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INFO

This is a preliminary version of a text on formal concept analysis and related

methods.
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FORMAL CONCEPT ANALYSIS
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What is FCA?

– method of analysis of object-attribute data

– output 1: hierarchical structure of clusters (concept lattice)

– output 2: base of attribute implications

– existing software support

– documented applications

– nontrivial open problems (mathematical, algorithmic, methodological)
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Origins of FCA

G. Birkhoff: Lattice Theory. AMS Col. Publ. 25, 1940.

M. Barbut: Note sur l’algèbre des techniques d’analyse hiérarchique. In:

B. Matalon: L’analyse hiérarchique. Gauthier-Villars, Paris, 1965, pp. 125–

146.

M. Barbut, B. Monjardet: Ordre et Classification, Vol. 2. Hachette,

Paris, 1970.

R. Wille: Restructuring lattice theory: an approach based on hierarchies

of concepts. In: Rival I.: Ordered Sets. Reidel, 1982, 445–470.

state of art (almost): B. Ganter, R. Wille: Formal Concept Analysis:

Mathematical Foundations. Springer, 1999.
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What is a concept?

• psychology (approaches: classical, prototype, exemplar, knowledge)

• logic (TIL)

• artificial intelligence (frames, learning of concepts)

• conceptual graphs (Sowa)

• “conceptual modeling”

• . . .

• traditional/Port-Royal logic
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Traditional/Port-Royal approach to concepts

• concept := extent + intent

– extent = objects covered by concept

– intent = attributes covered by concept
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Traditional/Port-Royal approach to concepts

• concept := extent + intent

– extent = objects covered by concept

– intent = attributes covered by concept

• example: DOG

– extent of dog = collection of all dogs

– intent of dog = collection of all dogs’ attributes (barks, has four limbs,

has tail, . . . )
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Traditional/Port-Royal approach to concepts

• concept := extent + intent

– extent = objects covered by concept

– intent = attributes covered by concept

• example: DOG

– extent of dog = collection of all dogs

– intent of dog = collection of all dogs’ attributes (barks, has four limbs,

has tail, . . . )

• concept hierarchy

– subconcept/superconcept relation

– concept1=(extent1,intent1) ≤ concept2=(extent2,intent2)

⇔ extent1 ⊆ extent2 (⇔ intent1 ⊇ intent2)

– DOG ≤ MAMMAL ≤ ANIMAL
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Basic notions of FCA

• formal context (input data table)

• formal concept (cluster in data)

• concept lattice (hierarchical system of clusters)

• attribute implication (dependency in data)
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Formal context = input data

Def. Formal context is a triplet (X, Y, I) where

X . . . set of objects

Y . . . set of attributes

I ⊆ X × Y binary relation.

Interpretation: (x, y) ∈ I . . . object x has attribute y

formal context ≈ data table

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X
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Formal concept = cluster in data

Def. Induced operators . . . mappings ↑ : 2X → 2Y , ↓ : 2Y → 2X def. by:

A↑ = {y ∈ Y | for each x ∈ A : (x, y) ∈ I}

B↓ = {x ∈ X | for each y ∈ B : (x, y) ∈ I}

A↑ . . . attributes common to all objects from A

B↓ . . . objects sharing all attributes from B

Def. Formal concept in (X, Y, I) . . . (A, B), A ⊆ X, B ⊆ Y , s.t.

A↑ = B and B↓ = A.

A . . . extent . . . objects covered by formal concept

B . . . intent . . . attributes covered by formal concept
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Formal concepts as maximal rectangles

Thm. Formal concepts are exactly maximal rectangles in data table.

Example

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

formal concept (A, B) = ({x1, x2, x3, x4}, {y3, y4})
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Further formal concepts

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

(A1, B1) = ({x1, x3, x4}, {y2, y3, y4})

(A2, B2) = ({x1, x2}, {y1, y3, y4})

(A3, B3) = ({x1, x2, x5}, {y1})
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Concept lattice

Def. Subconcept-superconcept ordering ≤ of formal concepts is defined

by

(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 (iff B2 ⊆ B1).

Example DOG ≤ MAMMAL

Def. Concept lattice (Galois lattice) of (X, Y, I) is the set

B (X, Y, I) = {(A, B) | A↑ = B, B↓ = A}

equipped with ≤.

Rem. B (X, Y, I) . . . all concepts/clusters hidden in the data

Denote

Ext(X, Y, I) = {A ∈ 2X | 〈A, B〉 ∈ B (X, Y, I) for some B} (extents of concepts)

Int(X, Y, I) = {B ∈ 2Y | 〈A, B〉 ∈ B (X, Y, I) for some A} (intents of concepts)
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Alternative notation

≈ membership/characteristic function style

instead of A ⊆ U , consider corresponding CA ∈ 2U

that is: CA(u) =

 0 for u 6∈ A

1 for u ∈ A

we identify A with CA, i.e. we write A(u) = 0, A(u) = 1,

i.e. I(x, y) = 1 if 〈x, y〉 ∈ I

then

A↑(y) =
∧

x∈X A(x) → I(x, y)

B↓(x) =
∧

y∈Y B(y) → I(x, y)

where
∧

denotes min and → is bivalent implication connective
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Formal concepts as maximal rectangles

A rectangle in 〈X, Y, I〉 is a pair 〈A, B〉 such that for each x ∈ A and y ∈ B we

have 〈x, y〉 ∈ I (that is: the rectangle corresponding to A and B is filled with

1’s). For two rectangles 〈A1, B1〉 and 〈A2, B2〉 we put 〈A1, B1〉 v 〈A2, B2〉 iff

A1 ⊆ A2 and B1 ⊆ B2.

Theorem Formal fuzzy concepts are exactly maximal rectangles (w.r.t. v)

in 〈X, Y, I〉.

Proof (by a simple reflection, viz prednasky) 2
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Related mathematical structures

Def. A Galois connection between sets X and Y is a pair 〈f, g〉 of mappings

f : 2X → 2Y and g : 2Y → 2X satisfying for A, A1, A2 ⊆ X, B, B1, B2 ⊆ Y :

A1 ⊆ A2 ⇒ f(A2) ⊆ f(A1), (1)

B1 ⊆ B2 ⇒ g(B2) ⊆ g(B1), (2)

A ⊆ g(f(A)), (3)

B ⊆ f(g(B). (4)

Lemma (chaining of Galois connection) For a Galois connection 〈f, g〉
between X and Y we have f(A) = f(g(f(A))) and g(B) = g(f(g(B))) for any

A ⊆ X and B ⊆ Y .

Proof We prove only f(A) = f(g(f(A))) (g(B) = g(f(g(B))) is dual): f(A) ⊆
f(g(f(A))) follows from (4) by putting B = f(A). Since A ⊆ g(f(A)) by (3),

we get f(A) ⊇ f(g(f(A))) by application of (1). 2

Remark For a Galois connection 〈f, g〉 between X and Y we put fix(f, g) =

{〈A, B〉 | A ∈ 2X , B ∈ 2Y , A↑ = B, B↓ = A}. fix(f, g) is called the set of all

fixed points of 〈f, g〉.
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Def. A closure operator on a set X is a mapping C : 2X → 2X satisfying

for each A, A1, A2 ⊆ X

A ⊆ C(A), (5)

A1 ⊆ A2 ⇒ C(A1) ⊆ C(A2), (6)

A = C(C(A)). (7)

Remark For a closure operator C on X we put fix(C) = {A | A ∈ 2XA =

C(A)}. fix(C) is called the set of all fixed points of C.

Def. A complete lattice is a partially ordered set 〈V,≤〉 such that for each

K ⊆ V there exists both the infimum inf(K) of K and the supremum sup(K)

of K.

Recall: partial order, lower bound, upper bound, infimum, supremum, . . .

Given a formal context 〈X, Y, I〉, the induced operators ↑ and ↓ will also be

denoted by ↑I and ↓I .
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Theorem (fixpoints of closure operators) For a closure operator C on X,

〈fix(C),⊆〉 is a complete lattice with infima and suprema given by∧
j∈J

Aj =
⋂

j∈J

Aj, (8)

∨
j∈J

Aj = C(
⋃

j∈J

Aj). (9)

Proof Evidently, 〈fix(C),⊆〉 is a partially ordered set. First, we verify that for

Aj ∈ fix(C) we have
⋂

j∈J Aj ∈ fix(C), i.e.
⋂

j∈J Aj = C(
⋂

j∈J Aj).
⋂

j∈J Aj ⊆
C(

⋂
j∈J Aj) is obvious (a property of a closure operator). Conversely, we have

C(
⋂

j∈J Aj) ⊆
⋂

j∈J Aj iff for each j ∈ J we have C(
⋂

j∈J Aj) ⊆ Aj which is true.

indeed, we have
⋂

j∈J Aj ⊆ Aj and so C(
⋂

j∈J Aj) ⊆ C(Aj) = Aj. Now it is

clear that
⋂

j∈J Aj is the infimum of Aj’s (first,
⋂

j∈J Aj is less than each Aj;

second,
⋂

j∈J Aj is above any A ∈ fix(C) which is less than all Aj’s).

Second, we verify
∨

j∈J Aj = C(
⋃

j∈J Aj). Since
∨

j∈J Aj ⊇ Aj for any j ∈ J,

we get
∨

j∈J Aj ⊇
⋃

j∈J Aj, and so
∨

j∈J Aj = C(
∨

j∈J Aj) ⊇ C(
⋃

j∈J Aj). On

the other hand, C(
⋃

j∈J Aj) is a fixpoint which is above each Aj, and so it

is above their supremum
∨

j∈J Aj, i.e. C(
⋃

j∈J Aj) ⊇
∨

j∈J Aj. To sum up,∨
j∈J Aj = C(

⋃
j∈J Aj). 2
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Theorem (binary relation induces Galois connection) For each formal

context 〈X, Y, I〉, the pair 〈↑I , ↓I〉 forms a Galois connection between X and

Y .

Proof Easy by direct verification (viz prednasky).

Remark Therefore, a concept lattice B (X, Y, I) is but a system of fixed points

of the induced Galois connection 〈↑, ↓〉, i.e. B (X, Y, I) = fix(↑, ↓).

Conversely, a question arises as to whether each Galois connection 〈f, g〉 is

induced by some binary relation I between X and Y .
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Theorem (Galois connection is induced by binary relation) Let 〈f, g〉 be

a Galois connection between X and Y . Then putting for each x ∈ X and

y ∈ Y

〈x, y〉 ∈ I iff y ∈ f({x}) or, equivalently, iff x ∈ g({y}), (10)

I is a binary relation between X and Y such that the induced Galois connection

〈↑I , ↓I〉 coincides with 〈f, g〉, i.e. 〈↑I , ↓I〉 = 〈f, g〉.

Proof First, let us show that y ∈ f({x}) iff x ∈ g({y}): From y ∈ f({x}) we

get {y} ⊆ f({x}) from which we get {x} ⊆ g(f({x})) ⊆ g({y}), i.e. x ∈ g({y}).

In a similar manner, x ∈ g({y}) implies y ∈ f({x}). That is, we have 〈x, y〉 ∈ I

iff y ∈ f({x}) iff x ∈ g({y}).

Now, for each A ⊆ X we have f(A) = f(∪x∈A{x}) = ∩x∈Af({x}) = ∩x∈A{y ∈
Y | y ∈ f({x})} = ∩x∈A{y ∈ Y | 〈x, y〉 ∈ I} = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈
I} = A↑I .

Dually, for B ⊆ Y we get g(B) = B↓I . 2

Remark (1) The relation I induced from a Galois connection 〈f, g〉 by (10)

will also be denetode by I〈f,g〉.

(2) It is easy to see that I = I〈↑I 〉,〈↓I 〉 and 〈↑, ↓〉 = 〈
↑I〈↑,↓〉,

↓I〈↑,↓〉〉. That is,
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there is a one-to-one correspondence between binary relations between I and

Galois connections between X and Y .

Corollary (consequences of chaining) Ext(X, Y, I) = {B↓ | B ∈ 2Y } = {A↑↓ | A ∈
2X}; Int(X, Y, I) = {A↑ | A ∈ 2X} = {B↓↑ | B ∈ 2Y }. Furthermore, B (X, Y, I) =

{〈A, A↑〉 | A ∈ Ext(X, Y, I)} = {〈B↓, B〉 | B ∈ Int(X, Y, I)}.

Proof (easy, viz prednasky)
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Theorem (from Galois connection to closure operator) (1) If 〈f, g〉 is a

Galois connection between X and Y then CX = f ◦ g is a closure operator on

X and CY = g ◦ f is a closure operator on Y .

(2) If 〈f, g〉 is induced by I, i.e. 〈f, g〉 = 〈↑I , ↓I〉, then B (X, Y, I) is isomorphic

to 〈fix(CX),⊆〉 and an isomorphism is given by sending 〈A, B〉 ∈ B (X, Y, I) to

A ∈ 〈fix(CX),⊆〉. Moreover, B (X, Y, I) is dually isomorphic to 〈fix(CX),⊆〉 and

a dual isomorphism is given by sending 〈A, B〉 ∈ B (X, Y, I) to B ∈ 〈fix(CY ),⊆〉.

Proof (1) We show that f ◦ g : 2X → 2X is a closure operator on X: (5) is

A ⊆ g(f(A)) which is true by definition of a Galois connection.

(6): A1 ⊆ A2 impies f(A2) ⊆ f(A1) which implies g(f(A1)) ⊆ g(f(A2)).

(7): Since f(A) = f(g(f(A))), we get g(f(A)) = g(f(g(f(A)))).

(2) (viz prednasky) Follows immediately by definition of ≤ (〈A1, B2〉 ≤ 〈A2, B2〉
iff A1 ⊆ A2 iff B1 ⊇ B2) and by the above Corollary (in particular, by

B (X, Y, I) = {〈A, A↑〉 | A ∈ Ext(X, Y, I)} = {〈B↓, B〉 | B ∈ Int(X, Y, I)}). 2

Remark We can see that for 〈X, Y, I〉, and CX = ↑↓ and CY = ↓↑ we have

Ext(X, Y, I) = fix(CX) and Int(X, Y, I) = fix(CY ).
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Further issues in Galois connections etc.

(nebude pozadovano na zkousce)

Theorem (alternative definition of a Galois connection) 〈f, g〉 form a

Galois connection between X and Y iff for each A ⊆ X and B ⊆ Y we have

A ⊆ B↓ if and only if B ⊆ A↑.

Proof (easy, to be written)

Theorem (from closure operator to Galois connection) Let C : 2X → 2X

be a closure operator in X. Define I ⊆ X × fix(C) by 〈x, A〉 ∈ I iff x ∈ A for

x ∈ X, A ∈ fix(C). Then 〈fix(C),⊆〉 is isomorphic to B (X, fix(C), I).

Proof (to be written)

concept lattices in mathematics

• each complete lattice (V,≤) is isomorphic to some concept lattice, e.g.

(V,≤) ∼= B (V, V,≤);

• for partially ordered set (V,≤) ... B (V, V,≤) is the MacNeille completion

of (V,≤);
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• V finitely dimensional vector space, V ∗ dual space, a ⊥ ϕ means ϕ(a) = 0,

then B (V, V ∗,⊥) is the lattice of subspaces of V ;

• . . .
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Main theorem of concept lattices

Theorem (Wille, 1982) (1) B (X, Y, I) is a complete lattice with infima

and suprema given by∧
j∈J

〈
Aj, Bj

〉
= 〈

⋂
j∈J

Aj, (
⋃

j∈J

Bj)↓↑〉 ,
∨

j∈J

〈
Aj, Bj

〉
= 〈(

⋃
j∈J

Aj)↑↓,
⋂

j∈J

Bj〉 . (11)

(2) Moreover, an arbitrary complete lattice V = (V,≤) is isomorphic to

B (X, Y, I) iff there are mappings γ : X → V , µ : Y → V such that

(i) γ(X) is
∨

-dense in V, µ(Y ) is
∧

-dense in V;

(ii) γ(x) ≤ µ(y) iff (x, y) ∈ I.

Proof (dukaz jen k casti (1); plyne z vyse uvedenych vysledku o Gal. konexich

a uzav. operatorech, viz prednasky):

We check
∧

j∈J

〈
Aj, Bj

〉
= 〈

⋂
j∈J Aj, (

⋃
j∈J Bj)↓↑〉: First, B (X, Y, I) is a com-

plete lattice since it is isomorphic to a complete lattice Ext(X, Y, I) = fix(↑↓)
(and dually isomorphic to a complete lattice Int(X, Y, I) = fix(↓↑)). Moreover,

infima in B (X, Y, I) correspond to infima in Ext(X, Y, I) and to suprema in

Int(X, Y, I), from which we immediately get that the extent of
∧

j∈J

〈
Aj, Bj

〉
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is the infimum
∧

j∈J Aj of Aj’s (taken in Ext(X, Y, I)) which is
⋂

j∈J Aj, and

that the intent of
∧

j∈J

〈
Aj, Bj

〉
is the supremum

∨
j∈J Bj of Bj’s (taken in

Int(X, Y, I)) which is
⋃

j∈J(Bj)↓↑.

Checking the formula for
∨

j∈J

〈
Aj, Bj

〉
is dual. 2
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Algorithms for concept lattices

Problem:

Input: (X, Y, I)

Output: B (X, Y, I) (possibly plus ≤)

Very good survey and comparison of algorithms:

Kuznetsov S. O., Obiedkov S. A.: Comparing performance of algorithms for

generating concept lattices. J. Experimental & Theoretical Artificial Intelli-

gence 14(2003), 189–216.

• one of the first: Norris E. M.: An algorithm for computing the maximal

rectangles of a binary relation. J. ACM 21(1974), 356–366.

• often used 1: Ganter’s NextClosure

• often used 2: Lindig’s UpperNeighbor
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NextClosure algorithm

suppose X = {1, . . . , m}, Y = {1, . . . , n}

for A, B ⊆ Y , i ∈ {1, . . . , n} put

A <i B iff i ∈ B −A a A ∩ {1, . . . , i− 1} = B ∩ {1, . . . , i− 1}.

and

A < B iff A <i B for some i.

< . . . lexicographic ordering

For A ⊆ Y , i ∈ {1, . . . , n}, put

A⊕ i := ((A ∩ {1, . . . , i− 1}) ∪ {i})↓↑.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †29



Lemma The following assertions are true for any B, D, D1, D2 ⊆ Y :

(1) If B <i D1, B <j D2, and i < j then D2 <i D1;

(2) if i 6∈ B then B < B ⊕ i;

(3) if B <i D and D = D↓↑ then B ⊕ i ⊆ D;

(4) if B <i D and D = D↓↑ then B <i B ⊕ i.

Proof (1) by easy inspection.

(2) is true because B ∩{1, . . . , i−1} ⊆ B⊕ i∩{1, . . . , i−1} and i ∈ (B⊕ i)−B.

(3) Putting C1 = B ∩{1, . . . , i−1} and C2 = {i} we have C1∪C2 ⊆ D, and so

B ⊕ i = (C1 ∪ C2)↓↑ ⊆ D↓↑ = D.

(4) By assumption, B ∩ {1, . . . , i − 1} = D ∩ {1, . . . , i − 1}. Furthermore, (3)

yields B⊕ i ⊆ D and so B ∩ {1, . . . , i− 1} ⊇ B⊕ i∩ {1, . . . , i− 1}. On the other

hand, B⊕i∩{1, . . . , i−1} ⊇ (B∩{1, . . . , i−1})↓↑∩{1, . . . , i−1} ⊇ B∩{1, . . . , i−1}.

Therefore, B ∩ {1, . . . , i− 1} = B ⊕ i ∩ {1, . . . , i− 1}. Finally, i ∈ B ⊕ i proving

B <i B ⊕ i.
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Theorem The least intent B+ greater (w.r.t. <) than B ⊆ Y is given by

B+ = B ⊕ i

where i is the greatest one with B <i B ⊕ i.

Proof Let B+ be the least intent greater than B (w.r.t. to <). We have

B < B+ and thus B <i B+ for some i such that i ∈ B+. By Lemma (4),

B <i B⊕i, i.e. B < B⊕i. Lemma (3) yields B⊕i ≤ B+ which gives B+ = B⊕i

since B+ is the least intent with B < B+. It remains to show that i is the

greatest one satisfying B <i B ⊕ i. Suppose B <k B ⊕ k for k > i. By Lemma

(1), B⊕ k <i B⊕ i which is a contradiction to B⊕ i = B+ < B⊕ k (B+ is the

least intent greater than B and so B+ < B ⊕ k). Therefore we have k = i.

NextClosure algorithm

A:=leastIntent;

store(A);

while not(A=X) do

A:=A+;

store(A);

endwhile.
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complexity: time complexity of A+ is O(|X|2 · |Y |);

time complexity of NextClosure is O(|X|2 · |Y | · |B (X, Y, I)|)

⇒ polynomial time delay complexity (Johnson D. S., Yannakakis M., Pa-

padimitrou C. H.: On generating all maximal independent sets. Inf. Process-

ing Letters 27(1988), 129–133.)

Note! Almost no space requirements. But: NextClosure does not directly

give information about ≤.
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UpperNeighbors algorithm

(nebude na zkousce pozadovan)

Idea:

start with the least formal concept (∅↑↓, ∅↑)

for each (A, B) generate all its upper neighbors (and store the necessary

information)

based on the following:

Thm. If (A, B) ∈ B (X, Y, I) is not the largest concept then (A ∪ {x})↑↓,
with x ∈ X − A, is an extent of an upper neighbor of (A, B) iff for each

z ∈ (A ∪ {x})↑↓ −A we have (A ∪ {x})↑↓ = (A ∪ {z})↑↓.
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UpperNeighbor procedure

min:=X −A;

neighbors:=∅;
for x ∈ X −A do

B1 := (A ∪ {x})↑; A1 := B
↓
1;

if (min∩((A1−A)−{x}) = ∅) then neighbors:=neighbors∪{(A1, B1)}
else min:=min−{x};
enddo.

complexity polynomial time delay with delay O(|X|2 · |Y |) (same as NextClo-

sure)
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Attribute implications

Def. (Attribute) implication (over attributes Y ) is an expression A ⇒ B

where A, B ⊆ Y .

Why A ⇒ B? Primary reading: “if object x has all attributes from A then

x has all attributes from B”

Denote Imp = {A ⇒ B | A, B ⊆ Y } (set of all attribute implications).

Def. A ⇒ B is true in C ⊆ Y if A ⊆ C implies B ⊆ C;

denoted by ||A ⇒ B||C = 1 (or C |= A ⇒ B)

Def. (Mod and Fml) For a set T ⊆ Imp (set of attribute implications),

M⊆ 2Y (set of sets of attributes), put

Mod(T ) = {C ∈ 2Y | for each A ⇒ B ∈ T : ||A ⇒ B||C = 1},
Fml(M) = {A ⇒ B ∈ Imp | for each C ∈M : ||A ⇒ B||C = 1}.

Rem. (1) Mod(T ) . . . models of T (all sets of attributes in which each

implications from T are true); Fml(M) . . . all implications true in (each set

of attributes from) M
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(2) Put X = Imp, Y = 2Y , define I ⊆ X ×Y by 〈A ⇒ B, C〉 ∈ I iff ||A ⇒ B||C =

1. Then Mod and Fml form the Galois connection induced by 〈X ,Y, I〉.
Therefore, we can use all properties of Galois connections for Mod and Fml.

(3) Mod and Fml . . . standard logical approach.

For M⊆ 2Y and T = {Aj ⇒ Bj | j ∈ J}:

||T ||M = 1 (or M |= T ) iff for each C ∈M, A ⇒ B ∈ T : ||A ⇒ B||C = 1

(in words: T is true in M)

Rem. Note: ||T ||M = 1 iff M⊆ Mod(T ) iff T ⊆ Fml(M)

Denote:

Fml(X, Y, I) = Fml({{x}↑ | x ∈ X}) . . . implications true in data,

({x}↑ is a row in table 〈X, Y, I〉)
||A ⇒ B||〈X,Y,I〉 = 1 iff A ⇒ B ∈ Fml(X, Y, I)

Sometimes: validity of A ⇒ B in B(X, Y, I) means validity in Int(X, Y, I).
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Connection to predicate logic?

Rem. M |= A ⇒ B . . . validity of a corresponding monadic formula c(A ⇒ B)

in a corresponding structure c(M).

language given by unary relation symbols ry (y ∈ Y );

A ⇒ B corresponds to formula ϕ(A ⇒ B) = &y∈Ary(x) ⇒ &y∈Bry(x);

a set M of subsets of Y corresponds to structure M with support M = M
in which

each ry is interpreted by rM
y = {C ∈M | y ∈ C}.

Then:

A ⇒ B is true in M (in the above sense) iff ϕ(A ⇒ B) is true in M (in the

standard sense of predicate logic).
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Basic connection to FCA

Thm. A ⇒ B is true in (X, Y, I) IFF A ⇒ B is true in Int(X, Y, I) IFF B ⊆ A↓↑

IFF A↓ ⊆ B↓.

Proof nontrivial part is “if A ⇒ B is true in (X, Y, I) then A ⇒ B is true in

B (X, Y, I)”: Let A ⇒ B be true in (X, Y, I), i.e. A↓ ⊆ B↓. Suppose A ⊆ D for

〈C, D〉 ∈ B (X, Y, I), i.e. A ⊆ C↑. This is equivalent to C ⊆ A ↓. Therefore

C ⊆ B↓, which is equivalent to B ⊆ C↑ = D, proving A ⇒ B is true in

B (X, Y, I).
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Entailment, base

Def. A ⇒ B (semantically) follows from a set T of implications (T |=
A ⇒ B) if A ⇒ B is true in each C ⊆ Y which is a model of T , i.e.

T |= A ⇒ B iff A ⇒ B ∈ Fml(Mod(T )).

Meaning: T |= A ⇒ B . . . A ⇒ B is true whenever each Ai ⇒ Bi ∈ T is true.

T ⊆ Imp is called

• closed if it contains each implication which follows from T , i.e. T =
FmlMod(T ),

• non-redundant if no implication from T follows from the rest (i.e. T −
{A ⇒ B} 6|= A ⇒ B),

• complete w.r.t. 〈X, Y, I〉 if T is true in 〈X, Y, I〉 and each implication true
in 〈X, Y, I〉 follows from T ,

• base w.r.t. 〈X, Y, I〉 if it is complete w.r.t. 〈X, Y, I〉 and non-redundant.

Why base? To have less implications which carry the same information.
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Lemma For T ⊆ Imp:

1. T is true in 〈X, Y, I〉 IFF Mod(T ) ⊇ Int(X, Y, I),

2. each implication true in 〈X, Y, I〉 follows from T IFF Mod(T ) ⊆ Int(X, Y, I).

Proof “1.”: T is true in 〈X, Y, I〉 IFF (by def.) T ⊆ Fml(Int(X, Y, I)) IFF (by

properties of Gal. conn.) Mod(T ) ⊇ Int(X, Y, I).

“2.”: First, show Claim: ModFml(Int(X, Y, I)) = Int(X, Y, I).

Proof of Claim: “⊇” by properties of Gal. conn; “⊆”: Let A ∈ ModFml(Int(X, Y, I)).

Then A ⇒ A↓↑ ∈ Fml(Int(X, Y, I)) (indeed: for B ∈ Int(X, Y, I), we have: if

A ⊆ B then A↓↑ ⊆ B↓↑ = B, i.e. ||A ⇒ A↓↑||B = 1). Thus, in particular,

||A ⇒ A↓↑||A = 1 which means that if A ⊆ A (which is true) then A↓↑ ⊆ A

which means A ∈ Int(X, Y, I).

Second, each implication true in 〈X, Y, I〉 follows from T IFF (by def.) Fml(X, Y, I) ⊆
Fml(Mod(T )) IFF (by Fml(X, Y, I) = Fml(Int(X, Y, I))) Fml(Int(X, Y, I)) ⊆
Fml(Mod(T )) IFF (by prop. of Gal. conn.) ModFml(Int(X, Y, I)) ⊇ Mod(Fml(Mod(T ))) =

Mod(T ) IFF (by Claim) Mod(T ) ⊆ Int(X, Y, I).

Corollary T is complete w.r.t. 〈X, Y, I〉 IFF Mod(T ) = Int(X, Y, I).
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Rules of entailment

Some rules of entailment (deduction):

A ⇒ A is always true,

if A ⇒ B and B ⇒ C are true then A ⇒ C is true (transitivity),

if A ⇒ B is true and B′ ⊆ B then A ⇒ B′ is true (projectivity),

. . .

Is there a small set of simple rules for obtaining all consequences of a set T

of attribute implications?

A consequence of theorem from relational databases (caution!, different

notions, the same concept of entailment, Maier D.: The Theory of Relational

Databases, Computer Science Press, 1983):

Thm. T is closed iff for each A, B, C, D ⊆ Y we have

1. A ⇒ A ∈ T ;

2. if A ⇒ B ∈ T then A ∪ C ⇒ B ∈ T ;

3. if A ⇒ B ∈ T and B ∪ C ⇒ D ∈ T then A ∪ C ⇒ D ∈ T .
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Proof (direct) “⇒” easy.

“⇐”: Denote X+ the largest X such that X ⇒ X+ ∈ T (this is correct: from

X ⇒ Y , X ⇒ Z ∈ T we get X ⇒ Y ∪ Z ∈ T , SHOW using 1.–3.) Assume 1.–3.

Let T ` A ⇒ B mean that A ⇒ B can be obtained from T using rules encoded

in 1.–3. It is sufficient to show that if T |= A ⇒ B then T ` A ⇒ B (since then

A ⇒ B ∈ T ). By contradiction, assume T 6` A ⇒ B. We need T 6|= A ⇒ B, i.e.

we need a set which is a model of T but not of A ⇒ B. We show that A+ is

such a set.

First, A+ 6|= A ⇒ B: Clearly, A ⊆ A+. We cannot have B ⊆ A+ since then

from A ⇒ A+ ∈ T we get (using 1.–3.) A ⇒ B ∈ T , a contradiction to

T 6` A ⇒ B.

Second, we show that for each C ⇒ D ∈ T , A+ |= C ⇒ D: Suppose C ⊆ A+.

We get A+ ⇒ C ∈ T (using A+ ⇒ A+ and projectivity which follows from 1.–

3.). So we have A ⇒ A+, A+ ⇒ C, C ⇒ D ∈ T and transitivity (follows from

1.–3.) gives A ⇒ D ∈ T , i.e. D ⊆ A+.

Note (exercise): verify that using 1.–3. we have:

projectivity: A ⇒ B ∈ T , C ⊆ B imply A ⇒ C ∈ T

transitivity: A ⇒ B, B ⇒ C ∈ T imply A ⇒ C ∈ T
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Pseudointents and Guigues-Duquenne base

Guigues J.-L., Duquenne V.: Familles minimales d’implications informatives

resultant d’un tableau de donnes binaires. Math. Sci. Humaines 95(1986),

5–18.

Recall:

(1) A closure system is a sytem closed under arbitrary intersections.

(2) Closure systems vs. closure operators:

A closure system on a set X is a nonempty system S ⊆ 2X which is closed

under arbitrary intersections and contains X.

This means: the intersection of any members of S belongs to S (for any

system {Aj | j ∈ J} ⊆ S, ∩jAj ∈ S); and X ∈ S.

There is a one-to-one relationship between closure systems on X and closure

operators on X. Given a closure operator C on X, SC = {A ∈ 2X | A =

C(A)} = fix(C) is a closure system. Given a closure system on X, putting

CS(A) =
⋂
{B ∈ S | A ⊆ B}

for any A ∈ 2X, CS is a closure operator on X. This is a one-to-one relation-

ship, i.e. C = CSC
and S = SCS.
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Lemma For a set T of attribute implications, Mod(T ) = {A ⊆ Y | A |= T} is

a closure system.

Proof (1) Mod(T ) 6= ∅ since Y ∈ Mod(T ).

(2) Let Cj ∈ Mod(T ) (j ∈ J). For any A ⇒ B ∈ T , if A ⊆
⋂

j Cj then for

each j ∈ J: A ⊆ Cj, and so B ⊆ Cj (since Cj ∈ Mod(T ), thus in particular

Cj |= A ⇒ B), from which we have B ⊆
⋂

j Cj.

We showed that Mod(T ) is nonempty and is closed under intersections, i.e.

Mod(T ) is a closure system.
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Def. Pseudointent of (X, Y, I) is a subset A ⊆ Y for which A 6= A↓↑ and

B↓↑ ⊆ A for each pseudointent B ⊂ A.

Thm. (Guigues-Duquenne basis, stem basis)

The set T = {A ⇒ A↓↑ | A is a pseudointent of (X, Y, I)} of implications is a

basis.

Proof We show that T is complete and non-redundant.

Complete: It suffices to show that Mod(T ) ⊆ Int(X, Y, I). Let C ∈ Mod(T ).

Assume C 6= C↓↑. Then C is a pseudointent (indeed, if P ⊂ C is a pseudoin-

tent then since ||P ⇒ P ↓↑||C = 1, we get P ↓↑ ⊆ C). But then C ⇒ C↓↑ ∈ T and

so ||C ⇒ C↓↑||C = 1. But the last fact means that if C ⊆ C (which is true)

then C↓↑ ⊆ C which would give C↓↑ = C, a contradiction with the assumption

C↓↑ 6= C. Therefore, C↓↑ = C, i.e. C ∈ Int(X, Y, I).

Non-redundant: Take any P ⇒ P ↓↑. We show that T−{P ⇒ P ↓↑} 6|= P ⇒ P ↓↑.
Since ||P ⇒ P ↓↑||P = 0 (obvious, check), it suffices to show that ||T −
{P ⇒ P ↓↑}||P = 1. That is, we need to show that for each Q ⇒ Q↓↑ ∈
T − {P ⇒ P ↓↑} we have ||Q ⇒ Q↓↑||P = 1, i.e. that if Q ⊆ P then Q↓↑ ⊆ P .

But this follows from the definition of a pseudointent (applt to P ).
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Lemma If P, Q are intents or pseudointents and P 6⊆ Q, Q 6⊆ P , then P ∩Q

is an intent.

Proof Let T = {R ⇒ R↓↑ | R a pseudointent} be the G.-D. basis. Since T is

complete, it is sufficient to show that P ∩Q ∈ Mod(T ) (since then, P ∩Q is a

model of any implication which is true in 〈X, Y, I〉, and so P ∩Q is an intent).

Obviously, P, Q are models of T−{P ⇒ P ↓↑, Q ⇒ Q↓↑}, whence P∩Q is a model

of T − {P ⇒ P ↓↑, Q ⇒ Q↓↑} (since the set of models is a closure system, i.e.

closed under intersections).

Therefore, to show that P ∩ Q is a model of T , it is sufficient to show that

P ∩ Q is a model of {P ⇒ P ↓↑, Q ⇒ Q↓↑}. Due to symmetry, we only verify

that P ∩ Q is a model of {P ⇒ P ↓↑: But this is trivial: since P 6⊆ Q, the

condition “if P ⊆ P ∩Q implies P ↓↑ ⊆ P ∩Q” is satisfied for free. The proof

is complete.
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Lemma If T is complete, then for each pseudointent P , T contains A ⇒ B

with A↓↑ = P ↓↑

Proof For pseudointent P , P 6= P ↓↑, i.e. P is not an intent. Therefore,

P cannot be a model of T (since models of a complete T are intents).

Therefore, there is A ⇒ B ∈ T such that ||A ⇒ B||P = 0, i.e. A ⊆ P but

B 6⊆ P . As ||A ⇒ B||〈X,Y,I〉 = 1, we have B ⊆ A↓↑ (Thm. on basic connections

. . . ). Therefore, A↓↑ 6⊆ P (otherwise B ⊆ P , a contradiction). Therefore,

A↓↑ ∩ P is not an intent (). By the foregoing Lemma, P ⊆ A↓↑ which gives

P ↓↑ ⊆ A↓↑. On the other hand, A ⊆ P gives A↓↑ ⊆ P ↓↑. Altogether, A↓↑ = P ↓↑,
proving the claim.

Thm. (Guigues-Duquenne base is smalest)

If T is the Guigues-Duquenne base and T ′ is complete then |T | ≤ |T ′|.

Proof Direct corollary of the above Lemma.
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Computing Guigues-Duquenne base

P ... set of all pseudointents of 〈X, Y, I〉

THE base: {A ⇒ A↓↑ | A ∈ P}

Q: What do we need? A: Compute all pseudointents.

Lemma The set of all P which are intents or pseudointents is a closure

system.

Q: How to compute the fixed points (closed sets)?

For Z ⊆ Y , T a set of implications, put

ZT = Z ∪
⋃
{B | A ⇒ B ∈ T, A ⊂ Z}

ZT0 = Z

ZTn = (ZTn−1)T (n ≥ 1)

define CT : 2Y → 2Y by

CT (Z) =
⋃∞

n=0 ZTn (note: terminates, Y finite)
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Thm. Let T = {A ⇒ A↓↑ | A ∈ P} (G.-D. base). Then
(1) CT is a closure operator,
(2) P is a fixed point of CT iff P ∈ P (pseudointent) or P ∈ Int(X, Y, I)
(intent).

Proof (1) easy

(2) P ∪ Int(X, Y, I) ⊆ fix(CT ) easy. fix(CT ) ⊆ P ∪ Int(X, Y, I): It suffices to
show that if P ∈ fix(CT ) is not an intent (P 6= P ↓↑) then P is an pseudointent.
So take P ∈ fix(CT ), i.e. P = CT (P ), which is not an intent. Take any
pseudointent Q ⊂ P . By definition (notice that Q ⇒ Q↓↑ ∈ T ), Q↓↑ ⊆ CT (P ) =
P which means that P is a pseudointent. The proof is complete.

So: fix(CT ) = P ∪ Int(X, Y, I)

Intention: compute P by computing fix(CT ) and excluding Int(X, Y, I).

Computing fix(CT ) by Ganter’s next closure algorithm.

Caution! In order to compute CT , we need T , i.e. we need P, which we do
not know in advance.

But we are not in circulus vitiosus: The part of T (or P) which is needed is
already available (computed).
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Conceptual scaling

(na zkousce nebude pozadovano)

= way to deal with data tables with more general attributes (nominal, ordinal)

transformation (scaling) of general data table to a suitable formal

context (only binary attributes)

For details see

B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.

Springer, 1999.
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Selected applications

Software engineering

• G. Snelting: Reengineering of configurations based on mathematical con-

cept analysis. ACM Trans. Software Eng. Method. 5(2):146–189, April

1996.

• G. Snelting, F. Tip: Understanding class hierarchies using concept anal-

ysis. ACM Trans. Program. Lang. Syst. 22(3):540–582, May 2000.

• U. Dekel, Y. Gill. Visualizing class interfaces with formal concept analysis.

In ACM OOPSLA’03 Conference, pages 288–289, Anaheim, CA, October

2003.

• G. Ammons, D. Mandelin, R. Bodik, J. R. Larus. Debugging temporal

specifications with concept analysis. In Proc. ACM SIGPLAN’03 Con-

ference on Programming Language Design and Implementation, pages

182–195, San Diego, CA, June 2003.
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Database views

• C. Carpineto, R. Romano: A lattice conceptual clustering system and its

application to browsing retrieval. Machine Learning 24:95–122, 1996.

• Snášel et al.: Navigation through query result.

Analysis of texts (medical records, e-mails)

• R. Cole, P. Eklund: Scalability in formal context analysis: a case study

using medical texts. Computational Intelligence 15:11–27, 1999.

• R. Cole: Analyzing e-mail collections using formal concept analysis (preprint).

Software support

• Toscana, Anaconda, . . .

• SW developed jointly by Dept. Comp. Sci., Palacký University, Olomouc

and Dept. Comp. Sci., Technical University of Ostrava (public, to be

released)
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FCA of data with fuzzy attributes = fuzzy concept lattices

Motivation

• Fuzzy attributes ... expensive, small, etc.

• Concepts are fuzzy

Fuzzy sets and fuzzy logic

• scale of truth degrees (e.g. [0, 1])

• logic: Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, 1998.

• relational systems: Bělohlávek R.: Fuzzy Relational Systems: Founda-

tions and Principles. Kluwer, 2002.

Pursued by Burusco, Fuentes-Gonzales, Pollandt, Bělohlávek et al., . . .
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Basics from fuzzy logic

• structure of truth degrees: complete residuated lattice

L = 〈L,∨,∧,⊗,→, 0, 1〉, where 〈L,∨,∧, 0, 1〉 . . . complete lattice,

〈L,⊗, 1〉 . . . commutative monoid,

〈⊗,→〉 . . . adjoint pair (i.e. x ≤ y → z iff x⊗ y ≤ z)

e.g. L is a finite subchain of [0, 1], ⊗ . . . left-continuous t-norm,

(Gödel,  Lukasiewicz) and

x → y =
∨

z∈L

{z | x⊗ z ≤ y}

• example 1 ( Lukasiewicz): a⊗ b = max(0, a + b− 1) + →

• example 2 (G̈’odel): a⊗ b = min(a, b) + →

• fuzzy set (L-set) A in X . . . A : X → L

A(x) . . . the truth degree of “x belongs to A”

fuzzy relation I between X and Y : . . . I : X × Y → L

I(x, y) . . . the truth degree of “x is in relation to y”
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• A ⊆ B if A(x) ≤ B(x) for each x ∈ X

more generally: graded subsethood between L-sets

S(A, B) =
∧

x∈x

A(x) → B(x)
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Formal fuzzy context = input data

Def. Formal fuzzy context is a triplet (X, Y, I) where

X . . . set of objects

Y . . . set of attributes

I : X × Y → L binary fuzzy relation.

Interpretation: I(x, y) . . . degree to which object x has attribute y

formal fuzzy context ≈ data table

I y1 y2 y3 y4

x1 1 1 0 0.5

x2 0.8 0.1 0 0.9

x3 1 0.9 0.9 0

x4 1 0.5 0.6 0.5

x5 1 0 0 0.5
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Formal fuzzy concept = fuzzy cluster in data

Def. Induced operators . . . mappings ↑ : LX → LY , ↑ : LX → LY def. by:

A↑(y) =
∧

x∈X A(x) → I(x, y)

B↓(x) =
∧

y∈Y B(y) → I(x, y)

A↑ . . . fuzzy set of attributes common to all objects from A

B↓ . . . fuzzy set objects sharing all attributes from A

Def. Formal fuzzy concept in (X, Y, I) . . . (A, B), A ∈ LX, B ∈ LY , s.t.

A↑ = B and B↓ = A.

A . . . extent . . . objects covered by formal concept

B . . . intent . . . attributes covered by formal concept

• (fuzzy) concept lattice given by 〈X, Y, I〉

B (X, Y, I) = {〈A, B〉 | A↑ = B, B↓ = A}
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• subconcept-superconcept hierarchy ≤ in B (X, Y, I)

〈A1, B1〉 ≤ 〈A1, B1〉 iff A1 ⊆ A2( iff B1 ⊇ B2)

Further info:

Chapter 5 of R.B.: Fuzzy Relational Systems. Kluwer, New York, 2002.
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Main theorem of fuzzy concept lattices

Several issues from bivalent case can be carried over to fuzzy setting. Ex-

amples: algorithms, the main theorem:

Theorem (1) B (X, Y, I) is a completely lattice-type fuzzy ordered set

with infima and suprema given by∧
j∈J

〈
Aj, Bj

〉
= 〈

⋂
j∈J

Aj, (
⋃

j∈J

Bj)↓↑〉 ,
∨

j∈J

〈
Aj, Bj

〉
= 〈(

⋃
j∈J

Aj)↑↓,
⋂

j∈J

Bj〉 .

(2) Moreover, an arbitrary completely lattice-type fuzzy ordered set V =

(V,�) is isomorphic to B (X, Y, I) iff there are mappings γ : X × L → V ,

µ : Y × L → V such that

(i) γ(X × L) is
∨

-dense in V, µ(Y × L) is
∧

-dense in V;

(ii) (γ(x, a) ≤ µ(y, b)) = (a⊗ b) → I(x, y).
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Non-standard issues

(ke zkousce jen prehledove)

In fuzzy setting, there arise new phenomena which are degenerate in bivalent

setting. As an example, we present fatorization by similarity.
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Similarity relation

Degree of similarity ≈ of 〈A1, B1〉 and 〈A2, B2〉 on B (X, Y, I)

〈A1, B1〉 ≈ 〈A2, B2〉 =
∧

x∈X

A1(x) ↔ A2(x) (=
∧

y∈Y

B1(y) ↔ B2(y))

Given a truth degree a ∈ L (a threshold specified by a user),

the thresholded relation (a-cut) a≈ on B (X, Y, I) defined by

(〈A1, B1〉, 〈A2, B2〉) ∈ a≈ iff (〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a

denotes “being similar in degree at least a”.
a≈ is reflexive and symmetric, but need not be transitive.

A subset B of B (X, Y, I) is a a≈-block if it is a maximal subset of B (X, Y, I)

such that each two concepts from B are similar in degree at least a.

B (X,Y, I)/a≈ . . . the collection of all a≈-blocks.
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Factorization by similarity

Put

〈A, B〉a :=
∧
{〈A′, B′〉 | (〈A, B〉, 〈A′, B′〉) ∈ a≈}

〈A, B〉a :=
∨
{〈A′, B′〉 | (〈A, B〉, 〈A′, B′〉) ∈ a≈}.

Lemma a≈-blocks are exactly intervals of B (X, Y, I) of the form

[〈A, B〉a, (〈A, B〉a)a], i.e.

B (X, Y, I)/a≈ = {[〈A, B〉a, (〈A, B〉a)a] | 〈A, B〉 ∈ B (X, Y, I)}.

Define a partial order � on blocks of B (X, Y, I)/a≈ by [c1, c2] � [d1, d2]

iff c1 ≤ d1 (iff c2 ≤ d2), where [c1, c2], [d1, d2] ∈ B (X, Y, I)/a≈.

Theorem B (X, Y, I)/a≈ equipped with � is a partially ordered set which is a

complete lattice, the so-called

factor lattice of B (X,Y, I) by similarity ≈ and a threshold a.

Elements of B (X, Y, I)/a≈ can be seen as similarity-based granules of formal

concepts/clusters from B (X, Y, I).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †62



Factorization by similarity: example

TOO LARGE!

Can we have cluters of 0.5-similar formal concepts instead?
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Factorization by similarity: example
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a≈-blocks Factor lattice B (X, Y, I)/a≈
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Factorization directly from input data

Problem: Computation of B (X, Y, I)/a≈ by definition is time demanding,

can it be computed directly from input data?

Solution: It will turn out that our algorithm has a polynomial time delay and

is much faster.

Some definitions: (a → C)(x) = a → C(x) (a⊗C)(x) = a⊗C(x)

Lemma If A is an extent then so is a → A, similarly for intents.

FIRST, 〈A, B〉a and 〈A, B〉a can be computed directly from 〈A, B〉:

Lemma For 〈A, B〉 ∈ B (X, Y, I), we have

(a) 〈A, B〉a = 〈(a⊗A)↑↓, a → B〉 (b) 〈A, B〉a = 〈(a → A), (a⊗B)↓↑〉.

Thus we have (〈A, B〉a)a = 〈a → (a⊗A)↑↓, (a⊗(a → B))↓↑〉.

Lemma For 〈A, B〉 ∈ B (X, Y, I) we have 〈A, B〉a = ((〈A, B〉a)a)a.

SECOND, by Lemma ?? a≈-blocks [c1, c2] are uniquely given by their

suprema c2, moreover, by extents of suprema, since each formal concept

is uniquely given by its extent.
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Factorization directly from input data: main result

Denote the set of all extents of suprema of a≈-blocks by ESB(a), i.e.

ESB(a) = {A ∈ LX | 〈A, B〉 ∈ B (X, Y, I), [〈A, B〉a, 〈A, B〉] ∈ B (X, Y, I)/a≈}

Recall:

C is called a fuzzy closure operator in X if A ⊆ C(A), S(A1, A2) ≤ S(C(A1), C(A2))

and C(A) = C(C(A)), for any A, A1, A2 ∈ LX.

Fixed point of C : LX → LX: fuzzy set A such that A = C(A).

fix(C) = {A ∈ LX | A = C(A)} . . . set of all fixed points of C.

Theorem Given input data 〈X, Y, I〉 and a threshold a ∈ L, a mapping

Ca : A 7→ a → (a⊗A)↑↓

is a fuzzy closure operator in X for which fix(Ca) = ESB(a).

Problem: How to generate fix(Ca) = ESB(a)?

Solution: fuzzy adaptation of Ganter’s algorithm (R.B., 2002) for gener-

ating all formal concepts of a given fuzzy context, which is in fact an algorithm

for generating the set of all fixed points of a fuzzy closure operator.
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Factorization directly from input data: algorithm

Suppose X = {1, 2, . . . , n} and L = {0 = a1 < a2 < · · · < ak = 1}.

Put (i, j) ≤ (r, s) iff i < r or i = r, aj ≥ as, for i, r ∈ {1, . . . , n}, j, s ∈ {1, . . . , k}.

In the following, we will freely refer to ai just by i, i.e. we denote (i, aj) ∈ X×L

also simply by (i, j).

Put

A⊕ (i, j) := Ca((A ∩ {1, 2, . . . , i− 1}) ∪ { aj/i})

and

A <(i,j) C iff A ∩ {1, . . . , i− 1} = C ∩ {1, . . . , i− 1} and A(i) < C(i) = aj.

Finally, A < C iff A <(i,j) C for some (i, j).

Lemma The least fixed point A+ which is greater (w.r.t. <) than a given

A ∈ LX is given by A+ = A ⊕ (i, j) where (i, j) is the greatest one with

A <(i,j) A⊕ (i, j).
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Factorization directly from input data: algorithm

The algorithm for generating a≈-blocks:

INPUT: 〈X, Y, I〉 (data table with fuzzy attributes),

a ∈ L (similarity threshold)

OUTPUT: B (X, Y, I)/a≈ (a≈-blocks [c1, c2])

A := ∅
while A 6= X do

A := A+

store([〈(a⊗A)↑↓, a → A↑〉, 〈A,A↑〉])

Polynomial time delay complexity

Ganter’s algorithm, generating fix(Ca), has polynomial time delay complexity

(in terms of size of the input 〈X, Y, I〉).

Since generating a a≈-block [〈(a⊗A)↑↓, a → A↑〉, 〈A, A↑〉] from A takes a poly-

nomial time, our algorithm is of polynomial time delay complexity as well.
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Experiments

 Lukasiewicz fuzzy logical connectives, |B (X, Y, I)| = 774, time for computing B (X, Y, I) = 2292ms

0.2 0.4 0.6 0.8

size |B (X, Y, I)/a≈| 8 57 193 423

naive algorithm (ms) 8995 9463 8573 9646

our algorithm (ms) 23 214 383 1517

reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| 0.010 0.073 0.249 0.546

time reduction 0.002 0.022 0.044 0.157
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Reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| and time reduction from Tab.
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ASSOCIATION RULES
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Association rules

• association rules = attribute implications + criteria of interestingness
(support, confidence)

• introduced in 1993 (Agrawal R., Imielinski T., Swami A. N.: Mining
association rules between sets of items in large databases. Proc. ACM
Int. Conf. of management of data, pp. 207–216, 1993)

• but see GUHA method (in fact, association rules with statistics):

– developed at 1960s by P. Hájek et al. (Academy of Sciences, Czech)

– GUHA book available at http://www.cs.cas.cz/ hajek/guhabook/: Hájek
P., Havránek T.: Mechanizing Hypothesis Formation. Mathematical
Foundations for General Theory. Springer, 1978.

• one of main techniques in data mining

• good book: Adamo J.-M.: Data Mining for Association Rules and Se-
quential Patterns. Sequential and Parallel Algorithms. Springer, New
York, 2001.

• good overview: Dunham M. H.: Data Mining. Introductory and Advanced
Topics. Prentice Hall, Upper Saddle River, NJ, 2003.
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Basic concepts

Association rule (over set Y of attributes) is an expression A ⇒ B where

A, B ⊆ Y (sometimes we assume A ∩B = ∅).

Note: Association rules are just attribute implications in sense of FCA.

Data for mining (terminology in DM community): a set Y of items, a

database D of transactions, D = {t1, . . . , tn} where ti ⊆ Y .

Note: one-to-one correspondence between databases D (over Y ) and formal

contexts (with attributes from Y ): Given D, the corresponding 〈X, Y, I〉D is

given by

〈X, Y, I〉D . . . X = D, 〈t1, y〉 ∈ I ⇔ y ∈ t1;

given 〈X, Y, I〉, the corresponding D〈X,Y,I〉 is given by

D〈X,Y,I〉 = {{x}↑ | x ∈ X}.

(we will use both ways)
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Why items and transactions?

original motivation:

item = product in a store

transaction = cash register transaction (set of items purchased)

association rule = says: when all items from A abre purchased then also all

items from B are purchased

Example transactions X = {x1, . . . , x5}, items Y = {be, br, je, mi, pb} (beer,

bread, jelly, milk, peanut butter)

I be br je mi pb

x1 X X X

x2 X X

x3 X X X

x4 X X

x5 X X

For instance: a customer relaizing transaction x3 bought bread, milk, and

peanut butter.
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Support and confidence

Def. Support of A ⇒ B denoted by supp(A ⇒ B) and defined by

supp(A ⇒ B) =
|{x ∈ X | for each y ∈ A ∪B : 〈x, y〉 ∈ I}|

|X|
,

i.e. supp(A ⇒ B) · 100% of transactions contain A ∪B (percentage of trans-
actions where customers bought items from A ∪B).

Note that (in terms of FCA)

supp(A ⇒ B) =
|(A ∪B)↓|

|X|
.

Def. Confidence of A ⇒ B denoted by conf(A ⇒ B) and defined by

conf(A ⇒ B) =
|{x ∈ X | for each y ∈ A ∪B : 〈x, y〉 ∈ I}|
|{x ∈ X | for each y ∈ A : 〈x, y〉 ∈ I}|

,

i.e. conf(A ⇒ B) · 100% of transactions containing all items from A contain
also all items from B (percentage of customers which by also (all from) B if
they buy (all from) A.

Note that (in terms of FCA)

conf(A ⇒ B) =
|(A ∪B)↓|

A↓
.
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We use both “support (confidence) is 0.3” and “support (confidence) is

30%”.

Lemma supp(A ⇒ B) ≤ conf(A ⇒ B).

Lemma conf(A ⇒ B) = 1 iff ||A ⇒ B||〈X,Y,I〉 = 1. That is, attribute implica-

tions which are true in 〈X, Y, I〉 are those which are fully confident.

More generally: for B ⊆ Y , put

supp(B) =
|(A ∪B)↓|

|X|
.

Example
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What are association rules good for

main usage = marketing

usually, rules with large confidence (reliable) and smaller support are looked

for

see also applications part (REFERATY)
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Association rules problem

For prescribed values s and c, list all association rules with supp(A ⇒ B) ≥
s and conf(A ⇒ B) ≥ c. (interesting rules)

most common technique: via frequent itemsets

1. find all frequent itemsets (see later)

2. generate rules from frequent itemsets

Def. For given s, an itemset (set of attributes) B ⊆ Y is called frequent

(large) itemset if supp(B) ≥ s.

Example For s = 0.3 (30%),

L = {{be}, {br}, {mi}, {pb}, {br, pb}, }
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How to generate interesting rules from large itemsets?

input

<X,Y,I>, L (set of all frequent itemsets), s (support), c

(confidence)

output

R (set of all asociation rules satisfying s and c)

algorithm (ARGen)

R:=O; //empty set

for each l in L do

for each nonempty proper subset k of l do

if supp(l)/supp(k) >= c then

add rule k=>(l-k) to R

Observe: supp(l)/supp(k) = conf(k ⇒ l − k)

Example (previous cntd.) consider c = 0.8, take l = {br, pb}; there are
two nonempty subsets k of l: k = {br} and k = {pb} then br ⇒ pb IS NOT
interesting since

supp({br, pb})/supp({br}) = 0.6/0.8 = 0.75 6≥ c
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while pb ⇒ br IS interesting since

supp({pb, br})/supp({pb}) = 0.6/0.6 = 1.0 ≥ c.

(efficient implementation later)
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How to generate frequent itemsets (Apriori algorithm)

Lemma Any subset of a frequent itemset is frequent. If an itemset is not
frequent then no of its supersets is frequent.
Proof Obvious.

basic idea of apriori algorithm: Li . . . set of all frequent itemsets of size i

(i.e. with i items), Ci . . . set of all itemsets of size i which are candidates for
being frequent

1. in step i, Ci from Li−1 (if i = 1, put C1 = {{y} | y ∈ Y });

2. scanning 〈X, Y, I〉, generate Li, the set of all those candidates from Ci

which are frequent

How to get candidates Ci from frequent items Li−1?

1. what means “a candidate”: an itemset B ⊆ Y is considered a candidate
(for being frequent) if all of its subsets are frequent (in accordance with
above Lemma)

2. getting Ci from Li−1: find all B1, B2 ∈ Li−1 such that |B1 − B2| = 1 and
|B2 −B1| = 1 (i.e. |B1 ∩B2| = i− 2), and add B1 ∪B2 to Ci
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Lemma If Li−1 is the set of all frequent itemsets of size i − 1 then B is a

candidate (i.e., all subsets of B are frequent) of size i iff B = B1 ∪B2 where

B1, B2 ∈ Li−1 are such that |B1 − B2| = 1 and |B2 − B1| = 1. Moreover,

|B1 −B2| = 1 and |B2 −B1| = 1 iff |B1 ∩B2| = i− 2.

Example (previous cntd.) consider s = 0.3, c = 0.5

step 1:

C1 = {{br}, {br}, {je}, {mi}, {pb}}
L1 = {{br}, {br}, {mi}, {pb}}

step 2:

C2 = {{be, br}, {be, mi}, {be, pb}, {br, mi}, {br, pb}, {mi, pb}}
L2 = {{br, pb}}

stop (not itemset of size 3 can be frequent)
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Algorithms

input

L(i-1) //all frequent itemsets of size i-1

output

C(i) //candidates of size i

algorithm (Apriori-Gen)

C(i):=O; //empty set

for each B1 from L(i-1) do

for each B2 from L(i-1) different from B1 do

if intersection of B1 and B2 has just i-2 elements then

add union of B1 and B2 to C(i)
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down(B) means B↓

input

<X,Y,I> //data table

s //prescribed support

output

L //set of all frequent itemsets

algorithm (Apriori)

k:=0; //scan (step) number

L:=O; //emptyset

C(0):={ {y} | y from Y}

repeat

k:=k+1;

L(k):=O;

for each B from C(k) do

if |down(B)| >= s x |X| do // B is frequent

add B to L(k)

add all B from L(k) to L;

C(k+1):=Apriori-Gen(L(k))

until C(k+1)=O; \\empty set
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ke zkousce z assoc. rules: to, co je na slajdech; dalsi veci (efektivni algoritmy,

priklady) pristi semestr

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †84


