:

.L_END:

.type

pushqg
pushqg
subq
movl
movl
xorl
movl
testl
jne
jmp

.L_AGAIN:

movl

.L_N_GT_0:

movl
movl
xorl
call
leal
movl
movl
cmpl
jbe

addq
popq
popq
ret

fgoto, @function
%rbp

%rbx

$8, %rsp
%edi, %ebp
$1, %ebx
%ecx, %ecx
$.L_STR_NE,
%edi, %edi
.L_N_GT_0
.L_END

%edx

R R EE

%eax, %ebx #
%ebx, %esi #
$.L_STR_FRMT, %edi #
%eax , %eax
printf

1(%rbx), %eax
$.L_STR_EQ, %edx
%ebx, %ecx

%ebp, %eax
.L_AGAIN

++

o o

$8,
%rbx
%rbp

%rsp

ETSE TS

Save base pointer
Save rbx register
Adjust stack pointer
fgoto#0 => n

init j, start with 1
0 ==> printf#3
"ne"” ==> printf#2

if (n > 0)

g1 ==> j

j ==> printf#1

frmt ==> printf#0
Clear eax

j+1 ==> eax

"eq"” ==> printf#2
j ==> printf#3
if (j <= n)

goto AGAIN

Rewind stack
Restore rbx
Restore rbp
return statement

o Identifier visibility and storage duration are different things.

o Initialization must be done systematically with a coherent strategy for each type.

e C’s allocation strategy for local variables maps well to low-level handling of
function stacks.

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268

14. MORE INVOLVED PROCESSING AND IO 181

14. More involved processing and 10

This section covers

Working with pointers

Formatting input

Handling extended character sets
Input and output with binary streams
Checking errors and cleaning up

Now that we know about pointers and how they work, we will shed new light on
some of the C library features. C’s text processing is incomplete without using pointers, so
we will start this section with an elaborated example in section[I4.1} Then we will look at
functions for formatted input (section[T4.I); these require pointers as arguments, so we had
to delay their presentation until now. A whole new series of functions is then presented
to handle extended character sets (section [T4.3) and binary streams (section [T4.4), and
we round out this section and the entire level with a discussion of clean error handling

(section[14.4)).

14.1. Text processing. As a first example, consider the following program, which
that reads a series of lines with numbers from stdin and writes these same numbers in a
normalized way to stdout as comma-separated hexadecimal numbers:

numberline.c

int main(void) {
char 1lbuf[256];
for (;;) {
if (fgetline(sizeof lbuf, lbuf, stdin)) {(

size_t n;
size_t*x nums = numberline(strlen(lbuf)+1, lbuf, &n, 0);
int ret = fprintnumbers(stdout, "%#zX", " ,\t", n, nums);
if (ret < @) return EXIT_FAILURE;

free(nums);
} else {
if (lbuf[@]) { /* a partial line has been read =*/
for (;;) {
int ¢ = getc(stdin);
if (c == EOF) return EXIT_FAILURE;
if (¢ == ’\n’) {
fprintf(stderr, "line_too_long:_%s\n", lbuf);
break;
3
}
} else break; /* regular end of input =*/
3

This program splits the job in three different tasks:

e fgetline to read a line of text

e numberline to split such a line in a series of numbers of type size_t

e fprintnumbers to print them
At the heart is the function numberline. It splits the 1buf string that it receives into
numbers, allocates an array to store them, and also returns the count of these numbers
through the pointer argument np if that is provided:

97

98

99
100
101
102
103
104
105
106
107

182 2. COGNITION

numberline.c

numberline: interpret string [buf as a sequence of numbers represented with base

Returns: a newly allocated array of numbers as found in /buf

Parameters:

Ibuf | is supposed to be a string

np if non-null, the count of numbers is stored in *np

base | value from O to 36, with the same interpretation as for
strtoul

Remarks: The caller of this function is responsible to free the array that is returned.

size_t* numberline(size_t size, char const lbuf[restrict size
:ly

size_txrestrict np, int base);

That function itself is split into two parts, which perform quite different tasks. One
performs the task of interpreting the line, numberline_inner. The other, numberline
itself, is just a wrapper around the first that verifies or ensures the prerequisites for the first.
Function numberline_inner puts the C library function strtoull in a loop that collects
the numbers and returns a count of them.

Now we see the use of the second parameter of strtoull. Here, it is the address of
the variable next, and next is used to keep track of the position in the string that ends the
number. Since next is a pointer to char, the argument to strtoull is a pointer to a pointer
to char:

numberline.c

static
size_t numberline_inner (char const*restrict act,
size_t numb[restrict], int base){
size_t n = 0;
for (charx next = 0; act[0]; act = next) {

numb[n] = strtoull(act, &next, base);
if (act == next) break;
++n;

}

return n;

Suppose strtoull is called as strtoull(”0789a", &next, base). According to
the value of the parameter base, that string is interpreted differently. If, for example, base
has the value 10, the first non-digit is the character *a’ at the end:

Base | Digits | Number | *next

8 2 7 '8’
10 4 789 a’
16 5 30874 | ’\o’
0 2 7 '8’

Remember the special rules for base @. The effective base is deduced from the first (or first
two) characters in the string. Here, the first character is a *@’, so the string is interpreted
as being octal, and parsing stops at the first non-digit for that base: *8’.

There are two conditions that may end the parsing of the line that numberline_inner
receives:

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

14. MORE INVOLVED PROCESSING AND IO 183

e act points to a string termination: to a @ character.
e Function strtoull doesn’t find a number, in which case next is set to the value
of act.

These two conditions are found as the controlling expression of the for loop and as if-
break condition inside.

Note that the C library function strtoull has a historical weakness: the first argument
has type char const#*, whereas the second has type char**, without const qualification.
This is why we had to type next as char* and couldn’t use char const=*. As a result of a
call to strtoull, we could inadvertently modify a read-only string and crash the program.

Takeaway 2.14.1.1 The string strto. .. conversion functions are not const-safe.

Now, the function numberline itself provides the glue around numberline_inner:

e If npis null, it is set to point to an auxiliary.

e The input string is checked for validity.

e An array with enough elements to store the values is allocated and tailored to the
appropriate size, once the correct length is known.

We use three functions from the C library: memchr, malloc, and realloc. As in
previous examples, a combination of malloc and realloc ensures that we have an array
of the necessary length:

numberline.c

size_t* numberline(size_t size, char const lbuf[restrict sizel],
size_t*restrict np, int base){
size_t* ret = 0;
size_t n = 0;
