Concept Lattices and

Formal Concept Analysis

Radim Bělohlávek

Dept. Computer Science
Palacký University, Olomouc radim.belohlavek@upol.cz

INFO

This is a preliminary version of a text on formal concept analysis and related methods.

FORMAL CONCEPT ANALYSIS

What is FCA?

- method of analysis of object-attribute data
- output 1: hierarchical structure of clusters (concept lattice)
- output 2: base of attribute implications
- existing software support
- documented applications
- nontrivial open problems (mathematical, algorithmic, methodological)

Origins of FCA

G. Birkhoff: Lattice Theory. AMS Col. Publ. 25, 1940.
M. Barbut: Note sur l'algèbre des techniques d'analyse hiérarchique. In: B. Matalon: L'analyse hiérarchique. Gauthier-Villars, Paris, 1965, pp. 125146.
M. Barbut, B. Monjardet: Ordre et Classification, Vol. 2. Hachette, Paris, 1970.
R. Wille: Restructuring lattice theory: an approach based on hierarchies of concepts. In: Rival I.: Ordered Sets. Reidel, 1982, 445-470.
state of art (almost): B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations. Springer, 1999.

What is a concept?

- psychology (approaches: classical, prototype, exemplar, knowledge)
- logic (TIL)
- artificial intelligence (frames, learning of concepts)
- conceptual graphs (Sowa)
- "conceptual modeling"
- . . .
- traditional/Port-Royal logic

Traditional/Port-Royal approach to concepts

- concept $:=$ extent + intent
- extent $=$ objects covered by concept
- intent $=$ attributes covered by concept

Traditional/Port-Royal approach to concepts

- concept $:=$ extent + intent
- extent $=$ objects covered by concept
- intent $=$ attributes covered by concept
- example: DOG
- extent of dog $=$ collection of all dogs
- intent of dog $=$ collection of all dogs' attributes (barks, has four limbs, has tail, ...)

Traditional/Port-Royal approach to concepts

- concept $:=$ extent + intent
- extent $=$ objects covered by concept
- intent $=$ attributes covered by concept
- example: DOG
- extent of dog $=$ collection of all dogs
- intent of dog $=$ collection of all dogs' attributes (barks, has four limbs, has tail, ...)
- concept hierarchy
- subconcept/superconcept relation
- concept1 $=($ extent1,intent1 $) \leq$ concept2 $=($ extent2,intent2) \Leftrightarrow extent1 \subseteq extent2 $(\Leftrightarrow$ intent1 \supseteq intent2)
$-\mathrm{DOG} \leq$ MAMMAL \leq ANIMAL

Basic notions of FCA

- formal context (input data table)
- formal concept (cluster in data)
- concept Iattice (hierarchical system of clusters)
- attribute implication (dependency in data)

Formal context $=$ input data

Def. Formal context is a triplet (X, Y, I) where
X ... set of objects
Y... set of attributes
$I \subseteq X \times Y$ binary relation.
Interpretation: $(x, y) \in I \ldots$ object x has attribute y
formal context \approx data table

I	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	\times	\times	\times	\times
x_{2}	\times		\times	\times
x_{3}		\times	\times	\times
x_{4}		\times	\times	\times
x_{5}	\times			

Formal concept $=$ cluster in data

Def. Induced operators ... mappings $\uparrow: 2^{X} \rightarrow 2^{Y}, \downarrow: 2^{Y} \rightarrow 2^{X}$ def. by:

$$
\begin{aligned}
& A^{\uparrow}=\{y \in Y \mid \text { for each } x \in A:(x, y) \in I\} \\
& B^{\downarrow}=\{x \in X \mid \text { for each } y \in B:(x, y) \in I\}
\end{aligned}
$$

$A^{\uparrow} \ldots$ attributes common to all objects from A
$B^{\downarrow} \ldots$ objects sharing all attributes from B

Def. Formal concept in $(X, Y, I) \ldots(A, B), A \subseteq X, B \subseteq Y$, s.t.

$$
A^{\uparrow}=B \text { and } B^{\downarrow}=A
$$

A ...extent ... objects covered by formal concept
B ...intent ... attributes covered by formal concept

Formal concepts as maximal rectangles

Thm. Formal concepts are exactly maximal rectangles in data table.

Example

I	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	\times	\times	\times	\times
x_{2}	\times		\times	\times
x_{3}		\times	\times	\times
x_{4}		\times	\times	\times
x_{5}	\times			

formal concept $(A, B)=\left(\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\},\left\{y_{3}, y_{4}\right\}\right)$

Further formal concepts

I	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	\times	\times	\times	\times
x_{2}	\times		\times	\times
x_{3}		\times	\times	\times
x_{4}		\times	\times	\times
x_{5}	\times			

I	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	\times	\times	\times	\times
x_{2}	\times		\times	\times
x_{3}		\times	\times	\times
x_{4}		\times	\times	\times
x_{5}	\times			

I	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	\times	\times	\times	\times
x_{2}	\times		\times	\times
x_{3}		\times	\times	\times
x_{4}		\times	\times	\times
x_{5}	\times			

$\left(A_{1}, B_{1}\right)=\left(\left\{x_{1}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}, y_{4}\right\}\right)$

$$
\begin{aligned}
& \left(A_{2}, B_{2}\right)=\left(\left\{x_{1}, x_{2}\right\},\left\{y_{1}, y_{3}, y_{4}\right\}\right) \\
& \qquad\left(A_{3}, B_{3}\right)=\left(\left\{x_{1}, x_{2}, x_{5}\right\},\left\{y_{1}\right\}\right)
\end{aligned}
$$

Concept lattice

Def. Subconcept-superconcept ordering \leq of formal concepts is defined by

$$
\left(A_{1}, B_{1}\right) \leq\left(A_{2}, B_{2}\right) \quad \text { iff } \quad A_{1} \subseteq A_{2} \quad\left(\text { iff } B_{2} \subseteq B_{1}\right)
$$

Example DOG \leq MAMMAL

Def. Concept lattice (Galois lattice) of (X, Y, I) is the set

$$
\mathcal{B}(X, Y, I)=\left\{(A, B) \mid A^{\uparrow}=B, B^{\downarrow}=A\right\}
$$

equipped with \leq.
Rem. $\mathcal{B}(X, Y, I) \ldots$ all concepts/clusters hidden in the data
Denote
$\operatorname{Ext}(X, Y, I)=\left\{A \in 2^{X} \mid\langle A, B\rangle \in \mathcal{B}(X, Y, I)\right.$ for some $\left.B\right\}$ (extents of concepts) $\operatorname{Int}(X, Y, I)=\left\{B \in 2^{Y} \mid\langle A, B\rangle \in \mathcal{B}(X, Y, I)\right.$ for some $\left.A\right\}$ (intents of concepts)

Alternative notation

\approx membership/characteristic function style
instead of $A \subseteq U$, consider corresponding $C_{A} \in 2^{U}$
that is: $C_{A}(u)= \begin{cases}0 & \text { for } u \notin A \\ 1 & \text { for } u \in A\end{cases}$
we identify A with C_{A}, i.e. we write $A(u)=0, A(u)=1$,
i.e. $I(x, y)=1$ if $\langle x, y\rangle \in I$
then

$$
\begin{aligned}
& A^{\uparrow}(y)=\bigwedge_{x \in X} A(x) \rightarrow I(x, y) \\
& B^{\downarrow}(x)=\bigwedge_{y \in Y} B(y) \rightarrow I(x, y)
\end{aligned}
$$

where \wedge denotes \min and \rightarrow is bivalent implication connective

Formal concepts as maximal rectangles

A rectangle in $\langle X, Y, I\rangle$ is a pair $\langle A, B\rangle$ such that for each $x \in A$ and $y \in B$ we have $\langle x, y\rangle \in I$ (that is: the rectangle corresponding to A and B is filled with 1 's). For two rectangles $\left\langle A_{1}, B_{1}\right\rangle$ and $\left\langle A_{2}, B_{2}\right\rangle$ we put $\left\langle A_{1}, B_{1}\right\rangle \sqsubseteq\left\langle A_{2}, B_{2}\right\rangle$ iff $A_{1} \subseteq A_{2}$ and $B_{1} \subseteq B_{2}$.

Theorem Formal fuzzy concepts are exactly maximal rectangles (w.r.t. $\sqsubseteq) ~$ in $\langle X, Y, I\rangle$.

Proof (by a simple reflection, viz prednasky)

Related mathematical structures

Def. A Galois connection between sets X and Y is a pair $\langle f, g\rangle$ of mappings $f: 2^{X} \rightarrow 2^{Y}$ and $g: 2^{Y} \rightarrow 2^{X}$ satisfying for $A, A_{1}, A_{2} \subseteq X, B, B_{1}, B_{2} \subseteq Y$:

$$
\begin{align*}
& A_{1} \subseteq A_{2} \Rightarrow f\left(A_{2}\right) \subseteq f\left(A_{1}\right) \tag{1}\\
& B_{1} \subseteq B_{2} \Rightarrow g\left(B_{2}\right) \subseteq g\left(B_{1}\right) \tag{2}\\
& A \subseteq g(f(A)) \tag{3}\\
& B \subseteq f(g(B) \tag{4}
\end{align*}
$$

Lemma (chaining of Galois connection) For a Galois connection $\langle f, g\rangle$ between X and Y we have $f(A)=f(g(f(A)))$ and $g(B)=g(f(g(B)))$ for any $A \subseteq X$ and $B \subseteq Y$.

Proof We prove only $f(A)=f(g(f(A)))(g(B)=g(f(g(B)))$ is dual): $f(A) \subseteq$ $f(g(f(A))$) follows from (4) by putting $B=f(A)$. Since $A \subseteq g(f(A))$ by (3), we get $f(A) \supseteq f(g(f(A)))$ by application of (1).

Remark For a Galois connection $\langle f, g\rangle$ between X and Y we put fix $(f, g)=$ $\left\{\langle A, B\rangle \mid A \in 2^{X}, B \in 2^{Y}, A^{\uparrow}=B, B^{\downarrow}=A\right\}$. fix (f, g) is called the set of all fixed points of $\langle f, g\rangle$.

Def. A closure operator on a set X is a mapping $C: 2^{X} \rightarrow 2^{X}$ satisfying for each $A, A_{1}, A_{2} \subseteq X$

$$
\begin{align*}
& A \subseteq C(A), \tag{5}\\
& A_{1} \subseteq A_{2} \Rightarrow C\left(A_{1}\right) \subseteq C\left(A_{2}\right), \tag{6}\\
& A=C(C(A)) . \tag{7}
\end{align*}
$$

Remark For a closure operator C on X we put fix $(C)=\left\{A \mid A \in 2^{X} A=\right.$ $C(A)\}$. fix (C) is called the set of all fixed points of C.

Def. A complete lattice is a partially ordered set $\langle V, \leq\rangle$ such that for each $K \subseteq V$ there exists both the infimum $\inf (K)$ of K and the supremum $\sup (K)$ of K.

Recall: partial order, lower bound, upper bound, infimum, supremum, ...
Given a formal context $\langle X, Y, I\rangle$, the induced operators \uparrow and \downarrow will also be denoted by ${ }^{\uparrow}$ and \downarrow_{I}.

Theorem (fixpoints of closure operators) For a closure operator C on X, $\langle\mathrm{fix}(C), \subseteq\rangle$ is a complete lattice with infima and suprema given by

$$
\begin{align*}
& \bigwedge_{j \in J} A_{j}=\bigcap_{j \in J} A_{j}, \tag{8}\\
& \bigvee_{j \in J} A_{j}=C\left(\bigcup_{j \in J} A_{j}\right) . \tag{9}
\end{align*}
$$

Proof Evidently, $\langle\mathrm{fix}(C), \subseteq\rangle$ is a partially ordered set. First, we verify that for $A_{j} \in \mathrm{fix}(C)$ we have $\bigcap_{j \in J} A_{j} \in \operatorname{fix}(C)$, i.e. $\cap_{j \in J} A_{j}=C\left(\cap_{j \in J} A_{j}\right) . \cap_{j \in J} A_{j} \subseteq$ $C\left(\cap_{j \in J} A_{j}\right)$ is obvious (a property of a closure operator). Conversely, we have $C\left(\bigcap_{j \in J} A_{j}\right) \subseteq \bigcap_{j \in J} A_{j}$ iff for each $j \in J$ we have $C\left(\bigcap_{j \in J} A_{j}\right) \subseteq A_{j}$ which is true. indeed, we have $\bigcap_{j \in J} A_{j} \subseteq A_{j}$ and so $C\left(\cap_{j \in J} A_{j}\right) \subseteq C\left(A_{j}\right)=A_{j}$. Now it is clear that $\bigcap_{j \in J} A_{j}$ is the infimum of A_{j} 's (first, $\bigcap_{j \in J} A_{j}$ is less than each A_{j}; second, $\cap_{j \in J} A_{j}$ is above any $A \in$ fix (C) which is less than all A_{j} 's).
Second, we verify $\bigvee_{j \in J} A_{j}=C\left(\cup_{j \in J} A_{j}\right)$. Since $\bigvee_{j \in J} A_{j} \supseteq A_{j}$ for any $j \in J$, we get $\bigvee_{j \in J} A_{j} \supseteq \cup_{j \in J} A_{j}$, and so $\bigvee_{j \in J} A_{j}=C\left(\bigvee_{j \in J} A_{j}\right) \supseteq C\left(\cup_{j \in J} A_{j}\right)$. On the other hand, $C\left(\cup_{j \in J} A_{j}\right)$ is a fixpoint which is above each A_{j}, and so it is above their supremum $\bigvee_{j \in J} A_{j}$, i.e. $C\left(\cup_{j \in J} A_{j}\right) \supseteq \bigvee_{j \in J} A_{j}$. To sum up, $\vee_{j \in J} A_{j}=C\left(\cup_{j \in J} A_{j}\right)$.

Theorem (binary relation induces Galois connection) For each formal context $\langle X, Y, I\rangle$, the pair $\left\langle{ }^{\uparrow} I, \downarrow_{I}\right\rangle$ forms a Galois connection between X and Y.

Proof Easy by direct verification (viz prednasky).
Remark Therefore, a concept lattice $\mathcal{B}(X, Y, I)$ is but a system of fixed points of the induced Galois connection $\langle\uparrow, \downarrow\rangle$, i.e. $\mathcal{B}(X, Y, I)=\mathrm{fix}\left({ }^{\uparrow}, \downarrow\right)$.

Conversely, a question arises as to whether each Galois connection $\langle f, g\rangle$ is induced by some binary relation I between X and Y.

Theorem (Galois connection is induced by binary relation) Let $\langle f, g\rangle$ be a Galois connection between X and Y. Then putting for each $x \in X$ and $y \in Y$

$$
\begin{equation*}
\langle x, y\rangle \in I \quad \text { iff } \quad y \in f(\{x\}) \quad \text { or, equivalently, iff } x \in g(\{y\}), \tag{10}
\end{equation*}
$$

I is a binary relation between X and Y such that the induced Galois connection $\left\langle{ }^{\uparrow}, \downarrow_{I}\right\rangle$ coincides with $\langle f, g\rangle$, i.e. $\left\langle{ }^{\uparrow},{ }_{I}\right\rangle=\langle f, g\rangle$.

Proof First, let us show that $y \in f(\{x\})$ iff $x \in g(\{y\})$: From $y \in f(\{x\})$ we get $\{y\} \subseteq f(\{x\})$ from which we get $\{x\} \subseteq g(f(\{x\})) \subseteq g(\{y\})$, i.e. $x \in g(\{y\})$. In a similar manner, $x \in g(\{y\})$ implies $y \in f(\{x\})$. That is, we have $\langle x, y\rangle \in I$ iff $y \in f(\{x\})$ iff $x \in g(\{y\})$.
Now, for each $A \subseteq X$ we have $f(A)=f\left(\cup_{x \in A}\{x\}\right)=\cap_{x \in A} f(\{x\})=\cap_{x \in A}\{y \in$ $Y \mid y \in f(\{x\})\}=\cap_{x \in A}\{y \in Y \mid\langle x, y\rangle \in I\}=\{y \in Y \mid$ for each $x \in A:\langle x, y\rangle \in$ $I\}=A^{\dagger_{I}}$.
Dually, for $B \subseteq Y$ we get $g(B)=B^{\downarrow_{I}}$.
Remark (1) The relation I induced from a Galois connection $\langle f, g\rangle$ by (10) will also be denetode by $I_{\langle f, g\rangle}$.

there is a one-to-one correspondence between binary relations between I and Galois connections between X and Y.

Corollary (consequences of chaining) $\operatorname{Ext}(X, Y, I)=\left\{B^{\downarrow} \mid B \in 2^{Y}\right\}=\left\{A^{\uparrow \downarrow} \mid A \in\right.$ $\left.2^{X}\right\} ; \operatorname{Int}(X, Y, I)=\left\{A^{\uparrow} \mid A \in 2^{X}\right\}=\left\{B^{\downarrow \uparrow} \mid B \in 2^{Y}\right\}$. Furthermore, $\mathcal{B}(X, Y, I)=$ $\left\{\left\langle A, A^{\uparrow}\right\rangle \mid A \in \operatorname{Ext}(X, Y, I)\right\}=\left\{\left\langle B^{\downarrow}, B\right\rangle \mid B \in \operatorname{Int}(X, Y, I)\right\}$.

Proof (easy, viz prednasky)

Theorem (from Galois connection to closure operator) (1) If $\langle f, g\rangle$ is a Galois connection between X and Y then $C_{X}=f \circ g$ is a closure operator on X and $C_{Y}=g \circ f$ is a closure operator on Y.
(2) If $\langle f, g\rangle$ is induced by I, i.e. $\langle f, g\rangle=\left\langle{ }^{\uparrow} I, \downarrow_{I}\right\rangle$, then $\mathcal{B}(X, Y, I)$ is isomorphic to $\left\langle\mathrm{fix}\left(C_{X}\right), \subseteq\right\rangle$ and an isomorphism is given by sending $\langle A, B\rangle \in \mathcal{B}(X, Y, I)$ to $A \in\left\langle\mathrm{fix}\left(C_{X}\right), \subseteq\right\rangle$. Moreover, $\mathcal{B}(X, Y, I)$ is dually isomorphic to $\left\langle\mathrm{fix}\left(C_{X}\right), \subseteq\right\rangle$ and a dual isomorphism is given by sending $\langle A, B\rangle \in \mathcal{B}(X, Y, I)$ to $B \in\left\langle\mathrm{fix}\left(C_{Y}\right), \subseteq\right\rangle$.

Proof (1) We show that $f \circ g: 2^{X} \rightarrow 2^{X}$ is a closure operator on X : (5) is $A \subseteq g(f(A))$ which is true by definition of a Galois connection.
(6): $A_{1} \subseteq A_{2}$ impies $f\left(A_{2}\right) \subseteq f\left(A_{1}\right)$ which implies $g\left(f\left(A_{1}\right)\right) \subseteq g\left(f\left(A_{2}\right)\right)$.
(7): Since $f(A)=f(g(f(A)))$, we get $g(f(A))=g(f(g(f(A))))$.
(2) (viz prednasky) Follows immediately by definition of $\leq\left(\left\langle A_{1}, B_{2}\right\rangle \leq\left\langle A_{2}, B_{2}\right\rangle\right.$ iff $A_{1} \subseteq A_{2}$ iff $B 1 \supseteq B_{2}$) and by the above Corollary (in particular, by $\left.\mathcal{B}(X, Y, I)=\left\{\left\langle A, A^{\uparrow}\right\rangle \mid A \in \operatorname{Ext}(X, Y, I)\right\}=\left\{\left\langle B^{\downarrow}, B\right\rangle \mid B \in \operatorname{Int}(X, Y, I)\right\}\right)$.

Remark We can see that for $\langle X, Y, I\rangle$, and $C_{X}=\uparrow \downarrow$ and $C_{Y}=\downarrow \uparrow$ we have $\operatorname{Ext}(X, Y, I)=\mathrm{fix}\left(C_{X}\right)$ and $\operatorname{Int}(X, Y, I)=\mathrm{fix}\left(C_{Y}\right)$.

Further issues in Galois connections etc.

(nebude pozadovano na zkousce)
Theorem (alternative definition of a Galois connection) $\langle f, g\rangle$ form a Galois connection between X and Y iff for each $A \subseteq X$ and $B \subseteq Y$ we have $A \subseteq B^{\downarrow}$ if and only if $B \subseteq A^{\uparrow}$.

Proof (easy, to be written)
Theorem (from closure operator to Galois connection) Let $C: 2^{X} \rightarrow 2^{X}$ be a closure operator in X. Define $I \subseteq X \times \operatorname{fix}(C)$ by $\langle x, A\rangle \in I$ iff $x \in A$ for $x \in X, A \in \operatorname{fix}(C)$. Then $\langle\mathrm{fix}(C), \subseteq\rangle$ is isomorphic to $\mathcal{B}(X, \mathrm{fix}(C), I)$.
Proof (to be written)

concept lattices in mathematics

- each complete lattice (V, \leq) is isomorphic to some concept lattice, e.g. $(V, \leq) \cong \mathcal{B}(V, V, \leq) ;$
- for partially ordered set $(V, \leq) \ldots \mathcal{B}(V, V, \leq)$ is the MacNeille completion of (V, \leq);
- V finitely dimensional vector space, V^{*} dual space, $a \perp \varphi$ means $\varphi(a)=0$, then $\mathcal{B}\left(V, V^{*}, \perp\right)$ is the lattice of subspaces of V;

Main theorem of concept lattices

Theorem (Wille, 1982) (1) $\mathcal{B}(X, Y, I)$ is a complete lattice with infima and suprema given by

$$
\begin{equation*}
\bigwedge_{j \in J}\left\langle A_{j}, B_{j}\right\rangle=\left\langle\bigcap_{j \in J} A_{j},\left(\bigcup_{j \in J} B_{j}\right)^{\downarrow \uparrow}\right\rangle, \bigvee_{j \in J}\left\langle A_{j}, B_{j}\right\rangle=\left\langle\left(\bigcup_{j \in J} A_{j}\right)^{\uparrow \downarrow}, \bigcap_{j \in J} B_{j}\right\rangle \tag{11}
\end{equation*}
$$

(2) Moreover, an arbitrary complete lattice $\mathrm{V}=(V, \leq)$ is isomorphic to $\mathcal{B}(X, Y, I)$ iff there are mappings $\gamma: X \rightarrow V, \mu: Y \rightarrow V$ such that
(i) $\gamma(X)$ is \bigvee-dense in $V, \mu(Y)$ is Λ-dense in \vee;
(ii) $\gamma(x) \leq \mu(y)$ iff $(x, y) \in I$.

Proof (dukaz jen k casti (1); plyne z vyse uvedenych vysledku o Gal. konexich a uzav. operatorech, viz prednasky):

We check $\wedge_{j \in J}\left\langle A_{j}, B_{j}\right\rangle=\left\langle\bigcap_{j \in J} A_{j},\left(\cup_{j \in J} B_{j}\right)^{\downarrow \uparrow}\right\rangle$: First, $\mathcal{B}(X, Y, I)$ is a complete lattice since it is isomorphic to a complete lattice Ext $(X, Y, I)=\mathrm{fix}\left({ }^{\uparrow \downarrow}\right)$ (and dually isomorphic to a complete lattice $\operatorname{Int}(X, Y, I)=\mathrm{fix}(\downarrow \uparrow)$). Moreover, infima in $\mathcal{B}(X, Y, I)$ correspond to infima in $\operatorname{Ext}(X, Y, I)$ and to suprema in $\operatorname{Int}(X, Y, I)$, from which we immediately get that the extent of $\wedge_{j \in J}\left\langle A_{j}, B_{j}\right\rangle$
is the infimum $\wedge_{j \in J} A_{j}$ of A_{j} 's (taken in $\operatorname{Ext}(X, Y, I)$) which is $\bigcap_{j \in J} A_{j}$, and that the intent of $\wedge_{j \in J}\left\langle A_{j}, B_{j}\right\rangle$ is the supremum $\vee_{j \in J} B_{j}$ of B_{j} 's (taken in $\operatorname{Int}(X, Y, I))$ which is $\cup_{j \in J}\left(B_{j}\right) \downarrow \uparrow$.

Checking the formula for $\bigvee_{j \in J}\left\langle A_{j}, B_{j}\right\rangle$ is dual.

Algorithms for concept lattices

Problem:
Input: (X, Y, I)
Output: $\mathcal{B}(X, Y, I)$ (possibly plus \leq)

Very good survey and comparison of algorithms:
Kuznetsov S. O., Obiedkov S. A.: Comparing performance of algorithms for generating concept lattices. J. Experimental \& Theoretical Artificial Intelligence 14(2003), 189-216.

- one of the first: Norris E. M.: An algorithm for computing the maximal rectangles of a binary relation. J. ACM 21(1974), 356-366.
- often used 1: Ganter's NextClosure
- often used 2: Lindig's UpperNeighbor

NextClosure algorithm

suppose $X=\{1, \ldots, m\}, Y=\{1, \ldots, n\}$
for $A, B \subseteq Y, i \in\{1, \ldots, n\}$ put

$$
A<_{i} B \quad \text { iff } \quad i \in B-A \text { a } A \cap\{1, \ldots, i-1\}=B \cap\{1, \ldots, i-1\}
$$

and

$$
A<B \quad \text { iff } \quad A<_{i} B \text { for some } i .
$$

$<$...lexicographic ordering
For $A \subseteq Y, i \in\{1, \ldots, n\}$, put

$$
A \oplus i:=((A \cap\{1, \ldots, i-1\}) \cup\{i\})^{\downarrow \uparrow} .
$$

Lemma The following assertions are true for any $B, D, D_{1}, D_{2} \subseteq Y$:
(1) If $B<_{i} D_{1}, B<_{j} D_{2}$, and $i<j$ then $D_{2}<_{i} D_{1}$;
(2) if $i \notin B$ then $B<B \oplus i$;
(3) if $B<_{i} D$ and $D=D^{\downarrow \uparrow}$ then $B \oplus i \subseteq D$;
(4) if $B<_{i} D$ and $D=D^{\downarrow \uparrow}$ then $B<_{i} B \oplus i$.

Proof (1) by easy inspection.
(2) is true because $B \cap\{1, \ldots, i-1\} \subseteq B \oplus i \cap\{1, \ldots, i-1\}$ and $i \in(B \oplus i)-B$.
(3) Putting $C_{1}=B \cap\{1, \ldots, i-1\}$ and $C_{2}=\{i\}$ we have $C_{1} \cup C_{2} \subseteq D$, and so $B \oplus i=\left(C_{1} \cup C_{2}\right)^{\downarrow \uparrow} \subseteq D^{\downarrow \uparrow}=D$.
(4) By assumption, $B \cap\{1, \ldots, i-1\}=D \cap\{1, \ldots, i-1\}$. Furthermore, (3) yields $B \oplus i \subseteq D$ and so $B \cap\{1, \ldots, i-1\} \supseteq B \oplus i \cap\{1, \ldots, i-1\}$. On the other hand, $B \oplus i \cap\{1, \ldots, i-1\} \supseteq(B \cap\{1, \ldots, i-1\}))^{\downarrow \uparrow} \cap\{1, \ldots, i-1\} \supseteq B \cap\{1, \ldots, i-1\}$. Therefore, $B \cap\{1, \ldots, i-1\}=B \oplus i \cap\{1, \ldots, i-1\}$. Finally, $i \in B \oplus i$ proving $B<_{i} B \oplus i$.

Theorem The least intent B^{+}greater (w.r.t. $<$) than $B \subseteq Y$ is given by

$$
B^{+}=B \oplus i
$$

where i is the greatest one with $B<_{i} B \oplus i$.
Proof Let B^{+}be the least intent greater than B (w.r.t. to $<$). We have $B<B^{+}$and thus $B<{ }_{i} B^{+}$for some i such that $i \in B^{+}$. By Lemma (4), $B<{ }_{i} B \oplus i$, i.e. $B<B \oplus i$. Lemma (3) yields $B \oplus i \leq B^{+}$which gives $B^{+}=B \oplus i$ since B^{+}is the least intent with $B<B^{+}$. It remains to show that i is the greatest one satisfying $B<_{i} B \oplus i$. Suppose $B<_{k} B \oplus k$ for $k>i$. By Lemma (1), $B \oplus k<_{i} B \oplus i$ which is a contradiction to $B \oplus i=B^{+}<B \oplus k$ (B^{+}is the least intent greater than B and so $B^{+}<B \oplus k$). Therefore we have $k=i$.

```
NextClosure algorithm
    A:=leastIntent;
    store(A);
    while not(A=X) do
    A:=A+;
    store(A);
endwhile.
```

complexity: time complexity of A^{+}is $O\left(|X|^{2} \cdot|Y|\right)$; time complexity of NextClosure is $O\left(|X|^{2} \cdot|Y| \cdot|\mathcal{B}(X, Y, I)|\right)$
\Rightarrow polynomial time delay complexity (Johnson D. S., Yannakakis M., Papadimitrou C. H.: On generating all maximal independent sets. Inf. Processing Letters 27(1988), 129-133.)

Note! Almost no space requirements. But: NextClosure does not directly give information about \leq.

UpperNeighbors algorithm

(nebude na zkousce pozadovan)

Idea:

start with the least formal concept ($\emptyset^{\uparrow \downarrow}, \emptyset^{\uparrow}$)
for each (A, B) generate all its upper neighbors (and store the necessary information)
based on the following:
Thm. If $(A, B) \in \mathcal{B}(X, Y, I)$ is not the largest concept then $(A \cup\{x\})^{\uparrow \downarrow}$, with $x \in X-A$, is an extent of an upper neighbor of (A, B) iff for each $z \in(A \cup\{x\})^{\uparrow \downarrow}-A$ we have $(A \cup\{x\})^{\uparrow \downarrow}=(A \cup\{z\})^{\uparrow \downarrow}$.

UpperNeighbor procedure

```
\(\min :=X-A\);
neighbors: \(=\emptyset\);
for \(x \in X-A\) do
\(B_{1}:=(A \cup\{x\})^{\uparrow} ; A_{1}:=B_{1}^{\downarrow} ;\)
if \(\left(\min \cap\left(\left(A_{1}-A\right)-\{x\}\right)=\emptyset\right)\) then neighbors: \(=\) neighbors \(\cup\left\{\left(A_{1}, B_{1}\right)\right\}\)
else min: \(=\min -\{x\}\);
enddo.
```

complexity polynomial time delay with delay $O\left(|X|^{2} \cdot|Y|\right)$ (same as NextClosure)

Attribute implications

Def. (Attribute) implication (over attributes Y) is an expression $A \Rightarrow B$ where $A, B \subseteq Y$.

Why $A \Rightarrow B$? Primary reading: "if object x has all attributes from A then x has all attributes from $B^{\prime \prime}$

Denote $\operatorname{Imp}=\{A \Rightarrow B \mid A, B \subseteq Y\}$ (set of all attribute implications).
Def. $A \Rightarrow B$ is true in $C \subseteq Y$ if $A \subseteq C$ implies $B \subseteq C$; denoted by $\|A \Rightarrow B\|_{C}=1$ (or $C \models A \Rightarrow B$)
Def. (Mod and Fml) For a set $T \subseteq$ Imp (set of attribute implications), $\mathcal{M} \subseteq 2^{Y}$ (set of sets of attributes), put

$$
\begin{aligned}
\operatorname{Mod}(T) & =\left\{C \in 2^{Y} \mid \text { for each } A \Rightarrow B \in T:\|A \Rightarrow B\|_{C}=1\right\} \\
\operatorname{Fml}(\mathcal{M}) & =\left\{A \Rightarrow B \in \operatorname{Imp} \mid \text { for each } C \in \mathcal{M}:\|A \Rightarrow B\|_{C}=1\right\}
\end{aligned}
$$

Rem. (1) $\operatorname{Mod}(T) \ldots$ models of T (all sets of attributes in which each implications from T are true); $\operatorname{Fml}(\mathcal{M}) \ldots$ all implications true in (each set of attributes from) \mathcal{M}
(2) Put $\mathcal{X}=\operatorname{Imp}, \mathcal{Y}=2^{Y}$, define $\mathcal{I} \subseteq \mathcal{X} \times \mathcal{Y}$ by $\langle A \Rightarrow B, C\rangle \in \mathcal{I}$ iff $\|A \Rightarrow B\|_{C}=$ 1. Then Mod and Fml form the Galois connection induced by $\langle\mathcal{X}, \mathcal{Y}, \mathcal{I}\rangle$. Therefore, we can use all properties of Galois connections for Mod and Fml.
(3) Mod and Fml ...standard logical approach.

For $\mathcal{M} \subseteq 2^{Y}$ and $T=\left\{A_{j} \Rightarrow B_{j} \mid j \in J\right\}$:
$\|T\|_{\mathcal{M}}=1$ (or $\mathcal{M} \vDash T$) iff for each $C \in \mathcal{M}, A \Rightarrow B \in T:\|A \Rightarrow B\|_{C}=1$
(in words: T is true in \mathcal{M})
Rem. Note: $\|T\|_{\mathcal{M}}=1$ iff $\mathcal{M} \subseteq \operatorname{Mod}(T)$ iff $T \subseteq \operatorname{Fml}(\mathcal{M})$

Denote:

$$
\begin{aligned}
& \operatorname{Fml}(X, Y, I)= \operatorname{Fml}\left(\left\{\{x\}^{\uparrow} \mid x \in X\right\}\right) \ldots \text { implications true in data, } \\
&\left(\{x\}^{\uparrow} \text { is a row in table }\langle X, Y, I\rangle\right) \\
&\|A \Rightarrow B\|_{\langle X, Y, I\rangle}=1 \text { iff } A \Rightarrow B \in \operatorname{Fml}(X, Y, I)
\end{aligned}
$$

Sometimes: validity of $A \Rightarrow B$ in $\mathcal{B}(X, Y, I)$ means validity in $\operatorname{Int}(X, Y, I)$.

Connection to predicate logic?

Rem. $\mathcal{M} \vDash A \Rightarrow B \ldots$ validity of a corresponding monadic formula $c(A \Rightarrow B)$ in a corresponding structure $c(\mathcal{M})$.
language given by unary relation symbols $r_{y}(y \in Y)$;
$A \Rightarrow B$ corresponds to formula $\varphi(A \Rightarrow B)=\&_{y \in A} r_{y}(x) \Rightarrow \&_{y \in B} r_{y}(x)$;
a set \mathcal{M} of subsets of Y corresponds to structure \mathbf{M} with support $M=\mathcal{M}$
in which
each r_{y} is interpreted by $r_{y}^{\mathrm{M}}=\{C \in \mathcal{M} \mid y \in C\}$.
Then:
$A \Rightarrow B$ is true in \mathcal{M} (in the above sense) iff $\varphi(A \Rightarrow B)$ is true in M (in the standard sense of predicate logic).

Basic connection to FCA

Thm. $A \Rightarrow B$ is true in (X, Y, I) IFF $A \Rightarrow B$ is true $\operatorname{in} \operatorname{Int}(X, Y, I)$ IFF $B \subseteq A^{\downarrow \uparrow}$ IFF $A^{\downarrow} \subseteq B^{\downarrow}$.

Proof nontrivial part is "if $A \Rightarrow B$ is true in (X, Y, I) then $A \Rightarrow B$ is true in $\mathcal{B}(X, Y, I)^{\prime \prime}$: Let $A \Rightarrow B$ be true in (X, Y, I), i.e. $A^{\downarrow} \subseteq B^{\downarrow}$. Suppose $A \subseteq D$ for $\langle C, D\rangle \in \mathcal{B}(X, Y, I)$, i.e. $A \subseteq C^{\uparrow}$. This is equivalent to $C \subseteq A \downarrow$. Therefore $C \subseteq B^{\downarrow}$, which is equivalent to $B \subseteq C^{\uparrow}=D$, proving $A \Rightarrow B$ is true in $\mathcal{B}(X, Y, I)$.

Entailment, base

Def. $\quad A \Rightarrow B$ (semantically) follows from a set T of implications ($T \models$ $A \Rightarrow B)$ if $A \Rightarrow B$ is true in each $C \subseteq Y$ which is a model of T, i.e.

$$
T \models A \Rightarrow B \quad \text { iff } \quad A \Rightarrow B \in \operatorname{Fml}(\operatorname{Mod}(T)) .
$$

Meaning: $T \models A \Rightarrow B \ldots A \Rightarrow B$ is true whenever each $A_{i} \Rightarrow B_{i} \in T$ is true.
$T \subseteq$ Imp is called

- closed if it contains each implication which follows from T, i.e. $T=$ FmiMod(T),
- non-redundant if no implication from T follows from the rest (i.e. T $\{A \Rightarrow B\} \not \models A \Rightarrow B)$,
- complete w.r.t. $\langle X, Y, I\rangle$ if T is true in $\langle X, Y, I\rangle$ and each implication true in $\langle X, Y, I\rangle$ follows from T,
- base w.r.t. $\langle X, Y, I\rangle$ if it is complete w.r.t. $\langle X, Y, I\rangle$ and non-redundant.

Why base? To have less implications which carry the same information.

Lemma For $T \subseteq \operatorname{Imp}$:

1. T is true in $\langle X, Y, I\rangle$ IFF $\operatorname{Mod}(T) \supseteq \operatorname{Int}(X, Y, I)$,
2. each implication true in $\langle X, Y, I\rangle$ follows from $T \operatorname{IFF} \operatorname{Mod}(T) \subseteq \operatorname{Int}(X, Y, I)$.

Proof " 1. .": T is true in $\langle X, Y, I\rangle$ IFF (by def.) $T \subseteq \operatorname{Fml}(\operatorname{Int}(X, Y, I))$ IFF (by properties of Gal. conn.) $\operatorname{Mod}(T) \supseteq \operatorname{Int}(X, Y, I)$.
"2.": First, show Claim: ModFml(Int $(X, Y, I))=\operatorname{Int}(X, Y, I)$.
Proof of Claim: " \supseteq " by properties of Gal. conn; " \subseteq ": Let $A \in \operatorname{ModFml}(\operatorname{Int}(X, Y, 1$ Then $A \Rightarrow A \downarrow \uparrow \in \mathrm{Fml}(\operatorname{Int}(X, Y, I)$) (indeed: for $B \in \operatorname{Int}(X, Y, I)$, we have: if $A \subseteq B$ then $A^{\downarrow \uparrow} \subseteq B^{\downarrow \uparrow}=B$, i.e. $\left\|A \Rightarrow A^{\downarrow \uparrow}\right\|_{B}=1$). Thus, in particular, $\left\|A \Rightarrow A^{\downarrow \uparrow}\right\|_{A}=1$ which means that if $A \subseteq A$ (which is true) then $A^{\downarrow \uparrow} \subseteq A$ which means $A \in \operatorname{Int}(X, Y, I)$.

Second, each implication true in $\langle X, Y, I\rangle$ follows from T IFF (by def.) $\operatorname{Fml}(X, Y, I)$ $\operatorname{Fml}(\operatorname{Mod}(T))$ IFF $($ by $\operatorname{Fml}(X, Y, I)=\operatorname{Fml}(\operatorname{Int}(X, Y, I))) \operatorname{Fml}(\operatorname{Int}(X, Y, I)) \subseteq$ Fml $(\operatorname{Mod}(T))$ IFF (by prop. of Gal. conn.) $\operatorname{ModFml}(\operatorname{Int}(X, Y, I)) \supseteq \operatorname{Mod}(F m l(M c$ $\operatorname{Mod}(T) \operatorname{IFF}($ by Claim) $\operatorname{Mod}(T) \subseteq \operatorname{Int}(X, Y, I)$.

Corollary T is complete w.r.t. $\langle X, Y, I\rangle \operatorname{IFF} \operatorname{Mod}(T)=\operatorname{Int}(X, Y, I)$.

Rules of entailment

Some rules of entailment (deduction):
$A \Rightarrow A$ is always true,
if $A \Rightarrow B$ and $B \Rightarrow C$ are true then $A \Rightarrow C$ is true (transitivity),
if $A \Rightarrow B$ is true and $B^{\prime} \subseteq B$ then $A \Rightarrow B^{\prime}$ is true (projectivity),
...

Is there a small set of simple rules for obtaining all consequences of a set T of attribute implications?

A consequence of theorem from relational databases (caution!, different notions, the same concept of entailment, Maier D.: The Theory of Relational Databases, Computer Science Press, 1983):

Thm. T is closed iff for each $A, B, C, D \subseteq Y$ we have

1. $A \Rightarrow A \in T$;
2. if $A \Rightarrow B \in T$ then $A \cup C \Rightarrow B \in T$;
3. if $A \Rightarrow B \in T$ and $B \cup C \Rightarrow D \in T$ then $A \cup C \Rightarrow D \in T$.

Proof (direct) " \Rightarrow " easy.
$" \Leftarrow$ ": Denote X^{+}the largest X such that $X \Rightarrow X^{+} \in T$ (this is correct: from $X \Rightarrow Y, X \Rightarrow Z \in T$ we get $X \Rightarrow Y \cup Z \in T$, SHOW using 1.-3.) Assume 1.-3. Let $T \vdash A \Rightarrow B$ mean that $A \Rightarrow B$ can be obtained from T using rules encoded in 1.-3. It is sufficient to show that if $T \models A \Rightarrow B$ then $T \vdash A \Rightarrow B$ (since then $A \Rightarrow B \in T$). By contradiction, assume $T \nvdash A \Rightarrow B$. We need $T \nLeftarrow A \Rightarrow B$, i.e. we need a set which is a model of T but not of $A \Rightarrow B$. We show that A^{+}is such a set.
First, $A^{+} \not \models A \Rightarrow B$: Clearly, $A \subseteq A^{+}$. We cannot have $B \subseteq A^{+}$since then from $A \Rightarrow A^{+} \in T$ we get (using 1.-3.) $A \Rightarrow B \in T$, a contradiction to $T \nvdash A \Rightarrow B$.
Second, we show that for each $C \Rightarrow D \in T, A^{+} \vDash C \Rightarrow D$: Suppose $C \subseteq A^{+}$. We get $A^{+} \Rightarrow C \in T$ (using $A^{+} \Rightarrow A^{+}$and projectivity which follows from 1.3.). So we have $A \Rightarrow A^{+}, A^{+} \Rightarrow C, C \Rightarrow D \in T$ and transitivity (follows from 1.-3.) gives $A \Rightarrow D \in T$, i.e. $D \subseteq A^{+}$.

Note (exercise): verify that using 1.-3. we have: projectivity: $A \Rightarrow B \in T, C \subseteq B$ imply $A \Rightarrow C \in T$ transitivity: $A \Rightarrow B, B \Rightarrow C \in T$ imply $A \Rightarrow C \in T$

Pseudointents and Guigues-Duquenne base

Guigues J.-L., Duquenne V.: Familles minimales d'implications informatives resultant d'un tableau de donnes binaires. Math. Sci. Humaines 95(1986), 5-18.

Recall:

(1) A closure system is a sytem closed under arbitrary intersections.
(2) Closure systems vs. closure operators:

A closure system on a set X is a nonempty system $\mathcal{S} \subseteq 2^{X}$ which is closed under arbitrary intersections and contains X.

This means: the intersection of any members of \mathcal{S} belongs to \mathcal{S} (for any system $\left.\left\{A_{j} \mid j \in J\right\} \subseteq \mathcal{S}, \cap_{j} A_{j} \in \mathcal{S}\right)$; and $X \in \mathcal{S}$.

There is a one-to-one relationship between closure systems on X and closure operators on X. Given a closure operator C on $X, \mathcal{S}_{C}=\left\{A \in 2^{X} \mid A=\right.$ $C(A)\}=\mathrm{fix}(C)$ is a closure system. Given a closure system on X, putting

$$
C_{\mathcal{S}}(A)=\bigcap\{B \in \mathcal{S} \mid A \subseteq B\}
$$

for any $A \in 2^{X}, C_{\mathcal{S}}$ is a closure operator on X. This is a one-to-one relationship, i.e. $C=C_{\mathcal{S}_{C}}$ and $\mathcal{S}=\mathcal{S}_{C_{\mathcal{S}}}$.

Lemma For a set T of attribute implications, $\operatorname{Mod}(T)=\{A \subseteq Y \mid A \models T\}$ is a closure system.

Proof (1) $\operatorname{Mod}(T) \neq \emptyset$ since $Y \in \operatorname{Mod}(T)$.
(2) Let $C_{j} \in \operatorname{Mod}(T)(j \in J)$. For any $A \Rightarrow B \in T$, if $A \subseteq \cap_{j} C_{j}$ then for each $j \in J: A \subseteq C_{j}$, and so $B \subseteq C_{j}$ (since $C_{j} \in \operatorname{Mod}(T)$, thus in particular $C_{j} \vDash A \Rightarrow B$), from which we have $B \subseteq \cap_{j} C_{j}$.

We showed that $\operatorname{Mod}(T)$ is nonempty and is closed under intersections, i.e. $\operatorname{Mod}(T)$ is a closure system.

Def. Pseudointent of (X, Y, I) is a subset $A \subseteq Y$ for which $A \neq A^{\downarrow \uparrow}$ and $B^{\downarrow \uparrow} \subseteq A$ for each pseudointent $B \subset A$.

Thm. (Guigues-Duquenne basis, stem basis)

The set $T=\left\{A \Rightarrow A^{\downarrow \uparrow} \mid A\right.$ is a pseudointent of $\left.(X, Y, I)\right\}$ of implications is a basis.

Proof We show that T is complete and non-redundant.
Complete: It suffices to show that $\operatorname{Mod}(T) \subseteq \operatorname{Int}(X, Y, I)$. Let $C \in \operatorname{Mod}(T)$. Assume $C \neq C^{\downarrow \uparrow}$. Then C is a pseudointent (indeed, if $P \subset C$ is a pseudointent then since $\left\|P \Rightarrow P^{\downarrow \uparrow}\right\|_{C}=1$, we get $P^{\downarrow \uparrow} \subseteq C$). But then $C \Rightarrow C^{\downarrow \uparrow} \in T$ and so $\left\|C \Rightarrow C^{\downarrow \uparrow}\right\|_{C}=1$. But the last fact means that if $C \subseteq C$ (which is true) then $C^{\downarrow \uparrow} \subseteq C$ which would give $C^{\downarrow \uparrow}=C$, a contradiction with the assumption $C^{\downarrow \uparrow} \neq C$. Therefore, $C^{\downarrow \uparrow}=C$, i.e. $C \in \operatorname{Int}(X, Y, I)$.
Non-redundant: Take any $P \Rightarrow P^{\downarrow \uparrow}$. We show that $T-\left\{P \Rightarrow P^{\downarrow \uparrow}\right\} \not \vDash P \Rightarrow P^{\downarrow \uparrow}$. Since $\left\|P \Rightarrow P^{\downarrow \uparrow}\right\|_{P}=0$ (obvious, check), it suffices to show that $\| T-$ $\left\{P \Rightarrow P^{\downarrow \uparrow}\right\} \|_{P}=1$. That is, we need to show that for each $Q \Rightarrow Q^{\downarrow \uparrow} \in$ $T-\left\{P \Rightarrow P^{\downarrow \uparrow}\right\}$ we have $\left\|Q \Rightarrow Q^{\downarrow \uparrow}\right\|_{P}=1$, i.e. that if $Q \subseteq P$ then $Q^{\downarrow \uparrow} \subseteq P$. But this follows from the definition of a pseudointent (applt to P).

Lemma If P, Q are intents or pseudointents and $P \nsubseteq Q, Q \nsubseteq P$, then $P \cap Q$ is an intent.

Proof Let $T=\left\{R \Rightarrow R^{\downarrow \uparrow} \mid R\right.$ a pseudointent $\}$ be the G.-D. basis. Since T is complete, it is sufficient to show that $P \cap Q \in \operatorname{Mod}(T)$ (since then, $P \cap Q$ is a model of any implication which is true in $\langle X, Y, I\rangle$, and so $P \cap Q$ is an intent).

Obviously, P, Q are models of $T-\left\{P \Rightarrow P^{\downarrow \uparrow}, Q \Rightarrow Q^{\downarrow \uparrow}\right\}$, whence $P \cap Q$ is a model of $T-\left\{P \Rightarrow P^{\downarrow \uparrow}, Q \Rightarrow Q^{\downarrow \uparrow}\right\}$ (since the set of models is a closure system, i.e. closed under intersections).

Therefore, to show that $P \cap Q$ is a model of T, it is sufficient to show that $P \cap Q$ is a model of $\left\{P \Rightarrow P^{\downarrow \uparrow}, Q \Rightarrow Q^{\downarrow \uparrow}\right\}$. Due to symmetry, we only verify that $P \cap Q$ is a model of $\left\{P \Rightarrow P^{\downarrow \uparrow}\right.$: But this is trivial: since $P \nsubseteq Q$, the condition "if $P \subseteq P \cap Q$ implies $P^{\downarrow \uparrow} \subseteq P \cap Q$ " is satisfied for free. The proof is complete.

Lemma If T is complete, then for each pseudointent P, T contains $A \Rightarrow B$ with $A^{\downarrow \uparrow}=P^{\downarrow \uparrow}$

Proof For pseudointent $P, P \neq P^{\downarrow \uparrow \text {, i.e. } P \text { is not an intent. Therefore, }}$ P cannot be a model of T (since models of a complete T are intents). Therefore, there is $A \Rightarrow B \in T$ such that $\|A \Rightarrow B\|_{P}=0$, i.e. $A \subseteq P$ but $B \nsubseteq P$. As $\|A \Rightarrow B\|_{\langle X, Y, I\rangle}=1$, we have $B \subseteq A^{\downarrow \uparrow}$ (Thm. on basic connections \ldots...). Therefore, $A^{\downarrow \uparrow} \nsubseteq P$ (otherwise $B \subseteq P$, a contradiction). Therefore, $A^{\downarrow \uparrow} \cap P$ is not an intent (). By the foregoing Lemma, $P \subseteq A^{\downarrow \downarrow}$ which gives $P^{\downarrow \uparrow} \subseteq A^{\downarrow \uparrow}$. On the other hand, $A \subseteq P$ gives $A^{\downarrow \uparrow} \subseteq P^{\downarrow \uparrow}$. Altogether, $A^{\downarrow \uparrow}=P^{\downarrow \uparrow}$, proving the claim.

Thm. (Guigues-Duquenne base is smalest)

If T is the Guigues-Duquenne base and T^{\prime} is complete then $|T| \leq\left|T^{\prime}\right|$.
Proof Direct corollary of the above Lemma.

Computing Guigues-Duquenne base

$\mathcal{P} \ldots$ set of all pseudointents of $\langle X, Y, I\rangle$
THE base: $\left\{A \Rightarrow A^{\downarrow \uparrow} \mid A \in \mathcal{P}\right\}$
Q: What do we need? A: Compute all pseudointents.

Lemma The set of all P which are intents or pseudointents is a closure system.

Q: How to compute the fixed points (closed sets)?
For $Z \subseteq Y, T$ a set of implications, put
$Z^{T}=Z \cup \bigcup\{B \mid A \Rightarrow B \in T, A \subset Z\}$
$Z^{T_{0}}=Z$
$Z^{T_{n}}=\left(Z^{T_{n-1}}\right)^{T} \quad(n \geq 1)$
define $C_{T}: 2^{Y} \rightarrow 2^{Y}$ by
$C_{T}(Z)=\bigcup_{n=0}^{\infty} Z^{T_{n}}$ (note: terminates, Y finite)

Thm. Let $T=\left\{A \Rightarrow A^{\downarrow \uparrow} \mid A \in \mathcal{P}\right\}$ (G.-D. base). Then
(1) C_{T} is a closure operator,
(2) P is a fixed point of C_{T} iff $P \in \mathcal{P}$ (pseudointent) or $P \in \operatorname{Int}(X, Y, I)$ (intent).

Proof (1) easy
(2) $\mathcal{P} \cup \operatorname{Int}(X, Y, I) \subseteq \operatorname{fix}\left(C_{T}\right)$ easy. $\mathrm{fix}\left(C_{T}\right) \subseteq \mathcal{P} \cup \operatorname{Int}(X, Y, I)$: It suffices to show that if $P \in \operatorname{fix}\left(C_{T}\right)$ is not an intent $\left(P \neq P^{\downarrow \uparrow}\right)$ then P is an pseudointent. So take $P \in \operatorname{fix}\left(C_{T}\right)$, i.e. $P=C_{T}(P)$, which is not an intent. Take any pseudointent $Q \subset P$. By definition (notice that $Q \Rightarrow Q^{\downarrow \uparrow} \in T$), $Q^{\downarrow \uparrow} \subseteq C_{T}(P)=$ P which means that P is a pseudointent. The proof is complete.

So: $\operatorname{fix}\left(C_{T}\right)=\mathcal{P} \cup \operatorname{Int}(X, Y, I)$
Intention: compute \mathcal{P} by computing fix $\left(C_{T}\right)$ and excluding $\operatorname{Int}(X, Y, I)$.
Computing fix $\left(C_{T}\right)$ by Ganter's next closure algorithm.
Caution! In order to compute C_{T}, we need T, i.e. we need \mathcal{P}, which we do not know in advance.

But we are not in circulus vitiosus: The part of T (or \mathcal{P}) which is needed is already available (computed).

Conceptual scaling

(na zkousce nebude pozadovano)
= way to deal with data tables with more general attributes (nominal, ordinal)
transformation (scaling) of general data table to a suitable formal context (only binary attributes)

For details see
B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations. Springer, 1999.

Selected applications

Software engineering

- G. Snelting: Reengineering of configurations based on mathematical concept analysis. ACM Trans. Software Eng. Method. 5(2):146-189, April 1996.
- G. Snelting, F. Tip: Understanding class hierarchies using concept analysis. ACM Trans. Program. Lang. Syst. 22(3):540-582, May 2000.
- U. Dekel, Y. Gill. Visualizing class interfaces with formal concept analysis. In ACM OOPSLA'03 Conference, pages 288-289, Anaheim, CA, October 2003.
- G. Ammons, D. Mandelin, R. Bodik, J. R. Larus. Debugging temporal specifications with concept analysis. In Proc. ACM SIGPLAN'03 Conference on Programming Language Design and Implementation, pages 182-195, San Diego, CA, June 2003.
- C. Carpineto, R. Romano: A lattice conceptual clustering system and its application to browsing retrieval. Machine Learning 24:95-122, 1996.
- Snášel et al.: Navigation through query result.

Analysis of texts (medical records, e-mails)

- R. Cole, P. Eklund: Scalability in formal context analysis: a case study using medical texts. Computational Intelligence 15:11-27, 1999.
- R. Cole: Analyzing e-mail collections using formal concept analysis (preprint).

Software support

- Toscana, Anaconda, ...
- SW developed jointly by Dept. Comp. Sci., Palacký University, Olomouc and Dept. Comp. Sci., Technical University of Ostrava (public, to be released)

FCA of data with fuzzy attributes $=$ fuzzy concept lattices

Motivation

- Fuzzy attributes ... expensive, small, etc.
- Concepts are fuzzy

Fuzzy sets and fuzzy logic

- scale of truth degrees (e.g. $[0,1]$)
- Iogic: Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, 1998.
- relational systems: Bělohlávek R.: Fuzzy Relational Systems: Foundations and Principles. Kluwer, 2002.

Pursued by Burusco, Fuentes-Gonzales, Pollandt, Bělohlávek et al., ...

Basics from fuzzy logic

- structure of truth degrees: complete residuated lattice $\mathbf{L}=\langle L, \vee, \wedge, \otimes, \rightarrow, 0,1\rangle$, where $\langle L, \vee, \wedge, 0,1\rangle \ldots$ complete lattice, $\langle L, \otimes, 1\rangle \ldots$ commutative monoid, $\langle\otimes, \rightarrow\rangle \ldots$ adjoint pair (i.e. $x \leq y \rightarrow z$ iff $x \otimes y \leq z$)
e.g. L is a finite subchain of $[0,1], \otimes \ldots$ left-continuous t-norm, (Gödel, Łukasiewicz) and

$$
x \rightarrow y=\bigvee_{z \in L}\{z \mid x \otimes z \leq y\}
$$

- example 1 (Łukasiewicz): $a \otimes b=\max (0, a+b-1)+\rightarrow$
- example 2 (G"odel): $a \otimes b=\min (a, b)+\rightarrow$
- fuzzy set (L-set) A in $X \ldots A: X \rightarrow L$
$A(x)$... the truth degree of " x belongs to A "
fuzzy relation I between X and $Y: \ldots I: X \times Y \rightarrow L$ $I(x, y) \ldots$ the truth degree of " x is in relation to y "
- $\mathrm{A} \subseteq \mathrm{B}$ if $A(x) \leq B(x)$ for each $x \in X$ more generally: graded subsethood between L-sets

$$
S(A, B)=\bigwedge_{x \in x} A(x) \rightarrow B(x)
$$

Formal fuzzy context $=$ input data

Def. Formal fuzzy context is a triplet (X, Y, I) where
X ...set of objects
Y... set of attributes
$I: X \times Y \rightarrow L$ binary fuzzy relation.
Interpretation: $I(x, y) \ldots$ degree to which object x has attribute y
formal fuzzy context \approx data table

I	y_{1}	y_{2}	y_{3}	y_{4}
x_{1}	1	1	0	0.5
x_{2}	0.8	0.1	0	0.9
x_{3}	1	0.9	0.9	0
x_{4}	1	0.5	0.6	0.5
x_{5}	1	0	0	0.5

Formal fuzzy concept $=$ fuzzy cluster in data

Def. Induced operators \ldots mappings ${ }^{\uparrow}: L^{X} \rightarrow L^{Y}, \uparrow: L^{X} \rightarrow L^{Y}$ def. by:

$$
\begin{aligned}
& A^{\dagger}(y)=\wedge_{x \in X} A(x) \rightarrow I(x, y) \\
& B^{\downarrow}(x)=\wedge_{y \in Y} B(y) \rightarrow I(x, y)
\end{aligned}
$$

$A^{\uparrow} \ldots$ fuzzy set of attributes common to all objects from A
$B^{\downarrow} \ldots$ fuzzy set objects sharing all attributes from A

Def. Formal fuzzy concept in $(X, Y, I) \ldots(A, B), A \in L^{X}, B \in L^{Y}$, s.t.

$$
A^{\uparrow}=B \text { and } B^{\downarrow}=A .
$$

A ... extent ... objects covered by formal concept
B ... intent ... attributes covered by formal concept

- (fuzzy) concept lattice given by $\langle X, Y, I\rangle$

$$
\mathcal{B}(X, Y, I)=\left\{\langle A, B\rangle \mid A^{\uparrow}=B, B^{\downarrow}=A\right\}
$$

- subconcept-superconcept hierarchy \leq in $\mathcal{B}(X, Y, I)$

$$
\left\langle A_{1}, B_{1}\right\rangle \leq\left\langle A_{1}, B_{1}\right\rangle \text { iff } A_{1} \subseteq A_{2}\left(\text { iff } B_{1} \supseteq B_{2}\right)
$$

Further info:
Chapter 5 of R.B.: Fuzzy Relational Systems. Kluwer, New York, 2002.

Main theorem of fuzzy concept lattices

Several issues from bivalent case can be carried over to fuzzy setting. Examples: algorithms, the main theorem:

Theorem (1) $\mathcal{B}(X, Y, I)$ is a completely lattice-type fuzzy ordered set with infima and suprema given by

$$
\bigwedge_{j \in J}\left\langle A_{j}, B_{j}\right\rangle=\left\langle\bigcap_{j \in J} A_{j},\left(\bigcup_{j \in J} B_{j}\right)^{\downarrow \uparrow}\right\rangle, \bigvee_{j \in J}\left\langle A_{j}, B_{j}\right\rangle=\left\langle\left(\bigcup_{j \in J} A_{j}\right)^{\uparrow \downarrow}, \bigcap_{j \in J} B_{j}\right\rangle
$$

(2) Moreover, an arbitrary completely lattice-type fuzzy ordered set $\mathrm{V}=$ (V, \preceq) is isomorphic to $\mathcal{B}(X, Y, I)$ iff there are mappings $\gamma: X \times L \rightarrow V$, $\mu: Y \times L \rightarrow V$ such that
(i) $\gamma(X \times L)$ is \bigvee-dense in $\vee, \mu(Y \times L)$ is Λ-dense in \vee;
(ii) $(\gamma(x, a) \leq \mu(y, b))=(a \otimes b) \rightarrow I(x, y)$.

Non-standard issues

(ke zkousce jen prehledove)
In fuzzy setting, there arise new phenomena which are degenerate in bivalent setting. As an example, we present fatorization by similarity.

Similarity relation

Degree of similarity \approx of $\left\langle A_{1}, B_{1}\right\rangle$ and $\left\langle A_{2}, B_{2}\right\rangle$ on $\mathcal{B}(X, Y, I)$

$$
\left\langle A_{1}, B_{1}\right\rangle \approx\left\langle A_{2}, B_{2}\right\rangle=\bigwedge_{x \in X} A_{1}(x) \leftrightarrow A_{2}(x)\left(=\bigwedge_{y \in Y} B_{1}(y) \leftrightarrow B_{2}(y)\right)
$$

Given a truth degree $a \in L$ (a threshold specified by a user), the thresholded relation (a-cut) ${ }^{a} \approx$ on $\mathcal{B}(X, Y, I)$ defined by

$$
\left(\left\langle A_{1}, B_{1}\right\rangle,\left\langle A_{2}, B_{2}\right\rangle\right) \in^{a} \approx \operatorname{iff}\left(\left\langle A_{1}, B_{1}\right\rangle \approx\left\langle A_{2}, B_{2}\right\rangle\right) \geq a
$$

denotes "being similar in degree at least a".
${ }^{a} \approx$ is reflexive and symmetric, but need not be transitive.
A subset B of $\mathcal{B}(X, Y, I)$ is a ${ }^{\mathrm{a}} \approx-\mathrm{block}$ if it is a maximal subset of $\mathcal{B}(X, Y, I)$ such that each two concepts from B are similar in degree at least a.
$\mathcal{B}(\mathbf{X}, \mathbf{Y}, \mathbb{I}) /^{\mathrm{a}} \approx \ldots$ the collection of all ${ }^{a} \approx$-blocks.

Factorization by similarity

Put

$$
\begin{aligned}
& \langle A, B\rangle_{a}:=\bigwedge\left\{\left\langle A^{\prime}, B^{\prime}\right\rangle \mid\left(\langle A, B\rangle,\left\langle A^{\prime}, B^{\prime}\right\rangle\right) \in{ }^{a} \approx\right\} \\
& \langle A, B\rangle^{a}:=\bigvee\left\{\left\langle A^{\prime}, B^{\prime}\right\rangle \mid\left(\langle A, B\rangle,\left\langle A^{\prime}, B^{\prime}\right\rangle\right) \in{ }^{a} \approx\right\} .
\end{aligned}
$$

Lemma ${ }^{a} \approx$-blocks are exactly intervals of $\mathcal{B}(X, Y, I)$ of the form $\left[\langle A, B\rangle_{a},\left(\langle A, B\rangle_{a}\right)^{a}\right]$, i.e.

$$
\mathcal{B}(X, Y, I) /^{a} \approx=\left\{\left[\langle A, B\rangle_{a},\left(\langle A, B\rangle_{a}\right)^{a}\right] \mid\langle A, B\rangle \in \mathcal{B}(X, Y, I)\right\} .
$$

Define a partial order \preceq on blocks of $\mathcal{B}(X, Y, I) /{ }^{a} \approx$ by $\left[c_{1}, c_{2}\right] \preceq\left[d_{1}, d_{2}\right]$ iff $c_{1} \leq d_{1}$ (iff $c_{2} \leq d_{2}$), where $\left[c_{1}, c_{2}\right],\left[d_{1}, d_{2}\right] \in \mathcal{B}(X, Y, I) /{ }^{a} \approx$.
Theorem $\mathcal{B}(X, Y, I) /{ }^{a} \approx$ equipped with \preceq is a partially ordered set which is a complete lattice, the so-called factor lattice of $\mathcal{B}(X, Y, I)$ by similarity \approx and a threshold a.

Elements of $\mathcal{B}(X, Y, I) /{ }^{a} \approx$ can be seen as similarity-based granules of formal concepts/clusters from $\mathcal{B}(X, Y, I)$.

Factorization by similarity: example

TOO LARGE!

Can we have cluters of 0.5 -similar formal concepts instead?

Factorization by similarity: example

Factor lattice $\mathcal{B}(X, Y, I) /{ }^{a} \approx$

Factorization directly from input data

Problem: Computation of $\mathcal{B}(X, Y, I) /^{a} \approx$ by definition is time demanding, can it be computed directly from input data?

Solution: It will turn out that our algorithm has a polynomial time delay and is much faster.

Some definitions: $(a \rightarrow C)(x)=a \rightarrow C(x) \quad(a \otimes C)(x)=a \otimes C(x)$
Lemma If A is an extent then so is $a \rightarrow A$, similarly for intents.
FIRST, $\langle A, B\rangle_{a}$ and $\langle A, B\rangle^{a}$ can be computed directly from $\langle A, B\rangle$:
Lemma For $\langle A, B\rangle \in \mathcal{B}(X, Y, I)$, we have
(a) $\langle A, B\rangle_{a}=\left\langle(a \otimes A)^{\uparrow \downarrow}, a \rightarrow B\right\rangle$
(b) $\langle A, B\rangle^{a}=\left\langle(a \rightarrow A),(a \otimes B)^{\downarrow \uparrow}\right\rangle$.

Thus we have $\left(\langle A, B\rangle_{a}\right)^{a}=\left\langle a \rightarrow(a \otimes A)^{\uparrow \downarrow},(a \otimes(a \rightarrow B))^{\downarrow \uparrow\rangle}\right.$.
Lemma For $\langle A, B\rangle \in \mathcal{B}(X, Y, I)$ we have $\langle A, B\rangle_{a}=\left(\left(\langle A, B\rangle_{a}\right)^{a}\right)_{a}$.
SECOND, by Lemma ?? ${ }^{a} \approx-b l o c k s\left[c_{1}, c_{2}\right]$ are uniquely given by their suprema c_{2}, moreover, by extents of suprema, since each formal concept is uniquely given by its extent.

Factorization directly from input data: main result

Denote the set of all extents of suprema of ${ }^{a} \approx-$ blocks by $\operatorname{ESB}(a)$, i.e.

$$
\operatorname{ESB}(a)=\left\{A \in L^{X}\left|\langle A, B\rangle \in \mathcal{B}(X, Y, I),\left[\langle A, B\rangle_{a},\langle A, B\rangle\right] \in \mathcal{B}(X, Y, I)\right|^{a} \approx\right\}
$$

Recall:
C is called a fuzzy closure operator in X if $A \subseteq C(A), S\left(A_{1}, A_{2}\right) \leq S\left(C\left(A_{1}\right), C\left(A_{2}\right.\right.$ and $C(A)=C(C(A))$, for any $A, A_{1}, A_{2} \in L^{X}$.
Fixed point of $C: L^{X} \rightarrow L^{X}$: fuzzy set A such that $A=C(A)$.
$\operatorname{fix}(\mathrm{C})=\left\{A \in L^{X} \mid A=C(A)\right\} \ldots$ set of all fixed points of C.

Theorem Given input data $\langle X, Y, I\rangle$ and a threshold $a \in L$, a mapping

$$
\mathbf{C}_{\mathbf{a}}: \mathbf{A} \mapsto \mathbf{a} \rightarrow(\mathbf{a} \otimes \mathbf{A})^{\uparrow \downarrow}
$$

is a fuzzy closure operator in X for which $\operatorname{fix}\left(\mathbf{C}_{\mathbf{a}}\right)=\operatorname{ESB}(\mathbf{a})$.
Problem: How to generate fix $\left(C_{a}\right)=\operatorname{ESB}(a)$?
Solution: fuzzy adaptation of Ganter's algorithm (R.B., 2002) for generating all formal concepts of a given fuzzy context, which is in fact an algorithm for generating the set of all fixed points of a fuzzy closure operator.

Factorization directly from input data: algorithm

Suppose $X=\{1,2, \ldots, n\}$ and $L=\left\{0=a_{1}<a_{2}<\cdots<a_{k}=1\right\}$.
Put $(i, j) \leq(r, s)$ iff $i<r$ or $i=r, a_{j} \geq a_{s}$, for $i, r \in\{1, \ldots, n\}, j, s \in\{1, \ldots, k\}$.
In the following, we will freely refer to a_{i} just by i, i.e. we denote $\left(i, a_{j}\right) \in X \times L$ also simply by (i, j).

Put

$$
\begin{gathered}
\mathbf{A} \oplus(\mathbf{i}, \mathbf{j}):=C_{a}\left((A \cap\{1,2, \ldots, i-1\}) \cup\left\{a_{j / i}\right\}\right) \\
\text { and }
\end{gathered}
$$

$$
\mathbf{A}<_{(\mathrm{i}, \mathrm{j})} \mathbf{C} \text { iff } A \cap\{1, \ldots, i-1\}=C \cap\{1, \ldots, i-1\} \text { and } A(i)<C(i)=a_{j} .
$$

Finally, A $<\mathbf{C}$ iff $A<_{(i, j)} C$ for some (i, j).
Lemma The least fixed point A^{+}which is greater (w.r.t. $<$) than a given $A \in L^{X}$ is given by $A^{+}=A \oplus(i, j)$ where (i, j) is the greatest one with $A<{ }_{(i, j)} A \oplus(i, j)$.

Factorization directly from input data: algorithm

The algorithm for generating ${ }^{a} \approx-$ blocks:

```
INPUT: }\langleX,Y,I\rangle\mathrm{ (data table with fuzzy attributes),
    a\inL (similarity threshold)
OUTPUT: }\mathcal{B}(X,Y,I)/\mp@subsup{}{}{a}\approx(\mp@subsup{}{}{a}\approx-\mathrm{ blocks [ cc, c
\[
\begin{aligned}
& A:=\emptyset \\
& \text { while } A \neq X \text { do } \\
& \quad A:=A^{+} \\
& \quad \text { store }\left(\left[\left\langle(\mathrm{a} \otimes \mathbf{A})^{\uparrow \downarrow}, \mathrm{a} \rightarrow \mathrm{~A}^{\uparrow}\right\rangle,\left\langle\mathrm{A}, \mathrm{~A}^{\uparrow}\right\rangle\right]\right)
\end{aligned}
\]
```


Polynomial time delay complexity

Ganter's algorithm, generating fix $\left(C_{a}\right)$, has polynomial time delay complexity (in terms of size of the input $\langle X, Y, I\rangle$).

Since generating a ${ }^{a} \approx-$ block $\left[\left\langle(a \otimes A)^{\uparrow \downarrow}, a \rightarrow A^{\uparrow}\right\rangle,\left\langle A, A^{\uparrow}\right\rangle\right]$ from A takes a polynomial time, our algorithm is of polynomial time delay complexity as well.

Experiments

Łukasiewicz fuzzy logical connectives, $|\mathcal{B}(X, Y, I)|=774$, time for computing $\mathcal{B}(X, Y, I)=2292 \mathrm{~ms}$

	0.2	0.4	0.6	0.8
size $\left\|\mathcal{B}(X, Y, I) /{ }^{a} \approx\right\|$	8	57	193	423
naive algorithm (ms)	8995	9463	8573	9646
our algorithm (ms)	23	214	383	1517
reduction $\left\|\mathcal{B}(X, Y, I) /{ }^{a} \approx\right\| /\|\mathcal{B}(X, Y, I)\|$	0.010	0.073	0.249	0.546
time reduction	0.002	0.022	0.044	0.157

Reduction $\left|\mathcal{B}(X, Y, I) /{ }^{a} \approx\right| /|\mathcal{B}(X, Y, I)|$ and time reduction from Tab.

ASSOCIATION RULES

Association rules

- association rules $=$ attribute implications + criteria of interestingness (support, confidence)
- introduced in 1993 (Agrawal R., Imielinski T., Swami A. N.: Mining association rules between sets of items in large databases. Proc. ACM Int. Conf. of management of data, pp. 207-216, 1993)
- but see GUHA method (in fact, association rules with statistics):
- developed at 1960s by P. Hájek et al. (Academy of Sciences, Czech)
- GUHA book available at http://www.cs.cas.cz/ hajek/guhabook/: Hájek P., Havránek T.: Mechanizing Hypothesis Formation. Mathematical Foundations for General Theory. Springer, 1978.
- one of main techniques in data mining
- good book: Adamo J.-M.: Data Mining for Association Rules and Sequential Patterns. Sequential and Parallel Algorithms. Springer, New York, 2001.
- good overview: Dunham M. H.: Data Mining. Introductory and Advanced Topics. Prentice Hall, Upper Saddle River, NJ, 2003.

Basic concepts

Association rule (over set Y of attributes) is an expression $A \Rightarrow B$ where $A, B \subseteq Y$ (sometimes we assume $A \cap B=\emptyset$).

Note: Association rules are just attribute implications in sense of FCA.
Data for mining (terminology in DM community): a set Y of items, a database D of transactions, $D=\left\{t_{1}, \ldots, t_{n}\right\}$ where $t_{i} \subseteq Y$.

Note: one-to-one correspondence between databases D (over Y) and formal contexts (with attributes from Y): Given D, the corresponding $\langle X, Y, I\rangle_{D}$ is given by

$$
\langle X, Y, I\rangle_{D} \ldots X=D, \quad\left\langle t_{1}, y\right\rangle \in I \Leftrightarrow y \in t_{1}
$$

given $\langle X, Y, I\rangle$, the corresponding $D_{\langle X, Y, I\rangle}$ is given by

$$
D_{\langle X, Y, I\rangle}=\left\{\{x\}^{\uparrow} \mid x \in X\right\}
$$

(we will use both ways)

Why items and transactions?

original motivation:
item $=$ product in a store
transaction $=$ cash register transaction (set of items purchased)
association rule $=$ says: when all items from A abre purchased then also all items from B are purchased

Example transactions $X=\left\{x_{1}, \ldots, x_{5}\right\}$, items $Y=\{b e, b r, j e, m i, p b\}$ (beer, bread, jelly, milk, peanut butter)

I	be	br	je	mi	pb
x_{1}		\times	\times		\times
x_{2}		\times			\times
x_{3}		\times		\times	\times
x_{4}	\times	\times			
x_{5}	\times			\times	

For instance: a customer relaizing transaction x_{3} bought bread, milk, and peanut butter.

Support and confidence

Def. Support of $A \Rightarrow B$ denoted by $\operatorname{supp}(A \Rightarrow B)$ and defined by

$$
\operatorname{supp}(A \Rightarrow B)=\frac{\mid\{x \in X \mid \text { for each } y \in A \cup B:\langle x, y\rangle \in I\} \mid}{|X|}
$$

i.e. $\operatorname{supp}(A \Rightarrow B) \cdot 100 \%$ of transactions contain $A \cup B$ (percentage of transactions where customers bought items from $A \cup B$).

Note that (in terms of FCA)

$$
\operatorname{supp}(A \Rightarrow B)=\frac{\left|(A \cup B)^{\downarrow}\right|}{|X|}
$$

Def. Confidence of $A \Rightarrow B$ denoted by $\operatorname{conf}(A \Rightarrow B)$ and defined by

$$
\operatorname{conf}(A \Rightarrow B)=\frac{\mid\{x \in X \mid \text { for each } y \in A \cup B:\langle x, y\rangle \in I\} \mid}{\mid\{x \in X \mid \text { for each } y \in A:\langle x, y\rangle \in I\} \mid}
$$

i.e. $\operatorname{conf}(A \Rightarrow B) \cdot 100 \%$ of transactions containing all items from A contain also all items from B (percentage of customers which by also (all from) B if they buy (all from) A.
Note that (in terms of FCA)

$$
\operatorname{conf}(A \Rightarrow B)=\frac{\left|(A \cup B)^{\downarrow}\right|}{A \downarrow}
$$

We use both "support (confidence) is 0.3 " and "support (confidence) is 30\%".

Lemma $\operatorname{supp}(A \Rightarrow B) \leq \operatorname{conf}(A \Rightarrow B)$.
Lemma $\operatorname{conf}(A \Rightarrow B)=1$ iff $\|A \Rightarrow B\|_{\langle X, Y, I\rangle}=1$. That is, attribute implications which are true in $\langle X, Y, I\rangle$ are those which are fully confident.

More generally: for $B \subseteq Y$, put

$$
\operatorname{supp}(B)=\frac{\left|(A \cup B)^{\downarrow}\right|}{|X|}
$$

Example

What are association rules good for

main usage $=$ marketing
usually, rules with large confidence (reliable) and smaller support are looked for
see also applications part (REFERATY)

Association rules problem

For prescribed values s and c, list all association rules with $\operatorname{supp}(A \Rightarrow B) \geq$ s and $\operatorname{conf}(A \Rightarrow B) \geq c$. (interesting rules)
most common technique: via frequent itemsets

1. find all frequent itemsets (see later)
2. generate rules from frequent itemsets

Def. For given s, an itemset (set of attributes) $B \subseteq Y$ is called frequent (large) itemset if $\operatorname{supp}(B) \geq s$.

Example For $s=0.3$ (30\%),

$$
L=\{\{b e\},\{b r\},\{m i\},\{p b\},\{b r, p b\},\}
$$

How to generate interesting rules from large itemsets?

```
input
    <X,Y,I>, L (set of all frequent itemsets), s (support), c
(confidence)
output
    R (set of all asociation rules satisfying s and c)
algorithm (ARGen)
R:=0; //empty set
for each l in L do
    for each nonempty proper subset k of l do
        if supp(l)/supp(k) >= c then
        add rule k=>(l-k) to R
```

Observe: $\operatorname{supp}(l) / \operatorname{supp}(k)=\operatorname{conf}(k \Rightarrow l-k)$

Example (previous cntd.) consider $c=0.8$, take $l=\{b r, p b\}$; there are two nonempty subsets k of $l: k=\{b r\}$ and $k=\{p b\}$ then $b r \Rightarrow p b$ IS NOT interesting since

$$
\operatorname{supp}(\{b r, p b\}) / \operatorname{supp}(\{b r\})=0.6 / 0.8=0.75 \nsupseteq c
$$

while $p b \Rightarrow b r$ IS interesting since

$$
\operatorname{supp}(\{p b, b r\}) / \operatorname{supp}(\{p b\})=0.6 / 0.6=1.0 \geq c
$$

(efficient implementation later)

How to generate frequent itemsets (Apriori algorithm)

Lemma Any subset of a frequent itemset is frequent. If an itemset is not frequent then no of its supersets is frequent.
Proof Obvious.
basic idea of apriori algorithm: L_{i}. . set of all frequent itemsets of size i (i.e. with i items), $C_{i} \ldots$ set of all itemsets of size i which are candidates for being frequent

1. in step i, C_{i} from L_{i-1} (if $i=1$, put $C_{1}=\{\{y\} \mid y \in Y\}$);
2. scanning $\langle X, Y, I\rangle$, generate L_{i}, the set of all those candidates from C_{i} which are frequent

How to get candidates C_{i} from frequent items L_{i-1} ?

1. what means "a candidate": an itemset $B \subseteq Y$ is considered a candidate (for being frequent) if all of its subsets are frequent (in accordance with above Lemma)
2. getting C_{i} from L_{i-1} : find all $B_{1}, B_{2} \in L_{i-1}$ such that $\left|B_{1}-B_{2}\right|=1$ and $\left|B_{2}-B_{1}\right|=1$ (i.e. $\left|B_{1} \cap B_{2}\right|=i-2$), and add $B_{1} \cup B_{2}$ to C_{i}

Lemma If L_{i-1} is the set of all frequent itemsets of size $i-1$ then B is a candidate (i.e., all subsets of B are frequent) of size i iff $B=B_{1} \cup B_{2}$ where $B_{1}, B_{2} \in L_{i-1}$ are such that $\left|B_{1}-B_{2}\right|=1$ and $\left|B_{2}-B_{1}\right|=1$. Moreover, $\left|B_{1}-B_{2}\right|=1$ and $\left|B_{2}-B_{1}\right|=1$ iff $\left|B_{1} \cap B_{2}\right|=i-2$.

Example (previous cntd.) consider $s=0.3, c=0.5$
step 1:

$$
\begin{aligned}
& C_{1}=\{\{b r\},\{b r\},\{j e\},\{m i\},\{p b\}\} \\
& L_{1}=\{\{b r\},\{b r\},\{m i\},\{p b\}\}
\end{aligned}
$$

step 2:
$C_{2}=\{\{b e, b r\},\{b e, m i\},\{b e, p b\},\{b r, m i\},\{b r, p b\},\{m i, p b\}\}$
$L_{2}=\{\{b r, p b\}\}$
stop (not itemset of size 3 can be frequent)

Algorithms

```
input
    L(i-1) //all frequent itemsets of size i-1
output
    C(i) //candidates of size i
algorithm (Apriori-Gen)
C(i):=0; //empty set
for each B1 from L(i-1) do
    for each B2 from L(i-1) different from B1 do
    if intersection of B1 and B2 has just i-2 elements then
        add union of B1 and B2 to C(i)
```

down(B) means B^{\downarrow}

```
input
    <X,Y,I> //data table
    s //prescribed support
output
    L //set of all frequent itemsets
algorithm (Apriori)
k:=0; //scan (step) number
L:=0; //emptyset
C(0):={ {y} | y from Y}
repeat
    k:=k+1;
    L(k):=0;
    for each B from C(k) do
        if |down(B)| >= s x |X| do // B is frequent
        add B to L(k)
    add all B from L(k) to L;
    C(k+1):=Apriori-Gen(L(k))
until C(k+1)=0; \\empty set
```

ke zkousce z assoc. rules: to, co je na slajdech; dalsi veci (efektivni algoritmy, priklady) pristi semestr

