
Concept Lattices and

Formal Concept Analysis

Radim Bělohlávek

Dept. Computer Science

Palacký University, Olomouc

radim.belohlavek@upol.cz

INFO

This is a preliminary version of a text on formal concept analysis and related

methods.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 1

FORMAL CONCEPT ANALYSIS

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 2

What is FCA?

– method of analysis of object-attribute data

– output 1: hierarchical structure of clusters (concept lattice)

– output 2: base of attribute implications

– existing software support

– documented applications

– nontrivial open problems (mathematical, algorithmic, methodological)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 3

Origins of FCA

G. Birkhoff: Lattice Theory. AMS Col. Publ. 25, 1940.

M. Barbut: Note sur l’algèbre des techniques d’analyse hiérarchique. In:

B. Matalon: L’analyse hiérarchique. Gauthier-Villars, Paris, 1965, pp. 125–

146.

M. Barbut, B. Monjardet: Ordre et Classification, Vol. 2. Hachette,

Paris, 1970.

R. Wille: Restructuring lattice theory: an approach based on hierarchies

of concepts. In: Rival I.: Ordered Sets. Reidel, 1982, 445–470.

state of art (almost): B. Ganter, R. Wille: Formal Concept Analysis:

Mathematical Foundations. Springer, 1999.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 4

What is a concept?

• psychology (approaches: classical, prototype, exemplar, knowledge)

• logic (TIL)

• artificial intelligence (frames, learning of concepts)

• conceptual graphs (Sowa)

• “conceptual modeling”

• . . .

• traditional/Port-Royal logic

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 5

Traditional/Port-Royal approach to concepts

• concept := extent + intent

– extent = objects covered by concept

– intent = attributes covered by concept

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 6

Traditional/Port-Royal approach to concepts

• concept := extent + intent

– extent = objects covered by concept

– intent = attributes covered by concept

• example: DOG

– extent of dog = collection of all dogs

– intent of dog = collection of all dogs’ attributes (barks, has four limbs,

has tail, . . .)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 7

Traditional/Port-Royal approach to concepts

• concept := extent + intent

– extent = objects covered by concept

– intent = attributes covered by concept

• example: DOG

– extent of dog = collection of all dogs

– intent of dog = collection of all dogs’ attributes (barks, has four limbs,

has tail, . . .)

• concept hierarchy

– subconcept/superconcept relation

– concept1=(extent1,intent1) ≤ concept2=(extent2,intent2)

⇔ extent1 ⊆ extent2 (⇔ intent1 ⊇ intent2)

– DOG ≤ MAMMAL ≤ ANIMAL

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 8

Basic notions of FCA

• formal context (input data table)

• formal concept (cluster in data)

• concept lattice (hierarchical system of clusters)

• attribute implication (dependency in data)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis † 9

Formal context = input data

Def. Formal context is a triplet (X, Y, I) where

X . . . set of objects

Y . . . set of attributes

I ⊆ X × Y binary relation.

Interpretation: (x, y) ∈ I . . . object x has attribute y

formal context ≈ data table

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †10

Formal concept = cluster in data

Def. Induced operators . . . mappings ↑ : 2X → 2Y , ↓ : 2Y → 2X def. by:

A↑ = {y ∈ Y | for each x ∈ A : (x, y) ∈ I}

B↓ = {x ∈ X | for each y ∈ B : (x, y) ∈ I}

A↑ . . . attributes common to all objects from A

B↓ . . . objects sharing all attributes from B

Def. Formal concept in (X, Y, I) . . . (A, B), A ⊆ X, B ⊆ Y , s.t.

A↑ = B and B↓ = A.

A . . . extent . . . objects covered by formal concept

B . . . intent . . . attributes covered by formal concept

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †11

Formal concepts as maximal rectangles

Thm. Formal concepts are exactly maximal rectangles in data table.

Example

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

formal concept (A, B) = ({x1, x2, x3, x4}, {y3, y4})

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †12

Further formal concepts

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

I y1 y2 y3 y4

x1 X X X X

x2 X X X

x3 X X X

x4 X X X

x5 X

(A1, B1) = ({x1, x3, x4}, {y2, y3, y4})

(A2, B2) = ({x1, x2}, {y1, y3, y4})

(A3, B3) = ({x1, x2, x5}, {y1})

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †13

Concept lattice

Def. Subconcept-superconcept ordering ≤ of formal concepts is defined

by

(A1, B1) ≤ (A2, B2) iff A1 ⊆ A2 (iff B2 ⊆ B1).

Example DOG ≤ MAMMAL

Def. Concept lattice (Galois lattice) of (X, Y, I) is the set

B (X, Y, I) = {(A, B) | A↑ = B, B↓ = A}

equipped with ≤.

Rem. B (X, Y, I) . . . all concepts/clusters hidden in the data

Denote

Ext(X, Y, I) = {A ∈ 2X | 〈A, B〉 ∈ B (X, Y, I) for some B} (extents of concepts)

Int(X, Y, I) = {B ∈ 2Y | 〈A, B〉 ∈ B (X, Y, I) for some A} (intents of concepts)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †14

Alternative notation

≈ membership/characteristic function style

instead of A ⊆ U , consider corresponding CA ∈ 2U

that is: CA(u) =

 0 for u 6∈ A

1 for u ∈ A

we identify A with CA, i.e. we write A(u) = 0, A(u) = 1,

i.e. I(x, y) = 1 if 〈x, y〉 ∈ I

then

A↑(y) =
∧

x∈X A(x) → I(x, y)

B↓(x) =
∧

y∈Y B(y) → I(x, y)

where
∧

denotes min and → is bivalent implication connective

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †15

Formal concepts as maximal rectangles

A rectangle in 〈X, Y, I〉 is a pair 〈A, B〉 such that for each x ∈ A and y ∈ B we

have 〈x, y〉 ∈ I (that is: the rectangle corresponding to A and B is filled with

1’s). For two rectangles 〈A1, B1〉 and 〈A2, B2〉 we put 〈A1, B1〉 v 〈A2, B2〉 iff

A1 ⊆ A2 and B1 ⊆ B2.

Theorem Formal fuzzy concepts are exactly maximal rectangles (w.r.t. v)

in 〈X, Y, I〉.

Proof (by a simple reflection, viz prednasky) 2

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †16

Related mathematical structures

Def. A Galois connection between sets X and Y is a pair 〈f, g〉 of mappings

f : 2X → 2Y and g : 2Y → 2X satisfying for A, A1, A2 ⊆ X, B, B1, B2 ⊆ Y :

A1 ⊆ A2 ⇒ f(A2) ⊆ f(A1), (1)

B1 ⊆ B2 ⇒ g(B2) ⊆ g(B1), (2)

A ⊆ g(f(A)), (3)

B ⊆ f(g(B). (4)

Lemma (chaining of Galois connection) For a Galois connection 〈f, g〉
between X and Y we have f(A) = f(g(f(A))) and g(B) = g(f(g(B))) for any

A ⊆ X and B ⊆ Y .

Proof We prove only f(A) = f(g(f(A))) (g(B) = g(f(g(B))) is dual): f(A) ⊆
f(g(f(A))) follows from (4) by putting B = f(A). Since A ⊆ g(f(A)) by (3),

we get f(A) ⊇ f(g(f(A))) by application of (1). 2

Remark For a Galois connection 〈f, g〉 between X and Y we put fix(f, g) =

{〈A, B〉 | A ∈ 2X , B ∈ 2Y , A↑ = B, B↓ = A}. fix(f, g) is called the set of all

fixed points of 〈f, g〉.
Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †17

Def. A closure operator on a set X is a mapping C : 2X → 2X satisfying

for each A, A1, A2 ⊆ X

A ⊆ C(A), (5)

A1 ⊆ A2 ⇒ C(A1) ⊆ C(A2), (6)

A = C(C(A)). (7)

Remark For a closure operator C on X we put fix(C) = {A | A ∈ 2XA =

C(A)}. fix(C) is called the set of all fixed points of C.

Def. A complete lattice is a partially ordered set 〈V,≤〉 such that for each

K ⊆ V there exists both the infimum inf(K) of K and the supremum sup(K)

of K.

Recall: partial order, lower bound, upper bound, infimum, supremum, . . .

Given a formal context 〈X, Y, I〉, the induced operators ↑ and ↓ will also be

denoted by ↑I and ↓I .

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †18

Theorem (fixpoints of closure operators) For a closure operator C on X,

〈fix(C),⊆〉 is a complete lattice with infima and suprema given by∧
j∈J

Aj =
⋂

j∈J

Aj, (8)

∨
j∈J

Aj = C(
⋃

j∈J

Aj). (9)

Proof Evidently, 〈fix(C),⊆〉 is a partially ordered set. First, we verify that for

Aj ∈ fix(C) we have
⋂

j∈J Aj ∈ fix(C), i.e.
⋂

j∈J Aj = C(
⋂

j∈J Aj).
⋂

j∈J Aj ⊆
C(

⋂
j∈J Aj) is obvious (a property of a closure operator). Conversely, we have

C(
⋂

j∈J Aj) ⊆
⋂

j∈J Aj iff for each j ∈ J we have C(
⋂

j∈J Aj) ⊆ Aj which is true.

indeed, we have
⋂

j∈J Aj ⊆ Aj and so C(
⋂

j∈J Aj) ⊆ C(Aj) = Aj. Now it is

clear that
⋂

j∈J Aj is the infimum of Aj’s (first,
⋂

j∈J Aj is less than each Aj;

second,
⋂

j∈J Aj is above any A ∈ fix(C) which is less than all Aj’s).

Second, we verify
∨

j∈J Aj = C(
⋃

j∈J Aj). Since
∨

j∈J Aj ⊇ Aj for any j ∈ J,

we get
∨

j∈J Aj ⊇
⋃

j∈J Aj, and so
∨

j∈J Aj = C(
∨

j∈J Aj) ⊇ C(
⋃

j∈J Aj). On

the other hand, C(
⋃

j∈J Aj) is a fixpoint which is above each Aj, and so it

is above their supremum
∨

j∈J Aj, i.e. C(
⋃

j∈J Aj) ⊇
∨

j∈J Aj. To sum up,∨
j∈J Aj = C(

⋃
j∈J Aj). 2

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †19

Theorem (binary relation induces Galois connection) For each formal

context 〈X, Y, I〉, the pair 〈↑I , ↓I〉 forms a Galois connection between X and

Y .

Proof Easy by direct verification (viz prednasky).

Remark Therefore, a concept lattice B (X, Y, I) is but a system of fixed points

of the induced Galois connection 〈↑, ↓〉, i.e. B (X, Y, I) = fix(↑, ↓).

Conversely, a question arises as to whether each Galois connection 〈f, g〉 is

induced by some binary relation I between X and Y .

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †20

Theorem (Galois connection is induced by binary relation) Let 〈f, g〉 be

a Galois connection between X and Y . Then putting for each x ∈ X and

y ∈ Y

〈x, y〉 ∈ I iff y ∈ f({x}) or, equivalently, iff x ∈ g({y}), (10)

I is a binary relation between X and Y such that the induced Galois connection

〈↑I , ↓I〉 coincides with 〈f, g〉, i.e. 〈↑I , ↓I〉 = 〈f, g〉.

Proof First, let us show that y ∈ f({x}) iff x ∈ g({y}): From y ∈ f({x}) we

get {y} ⊆ f({x}) from which we get {x} ⊆ g(f({x})) ⊆ g({y}), i.e. x ∈ g({y}).

In a similar manner, x ∈ g({y}) implies y ∈ f({x}). That is, we have 〈x, y〉 ∈ I

iff y ∈ f({x}) iff x ∈ g({y}).

Now, for each A ⊆ X we have f(A) = f(∪x∈A{x}) = ∩x∈Af({x}) = ∩x∈A{y ∈
Y | y ∈ f({x})} = ∩x∈A{y ∈ Y | 〈x, y〉 ∈ I} = {y ∈ Y | for each x ∈ A : 〈x, y〉 ∈
I} = A↑I .

Dually, for B ⊆ Y we get g(B) = B↓I . 2

Remark (1) The relation I induced from a Galois connection 〈f, g〉 by (10)

will also be denetode by I〈f,g〉.

(2) It is easy to see that I = I〈↑I 〉,〈↓I 〉 and 〈↑, ↓〉 = 〈
↑I〈↑,↓〉,

↓I〈↑,↓〉〉. That is,

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †21

there is a one-to-one correspondence between binary relations between I and

Galois connections between X and Y .

Corollary (consequences of chaining) Ext(X, Y, I) = {B↓ | B ∈ 2Y } = {A↑↓ | A ∈
2X}; Int(X, Y, I) = {A↑ | A ∈ 2X} = {B↓↑ | B ∈ 2Y }. Furthermore, B (X, Y, I) =

{〈A, A↑〉 | A ∈ Ext(X, Y, I)} = {〈B↓, B〉 | B ∈ Int(X, Y, I)}.

Proof (easy, viz prednasky)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †22

Theorem (from Galois connection to closure operator) (1) If 〈f, g〉 is a

Galois connection between X and Y then CX = f ◦ g is a closure operator on

X and CY = g ◦ f is a closure operator on Y .

(2) If 〈f, g〉 is induced by I, i.e. 〈f, g〉 = 〈↑I , ↓I〉, then B (X, Y, I) is isomorphic

to 〈fix(CX),⊆〉 and an isomorphism is given by sending 〈A, B〉 ∈ B (X, Y, I) to

A ∈ 〈fix(CX),⊆〉. Moreover, B (X, Y, I) is dually isomorphic to 〈fix(CX),⊆〉 and

a dual isomorphism is given by sending 〈A, B〉 ∈ B (X, Y, I) to B ∈ 〈fix(CY),⊆〉.

Proof (1) We show that f ◦ g : 2X → 2X is a closure operator on X: (5) is

A ⊆ g(f(A)) which is true by definition of a Galois connection.

(6): A1 ⊆ A2 impies f(A2) ⊆ f(A1) which implies g(f(A1)) ⊆ g(f(A2)).

(7): Since f(A) = f(g(f(A))), we get g(f(A)) = g(f(g(f(A)))).

(2) (viz prednasky) Follows immediately by definition of ≤ (〈A1, B2〉 ≤ 〈A2, B2〉
iff A1 ⊆ A2 iff B1 ⊇ B2) and by the above Corollary (in particular, by

B (X, Y, I) = {〈A, A↑〉 | A ∈ Ext(X, Y, I)} = {〈B↓, B〉 | B ∈ Int(X, Y, I)}). 2

Remark We can see that for 〈X, Y, I〉, and CX = ↑↓ and CY = ↓↑ we have

Ext(X, Y, I) = fix(CX) and Int(X, Y, I) = fix(CY).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †23

Further issues in Galois connections etc.

(nebude pozadovano na zkousce)

Theorem (alternative definition of a Galois connection) 〈f, g〉 form a

Galois connection between X and Y iff for each A ⊆ X and B ⊆ Y we have

A ⊆ B↓ if and only if B ⊆ A↑.

Proof (easy, to be written)

Theorem (from closure operator to Galois connection) Let C : 2X → 2X

be a closure operator in X. Define I ⊆ X × fix(C) by 〈x, A〉 ∈ I iff x ∈ A for

x ∈ X, A ∈ fix(C). Then 〈fix(C),⊆〉 is isomorphic to B (X, fix(C), I).

Proof (to be written)

concept lattices in mathematics

• each complete lattice (V,≤) is isomorphic to some concept lattice, e.g.

(V,≤) ∼= B (V, V,≤);

• for partially ordered set (V,≤) ... B (V, V,≤) is the MacNeille completion

of (V,≤);

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †24

• V finitely dimensional vector space, V ∗ dual space, a ⊥ ϕ means ϕ(a) = 0,

then B (V, V ∗,⊥) is the lattice of subspaces of V ;

• . . .

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †25

Main theorem of concept lattices

Theorem (Wille, 1982) (1) B (X, Y, I) is a complete lattice with infima

and suprema given by∧
j∈J

〈
Aj, Bj

〉
= 〈

⋂
j∈J

Aj, (
⋃

j∈J

Bj)↓↑〉 ,
∨

j∈J

〈
Aj, Bj

〉
= 〈(

⋃
j∈J

Aj)↑↓,
⋂

j∈J

Bj〉 . (11)

(2) Moreover, an arbitrary complete lattice V = (V,≤) is isomorphic to

B (X, Y, I) iff there are mappings γ : X → V , µ : Y → V such that

(i) γ(X) is
∨

-dense in V, µ(Y) is
∧

-dense in V;

(ii) γ(x) ≤ µ(y) iff (x, y) ∈ I.

Proof (dukaz jen k casti (1); plyne z vyse uvedenych vysledku o Gal. konexich

a uzav. operatorech, viz prednasky):

We check
∧

j∈J

〈
Aj, Bj

〉
= 〈

⋂
j∈J Aj, (

⋃
j∈J Bj)↓↑〉: First, B (X, Y, I) is a com-

plete lattice since it is isomorphic to a complete lattice Ext(X, Y, I) = fix(↑↓)
(and dually isomorphic to a complete lattice Int(X, Y, I) = fix(↓↑)). Moreover,

infima in B (X, Y, I) correspond to infima in Ext(X, Y, I) and to suprema in

Int(X, Y, I), from which we immediately get that the extent of
∧

j∈J

〈
Aj, Bj

〉
Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †26

is the infimum
∧

j∈J Aj of Aj’s (taken in Ext(X, Y, I)) which is
⋂

j∈J Aj, and

that the intent of
∧

j∈J

〈
Aj, Bj

〉
is the supremum

∨
j∈J Bj of Bj’s (taken in

Int(X, Y, I)) which is
⋃

j∈J(Bj)↓↑.

Checking the formula for
∨

j∈J

〈
Aj, Bj

〉
is dual. 2

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †27

Algorithms for concept lattices

Problem:

Input: (X, Y, I)

Output: B (X, Y, I) (possibly plus ≤)

Very good survey and comparison of algorithms:

Kuznetsov S. O., Obiedkov S. A.: Comparing performance of algorithms for

generating concept lattices. J. Experimental & Theoretical Artificial Intelli-

gence 14(2003), 189–216.

• one of the first: Norris E. M.: An algorithm for computing the maximal

rectangles of a binary relation. J. ACM 21(1974), 356–366.

• often used 1: Ganter’s NextClosure

• often used 2: Lindig’s UpperNeighbor

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †28

NextClosure algorithm

suppose X = {1, . . . , m}, Y = {1, . . . , n}

for A, B ⊆ Y , i ∈ {1, . . . , n} put

A <i B iff i ∈ B −A a A ∩ {1, . . . , i− 1} = B ∩ {1, . . . , i− 1}.

and

A < B iff A <i B for some i.

< . . . lexicographic ordering

For A ⊆ Y , i ∈ {1, . . . , n}, put

A⊕ i := ((A ∩ {1, . . . , i− 1}) ∪ {i})↓↑.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †29

Lemma The following assertions are true for any B, D, D1, D2 ⊆ Y :

(1) If B <i D1, B <j D2, and i < j then D2 <i D1;

(2) if i 6∈ B then B < B ⊕ i;

(3) if B <i D and D = D↓↑ then B ⊕ i ⊆ D;

(4) if B <i D and D = D↓↑ then B <i B ⊕ i.

Proof (1) by easy inspection.

(2) is true because B ∩{1, . . . , i−1} ⊆ B⊕ i∩{1, . . . , i−1} and i ∈ (B⊕ i)−B.

(3) Putting C1 = B ∩{1, . . . , i−1} and C2 = {i} we have C1∪C2 ⊆ D, and so

B ⊕ i = (C1 ∪ C2)↓↑ ⊆ D↓↑ = D.

(4) By assumption, B ∩ {1, . . . , i − 1} = D ∩ {1, . . . , i − 1}. Furthermore, (3)

yields B⊕ i ⊆ D and so B ∩ {1, . . . , i− 1} ⊇ B⊕ i∩ {1, . . . , i− 1}. On the other

hand, B⊕i∩{1, . . . , i−1} ⊇ (B∩{1, . . . , i−1})↓↑∩{1, . . . , i−1} ⊇ B∩{1, . . . , i−1}.

Therefore, B ∩ {1, . . . , i− 1} = B ⊕ i ∩ {1, . . . , i− 1}. Finally, i ∈ B ⊕ i proving

B <i B ⊕ i.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †30

Theorem The least intent B+ greater (w.r.t. <) than B ⊆ Y is given by

B+ = B ⊕ i

where i is the greatest one with B <i B ⊕ i.

Proof Let B+ be the least intent greater than B (w.r.t. to <). We have

B < B+ and thus B <i B+ for some i such that i ∈ B+. By Lemma (4),

B <i B⊕i, i.e. B < B⊕i. Lemma (3) yields B⊕i ≤ B+ which gives B+ = B⊕i

since B+ is the least intent with B < B+. It remains to show that i is the

greatest one satisfying B <i B ⊕ i. Suppose B <k B ⊕ k for k > i. By Lemma

(1), B⊕ k <i B⊕ i which is a contradiction to B⊕ i = B+ < B⊕ k (B+ is the

least intent greater than B and so B+ < B ⊕ k). Therefore we have k = i.

NextClosure algorithm

A:=leastIntent;

store(A);

while not(A=X) do

A:=A+;

store(A);

endwhile.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †31

complexity: time complexity of A+ is O(|X|2 · |Y |);

time complexity of NextClosure is O(|X|2 · |Y | · |B (X, Y, I)|)

⇒ polynomial time delay complexity (Johnson D. S., Yannakakis M., Pa-

padimitrou C. H.: On generating all maximal independent sets. Inf. Process-

ing Letters 27(1988), 129–133.)

Note! Almost no space requirements. But: NextClosure does not directly

give information about ≤.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †32

UpperNeighbors algorithm

(nebude na zkousce pozadovan)

Idea:

start with the least formal concept (∅↑↓, ∅↑)

for each (A, B) generate all its upper neighbors (and store the necessary

information)

based on the following:

Thm. If (A, B) ∈ B (X, Y, I) is not the largest concept then (A ∪ {x})↑↓,
with x ∈ X − A, is an extent of an upper neighbor of (A, B) iff for each

z ∈ (A ∪ {x})↑↓ −A we have (A ∪ {x})↑↓ = (A ∪ {z})↑↓.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †33

UpperNeighbor procedure

min:=X −A;

neighbors:=∅;
for x ∈ X −A do

B1 := (A ∪ {x})↑; A1 := B
↓
1;

if (min∩((A1−A)−{x}) = ∅) then neighbors:=neighbors∪{(A1, B1)}
else min:=min−{x};
enddo.

complexity polynomial time delay with delay O(|X|2 · |Y |) (same as NextClo-

sure)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †34

Attribute implications

Def. (Attribute) implication (over attributes Y) is an expression A ⇒ B

where A, B ⊆ Y .

Why A ⇒ B? Primary reading: “if object x has all attributes from A then

x has all attributes from B”

Denote Imp = {A ⇒ B | A, B ⊆ Y } (set of all attribute implications).

Def. A ⇒ B is true in C ⊆ Y if A ⊆ C implies B ⊆ C;

denoted by ||A ⇒ B||C = 1 (or C |= A ⇒ B)

Def. (Mod and Fml) For a set T ⊆ Imp (set of attribute implications),

M⊆ 2Y (set of sets of attributes), put

Mod(T) = {C ∈ 2Y | for each A ⇒ B ∈ T : ||A ⇒ B||C = 1},
Fml(M) = {A ⇒ B ∈ Imp | for each C ∈M : ||A ⇒ B||C = 1}.

Rem. (1) Mod(T) . . . models of T (all sets of attributes in which each

implications from T are true); Fml(M) . . . all implications true in (each set

of attributes from) M
Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †35

(2) Put X = Imp, Y = 2Y , define I ⊆ X ×Y by 〈A ⇒ B, C〉 ∈ I iff ||A ⇒ B||C =

1. Then Mod and Fml form the Galois connection induced by 〈X ,Y, I〉.
Therefore, we can use all properties of Galois connections for Mod and Fml.

(3) Mod and Fml . . . standard logical approach.

For M⊆ 2Y and T = {Aj ⇒ Bj | j ∈ J}:

||T ||M = 1 (or M |= T) iff for each C ∈M, A ⇒ B ∈ T : ||A ⇒ B||C = 1

(in words: T is true in M)

Rem. Note: ||T ||M = 1 iff M⊆ Mod(T) iff T ⊆ Fml(M)

Denote:

Fml(X, Y, I) = Fml({{x}↑ | x ∈ X}) . . . implications true in data,

({x}↑ is a row in table 〈X, Y, I〉)
||A ⇒ B||〈X,Y,I〉 = 1 iff A ⇒ B ∈ Fml(X, Y, I)

Sometimes: validity of A ⇒ B in B(X, Y, I) means validity in Int(X, Y, I).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †36

Connection to predicate logic?

Rem. M |= A ⇒ B . . . validity of a corresponding monadic formula c(A ⇒ B)

in a corresponding structure c(M).

language given by unary relation symbols ry (y ∈ Y);

A ⇒ B corresponds to formula ϕ(A ⇒ B) = &y∈Ary(x) ⇒ &y∈Bry(x);

a set M of subsets of Y corresponds to structure M with support M = M
in which

each ry is interpreted by rM
y = {C ∈M | y ∈ C}.

Then:

A ⇒ B is true in M (in the above sense) iff ϕ(A ⇒ B) is true in M (in the

standard sense of predicate logic).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †37

Basic connection to FCA

Thm. A ⇒ B is true in (X, Y, I) IFF A ⇒ B is true in Int(X, Y, I) IFF B ⊆ A↓↑

IFF A↓ ⊆ B↓.

Proof nontrivial part is “if A ⇒ B is true in (X, Y, I) then A ⇒ B is true in

B (X, Y, I)”: Let A ⇒ B be true in (X, Y, I), i.e. A↓ ⊆ B↓. Suppose A ⊆ D for

〈C, D〉 ∈ B (X, Y, I), i.e. A ⊆ C↑. This is equivalent to C ⊆ A ↓. Therefore

C ⊆ B↓, which is equivalent to B ⊆ C↑ = D, proving A ⇒ B is true in

B (X, Y, I).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †38

Entailment, base

Def. A ⇒ B (semantically) follows from a set T of implications (T |=
A ⇒ B) if A ⇒ B is true in each C ⊆ Y which is a model of T , i.e.

T |= A ⇒ B iff A ⇒ B ∈ Fml(Mod(T)).

Meaning: T |= A ⇒ B . . . A ⇒ B is true whenever each Ai ⇒ Bi ∈ T is true.

T ⊆ Imp is called

• closed if it contains each implication which follows from T , i.e. T =
FmlMod(T),

• non-redundant if no implication from T follows from the rest (i.e. T −
{A ⇒ B} 6|= A ⇒ B),

• complete w.r.t. 〈X, Y, I〉 if T is true in 〈X, Y, I〉 and each implication true
in 〈X, Y, I〉 follows from T ,

• base w.r.t. 〈X, Y, I〉 if it is complete w.r.t. 〈X, Y, I〉 and non-redundant.

Why base? To have less implications which carry the same information.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †39

Lemma For T ⊆ Imp:

1. T is true in 〈X, Y, I〉 IFF Mod(T) ⊇ Int(X, Y, I),

2. each implication true in 〈X, Y, I〉 follows from T IFF Mod(T) ⊆ Int(X, Y, I).

Proof “1.”: T is true in 〈X, Y, I〉 IFF (by def.) T ⊆ Fml(Int(X, Y, I)) IFF (by

properties of Gal. conn.) Mod(T) ⊇ Int(X, Y, I).

“2.”: First, show Claim: ModFml(Int(X, Y, I)) = Int(X, Y, I).

Proof of Claim: “⊇” by properties of Gal. conn; “⊆”: Let A ∈ ModFml(Int(X, Y, I)).

Then A ⇒ A↓↑ ∈ Fml(Int(X, Y, I)) (indeed: for B ∈ Int(X, Y, I), we have: if

A ⊆ B then A↓↑ ⊆ B↓↑ = B, i.e. ||A ⇒ A↓↑||B = 1). Thus, in particular,

||A ⇒ A↓↑||A = 1 which means that if A ⊆ A (which is true) then A↓↑ ⊆ A

which means A ∈ Int(X, Y, I).

Second, each implication true in 〈X, Y, I〉 follows from T IFF (by def.) Fml(X, Y, I) ⊆
Fml(Mod(T)) IFF (by Fml(X, Y, I) = Fml(Int(X, Y, I))) Fml(Int(X, Y, I)) ⊆
Fml(Mod(T)) IFF (by prop. of Gal. conn.) ModFml(Int(X, Y, I)) ⊇ Mod(Fml(Mod(T))) =

Mod(T) IFF (by Claim) Mod(T) ⊆ Int(X, Y, I).

Corollary T is complete w.r.t. 〈X, Y, I〉 IFF Mod(T) = Int(X, Y, I).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †40

Rules of entailment

Some rules of entailment (deduction):

A ⇒ A is always true,

if A ⇒ B and B ⇒ C are true then A ⇒ C is true (transitivity),

if A ⇒ B is true and B′ ⊆ B then A ⇒ B′ is true (projectivity),

. . .

Is there a small set of simple rules for obtaining all consequences of a set T

of attribute implications?

A consequence of theorem from relational databases (caution!, different

notions, the same concept of entailment, Maier D.: The Theory of Relational

Databases, Computer Science Press, 1983):

Thm. T is closed iff for each A, B, C, D ⊆ Y we have

1. A ⇒ A ∈ T ;

2. if A ⇒ B ∈ T then A ∪ C ⇒ B ∈ T ;

3. if A ⇒ B ∈ T and B ∪ C ⇒ D ∈ T then A ∪ C ⇒ D ∈ T .

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †41

Proof (direct) “⇒” easy.

“⇐”: Denote X+ the largest X such that X ⇒ X+ ∈ T (this is correct: from

X ⇒ Y , X ⇒ Z ∈ T we get X ⇒ Y ∪ Z ∈ T , SHOW using 1.–3.) Assume 1.–3.

Let T ` A ⇒ B mean that A ⇒ B can be obtained from T using rules encoded

in 1.–3. It is sufficient to show that if T |= A ⇒ B then T ` A ⇒ B (since then

A ⇒ B ∈ T). By contradiction, assume T 6` A ⇒ B. We need T 6|= A ⇒ B, i.e.

we need a set which is a model of T but not of A ⇒ B. We show that A+ is

such a set.

First, A+ 6|= A ⇒ B: Clearly, A ⊆ A+. We cannot have B ⊆ A+ since then

from A ⇒ A+ ∈ T we get (using 1.–3.) A ⇒ B ∈ T , a contradiction to

T 6` A ⇒ B.

Second, we show that for each C ⇒ D ∈ T , A+ |= C ⇒ D: Suppose C ⊆ A+.

We get A+ ⇒ C ∈ T (using A+ ⇒ A+ and projectivity which follows from 1.–

3.). So we have A ⇒ A+, A+ ⇒ C, C ⇒ D ∈ T and transitivity (follows from

1.–3.) gives A ⇒ D ∈ T , i.e. D ⊆ A+.

Note (exercise): verify that using 1.–3. we have:

projectivity: A ⇒ B ∈ T , C ⊆ B imply A ⇒ C ∈ T

transitivity: A ⇒ B, B ⇒ C ∈ T imply A ⇒ C ∈ T

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †42

Pseudointents and Guigues-Duquenne base

Guigues J.-L., Duquenne V.: Familles minimales d’implications informatives

resultant d’un tableau de donnes binaires. Math. Sci. Humaines 95(1986),

5–18.

Recall:

(1) A closure system is a sytem closed under arbitrary intersections.

(2) Closure systems vs. closure operators:

A closure system on a set X is a nonempty system S ⊆ 2X which is closed

under arbitrary intersections and contains X.

This means: the intersection of any members of S belongs to S (for any

system {Aj | j ∈ J} ⊆ S, ∩jAj ∈ S); and X ∈ S.

There is a one-to-one relationship between closure systems on X and closure

operators on X. Given a closure operator C on X, SC = {A ∈ 2X | A =

C(A)} = fix(C) is a closure system. Given a closure system on X, putting

CS(A) =
⋂
{B ∈ S | A ⊆ B}

for any A ∈ 2X, CS is a closure operator on X. This is a one-to-one relation-

ship, i.e. C = CSC
and S = SCS.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †43

Lemma For a set T of attribute implications, Mod(T) = {A ⊆ Y | A |= T} is

a closure system.

Proof (1) Mod(T) 6= ∅ since Y ∈ Mod(T).

(2) Let Cj ∈ Mod(T) (j ∈ J). For any A ⇒ B ∈ T , if A ⊆
⋂

j Cj then for

each j ∈ J: A ⊆ Cj, and so B ⊆ Cj (since Cj ∈ Mod(T), thus in particular

Cj |= A ⇒ B), from which we have B ⊆
⋂

j Cj.

We showed that Mod(T) is nonempty and is closed under intersections, i.e.

Mod(T) is a closure system.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †44

Def. Pseudointent of (X, Y, I) is a subset A ⊆ Y for which A 6= A↓↑ and

B↓↑ ⊆ A for each pseudointent B ⊂ A.

Thm. (Guigues-Duquenne basis, stem basis)

The set T = {A ⇒ A↓↑ | A is a pseudointent of (X, Y, I)} of implications is a

basis.

Proof We show that T is complete and non-redundant.

Complete: It suffices to show that Mod(T) ⊆ Int(X, Y, I). Let C ∈ Mod(T).

Assume C 6= C↓↑. Then C is a pseudointent (indeed, if P ⊂ C is a pseudoin-

tent then since ||P ⇒ P ↓↑||C = 1, we get P ↓↑ ⊆ C). But then C ⇒ C↓↑ ∈ T and

so ||C ⇒ C↓↑||C = 1. But the last fact means that if C ⊆ C (which is true)

then C↓↑ ⊆ C which would give C↓↑ = C, a contradiction with the assumption

C↓↑ 6= C. Therefore, C↓↑ = C, i.e. C ∈ Int(X, Y, I).

Non-redundant: Take any P ⇒ P ↓↑. We show that T−{P ⇒ P ↓↑} 6|= P ⇒ P ↓↑.
Since ||P ⇒ P ↓↑||P = 0 (obvious, check), it suffices to show that ||T −
{P ⇒ P ↓↑}||P = 1. That is, we need to show that for each Q ⇒ Q↓↑ ∈
T − {P ⇒ P ↓↑} we have ||Q ⇒ Q↓↑||P = 1, i.e. that if Q ⊆ P then Q↓↑ ⊆ P .

But this follows from the definition of a pseudointent (applt to P).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †45

Lemma If P, Q are intents or pseudointents and P 6⊆ Q, Q 6⊆ P , then P ∩Q

is an intent.

Proof Let T = {R ⇒ R↓↑ | R a pseudointent} be the G.-D. basis. Since T is

complete, it is sufficient to show that P ∩Q ∈ Mod(T) (since then, P ∩Q is a

model of any implication which is true in 〈X, Y, I〉, and so P ∩Q is an intent).

Obviously, P, Q are models of T−{P ⇒ P ↓↑, Q ⇒ Q↓↑}, whence P∩Q is a model

of T − {P ⇒ P ↓↑, Q ⇒ Q↓↑} (since the set of models is a closure system, i.e.

closed under intersections).

Therefore, to show that P ∩ Q is a model of T , it is sufficient to show that

P ∩ Q is a model of {P ⇒ P ↓↑, Q ⇒ Q↓↑}. Due to symmetry, we only verify

that P ∩ Q is a model of {P ⇒ P ↓↑: But this is trivial: since P 6⊆ Q, the

condition “if P ⊆ P ∩Q implies P ↓↑ ⊆ P ∩Q” is satisfied for free. The proof

is complete.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †46

Lemma If T is complete, then for each pseudointent P , T contains A ⇒ B

with A↓↑ = P ↓↑

Proof For pseudointent P , P 6= P ↓↑, i.e. P is not an intent. Therefore,

P cannot be a model of T (since models of a complete T are intents).

Therefore, there is A ⇒ B ∈ T such that ||A ⇒ B||P = 0, i.e. A ⊆ P but

B 6⊆ P . As ||A ⇒ B||〈X,Y,I〉 = 1, we have B ⊆ A↓↑ (Thm. on basic connections

. . .). Therefore, A↓↑ 6⊆ P (otherwise B ⊆ P , a contradiction). Therefore,

A↓↑ ∩ P is not an intent (). By the foregoing Lemma, P ⊆ A↓↑ which gives

P ↓↑ ⊆ A↓↑. On the other hand, A ⊆ P gives A↓↑ ⊆ P ↓↑. Altogether, A↓↑ = P ↓↑,
proving the claim.

Thm. (Guigues-Duquenne base is smalest)

If T is the Guigues-Duquenne base and T ′ is complete then |T | ≤ |T ′|.

Proof Direct corollary of the above Lemma.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †47

Computing Guigues-Duquenne base

P ... set of all pseudointents of 〈X, Y, I〉

THE base: {A ⇒ A↓↑ | A ∈ P}

Q: What do we need? A: Compute all pseudointents.

Lemma The set of all P which are intents or pseudointents is a closure

system.

Q: How to compute the fixed points (closed sets)?

For Z ⊆ Y , T a set of implications, put

ZT = Z ∪
⋃
{B | A ⇒ B ∈ T, A ⊂ Z}

ZT0 = Z

ZTn = (ZTn−1)T (n ≥ 1)

define CT : 2Y → 2Y by

CT (Z) =
⋃∞

n=0 ZTn (note: terminates, Y finite)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †48

Thm. Let T = {A ⇒ A↓↑ | A ∈ P} (G.-D. base). Then
(1) CT is a closure operator,
(2) P is a fixed point of CT iff P ∈ P (pseudointent) or P ∈ Int(X, Y, I)
(intent).

Proof (1) easy

(2) P ∪ Int(X, Y, I) ⊆ fix(CT) easy. fix(CT) ⊆ P ∪ Int(X, Y, I): It suffices to
show that if P ∈ fix(CT) is not an intent (P 6= P ↓↑) then P is an pseudointent.
So take P ∈ fix(CT), i.e. P = CT (P), which is not an intent. Take any
pseudointent Q ⊂ P . By definition (notice that Q ⇒ Q↓↑ ∈ T), Q↓↑ ⊆ CT (P) =
P which means that P is a pseudointent. The proof is complete.

So: fix(CT) = P ∪ Int(X, Y, I)

Intention: compute P by computing fix(CT) and excluding Int(X, Y, I).

Computing fix(CT) by Ganter’s next closure algorithm.

Caution! In order to compute CT , we need T , i.e. we need P, which we do
not know in advance.

But we are not in circulus vitiosus: The part of T (or P) which is needed is
already available (computed).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †49

Conceptual scaling

(na zkousce nebude pozadovano)

= way to deal with data tables with more general attributes (nominal, ordinal)

transformation (scaling) of general data table to a suitable formal

context (only binary attributes)

For details see

B. Ganter, R. Wille: Formal Concept Analysis: Mathematical Foundations.

Springer, 1999.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †50

Selected applications

Software engineering

• G. Snelting: Reengineering of configurations based on mathematical con-

cept analysis. ACM Trans. Software Eng. Method. 5(2):146–189, April

1996.

• G. Snelting, F. Tip: Understanding class hierarchies using concept anal-

ysis. ACM Trans. Program. Lang. Syst. 22(3):540–582, May 2000.

• U. Dekel, Y. Gill. Visualizing class interfaces with formal concept analysis.

In ACM OOPSLA’03 Conference, pages 288–289, Anaheim, CA, October

2003.

• G. Ammons, D. Mandelin, R. Bodik, J. R. Larus. Debugging temporal

specifications with concept analysis. In Proc. ACM SIGPLAN’03 Con-

ference on Programming Language Design and Implementation, pages

182–195, San Diego, CA, June 2003.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †51

Database views

• C. Carpineto, R. Romano: A lattice conceptual clustering system and its

application to browsing retrieval. Machine Learning 24:95–122, 1996.

• Snášel et al.: Navigation through query result.

Analysis of texts (medical records, e-mails)

• R. Cole, P. Eklund: Scalability in formal context analysis: a case study

using medical texts. Computational Intelligence 15:11–27, 1999.

• R. Cole: Analyzing e-mail collections using formal concept analysis (preprint).

Software support

• Toscana, Anaconda, . . .

• SW developed jointly by Dept. Comp. Sci., Palacký University, Olomouc

and Dept. Comp. Sci., Technical University of Ostrava (public, to be

released)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †52

FCA of data with fuzzy attributes = fuzzy concept lattices

Motivation

• Fuzzy attributes ... expensive, small, etc.

• Concepts are fuzzy

Fuzzy sets and fuzzy logic

• scale of truth degrees (e.g. [0, 1])

• logic: Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, 1998.

• relational systems: Bělohlávek R.: Fuzzy Relational Systems: Founda-

tions and Principles. Kluwer, 2002.

Pursued by Burusco, Fuentes-Gonzales, Pollandt, Bělohlávek et al., . . .

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †53

Basics from fuzzy logic

• structure of truth degrees: complete residuated lattice

L = 〈L,∨,∧,⊗,→, 0, 1〉, where 〈L,∨,∧, 0, 1〉 . . . complete lattice,

〈L,⊗, 1〉 . . . commutative monoid,

〈⊗,→〉 . . . adjoint pair (i.e. x ≤ y → z iff x⊗ y ≤ z)

e.g. L is a finite subchain of [0, 1], ⊗ . . . left-continuous t-norm,

(Gödel, Lukasiewicz) and

x → y =
∨

z∈L

{z | x⊗ z ≤ y}

• example 1 (Lukasiewicz): a⊗ b = max(0, a + b− 1) + →

• example 2 (G̈’odel): a⊗ b = min(a, b) + →

• fuzzy set (L-set) A in X . . . A : X → L

A(x) . . . the truth degree of “x belongs to A”

fuzzy relation I between X and Y : . . . I : X × Y → L

I(x, y) . . . the truth degree of “x is in relation to y”

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †54

• A ⊆ B if A(x) ≤ B(x) for each x ∈ X

more generally: graded subsethood between L-sets

S(A, B) =
∧

x∈x

A(x) → B(x)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †55

Formal fuzzy context = input data

Def. Formal fuzzy context is a triplet (X, Y, I) where

X . . . set of objects

Y . . . set of attributes

I : X × Y → L binary fuzzy relation.

Interpretation: I(x, y) . . . degree to which object x has attribute y

formal fuzzy context ≈ data table

I y1 y2 y3 y4

x1 1 1 0 0.5

x2 0.8 0.1 0 0.9

x3 1 0.9 0.9 0

x4 1 0.5 0.6 0.5

x5 1 0 0 0.5

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †56

Formal fuzzy concept = fuzzy cluster in data

Def. Induced operators . . . mappings ↑ : LX → LY , ↑ : LX → LY def. by:

A↑(y) =
∧

x∈X A(x) → I(x, y)

B↓(x) =
∧

y∈Y B(y) → I(x, y)

A↑ . . . fuzzy set of attributes common to all objects from A

B↓ . . . fuzzy set objects sharing all attributes from A

Def. Formal fuzzy concept in (X, Y, I) . . . (A, B), A ∈ LX, B ∈ LY , s.t.

A↑ = B and B↓ = A.

A . . . extent . . . objects covered by formal concept

B . . . intent . . . attributes covered by formal concept

• (fuzzy) concept lattice given by 〈X, Y, I〉

B (X, Y, I) = {〈A, B〉 | A↑ = B, B↓ = A}
Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †57

• subconcept-superconcept hierarchy ≤ in B (X, Y, I)

〈A1, B1〉 ≤ 〈A1, B1〉 iff A1 ⊆ A2(iff B1 ⊇ B2)

Further info:

Chapter 5 of R.B.: Fuzzy Relational Systems. Kluwer, New York, 2002.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †58

Main theorem of fuzzy concept lattices

Several issues from bivalent case can be carried over to fuzzy setting. Ex-

amples: algorithms, the main theorem:

Theorem (1) B (X, Y, I) is a completely lattice-type fuzzy ordered set

with infima and suprema given by∧
j∈J

〈
Aj, Bj

〉
= 〈

⋂
j∈J

Aj, (
⋃

j∈J

Bj)↓↑〉 ,
∨

j∈J

〈
Aj, Bj

〉
= 〈(

⋃
j∈J

Aj)↑↓,
⋂

j∈J

Bj〉 .

(2) Moreover, an arbitrary completely lattice-type fuzzy ordered set V =

(V,�) is isomorphic to B (X, Y, I) iff there are mappings γ : X × L → V ,

µ : Y × L → V such that

(i) γ(X × L) is
∨

-dense in V, µ(Y × L) is
∧

-dense in V;

(ii) (γ(x, a) ≤ µ(y, b)) = (a⊗ b) → I(x, y).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †59

Non-standard issues

(ke zkousce jen prehledove)

In fuzzy setting, there arise new phenomena which are degenerate in bivalent

setting. As an example, we present fatorization by similarity.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †60

Similarity relation

Degree of similarity ≈ of 〈A1, B1〉 and 〈A2, B2〉 on B (X, Y, I)

〈A1, B1〉 ≈ 〈A2, B2〉 =
∧

x∈X

A1(x) ↔ A2(x) (=
∧

y∈Y

B1(y) ↔ B2(y))

Given a truth degree a ∈ L (a threshold specified by a user),

the thresholded relation (a-cut) a≈ on B (X, Y, I) defined by

(〈A1, B1〉, 〈A2, B2〉) ∈ a≈ iff (〈A1, B1〉 ≈ 〈A2, B2〉) ≥ a

denotes “being similar in degree at least a”.
a≈ is reflexive and symmetric, but need not be transitive.

A subset B of B (X, Y, I) is a a≈-block if it is a maximal subset of B (X, Y, I)

such that each two concepts from B are similar in degree at least a.

B (X,Y, I)/a≈ . . . the collection of all a≈-blocks.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †61

Factorization by similarity

Put

〈A, B〉a :=
∧
{〈A′, B′〉 | (〈A, B〉, 〈A′, B′〉) ∈ a≈}

〈A, B〉a :=
∨
{〈A′, B′〉 | (〈A, B〉, 〈A′, B′〉) ∈ a≈}.

Lemma a≈-blocks are exactly intervals of B (X, Y, I) of the form

[〈A, B〉a, (〈A, B〉a)a], i.e.

B (X, Y, I)/a≈ = {[〈A, B〉a, (〈A, B〉a)a] | 〈A, B〉 ∈ B (X, Y, I)}.

Define a partial order � on blocks of B (X, Y, I)/a≈ by [c1, c2] � [d1, d2]

iff c1 ≤ d1 (iff c2 ≤ d2), where [c1, c2], [d1, d2] ∈ B (X, Y, I)/a≈.

Theorem B (X, Y, I)/a≈ equipped with � is a partially ordered set which is a

complete lattice, the so-called

factor lattice of B (X,Y, I) by similarity ≈ and a threshold a.

Elements of B (X, Y, I)/a≈ can be seen as similarity-based granules of formal

concepts/clusters from B (X, Y, I).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †62

Factorization by similarity: example

TOO LARGE!

Can we have cluters of 0.5-similar formal concepts instead?

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †63

Factorization by similarity: example

p

p p p

p p p p

` p p p `

` ` ` p ` ` `

` ` ` ` ` ` ` `

` ` ` ` ` `

` ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

1
`

p ` `

p p p `

p p p p `

` p p p ` ` `

` ` p ` ` ` ` `

` ` ` ` ` `

` ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

2
`

` p `

` p ` p

` p ` p p

` ` ` p ` p `

` ` ` ` p ` ` `

` ` ` ` ` `

` ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

3

`

` ` p

` ` p p

` ` p p `

` ` ` p ` ` p

` ` ` ` ` p ` `

` ` ` ` ` `

` ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

4
`

` ` `

p ` ` `

p p p ` `

p p p p ` ` `

p p p ` ` ` ` `

p ` ` ` ` `

` ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

5
`

` ` `

` p ` `

` p ` p `

` p ` p ` p `

` ` p ` p ` ` `

` ` p ` ` `

` ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

6

`

` ` `

` ` p `

` ` p p `

` ` p p p ` p

` ` p p ` p p `

` ` ` p ` `

` ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

7
`

` ` `

` ` ` p

` ` ` p p

` ` ` p ` p p

` ` ` ` p p ` p

` ` ` ` p `

` ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

8
`

` ` `

` ` ` `

` p ` ` `

` p ` p ` ` `

p ` p ` p ` ` `

p ` p ` ` `

p ` `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

9

`

` ` `

` ` ` `

` ` p ` `

` ` p p ` ` `

` p p p ` p ` `

p p ` p ` `

` p `

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

10
`

` ` `

` ` ` `

` ` ` p `

` ` ` p ` p p

` ` p ` p p p p

` ` p p p p

` ` p

`

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

11
`

` ` `

` ` ` `

` ` ` ` `

` ` ` p ` ` `

` ` p ` p p ` `

p ` p p p `

p p p

p

1

4

8

13

20

28

3

7

12

10

26

33 34

27

18

2

6

11

17

25

32

3736

38

31

2423

16

10

5

9

15

22

29

35

30

14

21

12

a≈-blocks Factor lattice B (X, Y, I)/a≈

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †64

Factorization directly from input data

Problem: Computation of B (X, Y, I)/a≈ by definition is time demanding,

can it be computed directly from input data?

Solution: It will turn out that our algorithm has a polynomial time delay and

is much faster.

Some definitions: (a → C)(x) = a → C(x) (a⊗C)(x) = a⊗C(x)

Lemma If A is an extent then so is a → A, similarly for intents.

FIRST, 〈A, B〉a and 〈A, B〉a can be computed directly from 〈A, B〉:

Lemma For 〈A, B〉 ∈ B (X, Y, I), we have

(a) 〈A, B〉a = 〈(a⊗A)↑↓, a → B〉 (b) 〈A, B〉a = 〈(a → A), (a⊗B)↓↑〉.

Thus we have (〈A, B〉a)a = 〈a → (a⊗A)↑↓, (a⊗(a → B))↓↑〉.

Lemma For 〈A, B〉 ∈ B (X, Y, I) we have 〈A, B〉a = ((〈A, B〉a)a)a.

SECOND, by Lemma ?? a≈-blocks [c1, c2] are uniquely given by their

suprema c2, moreover, by extents of suprema, since each formal concept

is uniquely given by its extent.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †65

Factorization directly from input data: main result

Denote the set of all extents of suprema of a≈-blocks by ESB(a), i.e.

ESB(a) = {A ∈ LX | 〈A, B〉 ∈ B (X, Y, I), [〈A, B〉a, 〈A, B〉] ∈ B (X, Y, I)/a≈}

Recall:

C is called a fuzzy closure operator in X if A ⊆ C(A), S(A1, A2) ≤ S(C(A1), C(A2))

and C(A) = C(C(A)), for any A, A1, A2 ∈ LX.

Fixed point of C : LX → LX: fuzzy set A such that A = C(A).

fix(C) = {A ∈ LX | A = C(A)} . . . set of all fixed points of C.

Theorem Given input data 〈X, Y, I〉 and a threshold a ∈ L, a mapping

Ca : A 7→ a → (a⊗A)↑↓

is a fuzzy closure operator in X for which fix(Ca) = ESB(a).

Problem: How to generate fix(Ca) = ESB(a)?

Solution: fuzzy adaptation of Ganter’s algorithm (R.B., 2002) for gener-

ating all formal concepts of a given fuzzy context, which is in fact an algorithm

for generating the set of all fixed points of a fuzzy closure operator.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †66

Factorization directly from input data: algorithm

Suppose X = {1, 2, . . . , n} and L = {0 = a1 < a2 < · · · < ak = 1}.

Put (i, j) ≤ (r, s) iff i < r or i = r, aj ≥ as, for i, r ∈ {1, . . . , n}, j, s ∈ {1, . . . , k}.

In the following, we will freely refer to ai just by i, i.e. we denote (i, aj) ∈ X×L

also simply by (i, j).

Put

A⊕ (i, j) := Ca((A ∩ {1, 2, . . . , i− 1}) ∪ { aj/i})

and

A <(i,j) C iff A ∩ {1, . . . , i− 1} = C ∩ {1, . . . , i− 1} and A(i) < C(i) = aj.

Finally, A < C iff A <(i,j) C for some (i, j).

Lemma The least fixed point A+ which is greater (w.r.t. <) than a given

A ∈ LX is given by A+ = A ⊕ (i, j) where (i, j) is the greatest one with

A <(i,j) A⊕ (i, j).

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †67

Factorization directly from input data: algorithm

The algorithm for generating a≈-blocks:

INPUT: 〈X, Y, I〉 (data table with fuzzy attributes),

a ∈ L (similarity threshold)

OUTPUT: B (X, Y, I)/a≈ (a≈-blocks [c1, c2])

A := ∅
while A 6= X do

A := A+

store([〈(a⊗A)↑↓, a → A↑〉, 〈A,A↑〉])

Polynomial time delay complexity

Ganter’s algorithm, generating fix(Ca), has polynomial time delay complexity

(in terms of size of the input 〈X, Y, I〉).

Since generating a a≈-block [〈(a⊗A)↑↓, a → A↑〉, 〈A, A↑〉] from A takes a poly-

nomial time, our algorithm is of polynomial time delay complexity as well.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †68

Experiments

 Lukasiewicz fuzzy logical connectives, |B (X, Y, I)| = 774, time for computing B (X, Y, I) = 2292ms

0.2 0.4 0.6 0.8

size |B (X, Y, I)/a≈| 8 57 193 423

naive algorithm (ms) 8995 9463 8573 9646

our algorithm (ms) 23 214 383 1517

reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| 0.010 0.073 0.249 0.546

time reduction 0.002 0.022 0.044 0.157

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

si
ze

 r
ed

uc
tio

n

thresholds

 0

 0.05

 0.1

 0.15

 0.2

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

tim
e

re
du

ct
io

n

thresholds

Reduction |B (X, Y, I)/a≈|/|B (X, Y, I)| and time reduction from Tab.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †69

ASSOCIATION RULES

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †70

Association rules

• association rules = attribute implications + criteria of interestingness
(support, confidence)

• introduced in 1993 (Agrawal R., Imielinski T., Swami A. N.: Mining
association rules between sets of items in large databases. Proc. ACM
Int. Conf. of management of data, pp. 207–216, 1993)

• but see GUHA method (in fact, association rules with statistics):

– developed at 1960s by P. Hájek et al. (Academy of Sciences, Czech)

– GUHA book available at http://www.cs.cas.cz/ hajek/guhabook/: Hájek
P., Havránek T.: Mechanizing Hypothesis Formation. Mathematical
Foundations for General Theory. Springer, 1978.

• one of main techniques in data mining

• good book: Adamo J.-M.: Data Mining for Association Rules and Se-
quential Patterns. Sequential and Parallel Algorithms. Springer, New
York, 2001.

• good overview: Dunham M. H.: Data Mining. Introductory and Advanced
Topics. Prentice Hall, Upper Saddle River, NJ, 2003.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †71

Basic concepts

Association rule (over set Y of attributes) is an expression A ⇒ B where

A, B ⊆ Y (sometimes we assume A ∩B = ∅).

Note: Association rules are just attribute implications in sense of FCA.

Data for mining (terminology in DM community): a set Y of items, a

database D of transactions, D = {t1, . . . , tn} where ti ⊆ Y .

Note: one-to-one correspondence between databases D (over Y) and formal

contexts (with attributes from Y): Given D, the corresponding 〈X, Y, I〉D is

given by

〈X, Y, I〉D . . . X = D, 〈t1, y〉 ∈ I ⇔ y ∈ t1;

given 〈X, Y, I〉, the corresponding D〈X,Y,I〉 is given by

D〈X,Y,I〉 = {{x}↑ | x ∈ X}.

(we will use both ways)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †72

Why items and transactions?

original motivation:

item = product in a store

transaction = cash register transaction (set of items purchased)

association rule = says: when all items from A abre purchased then also all

items from B are purchased

Example transactions X = {x1, . . . , x5}, items Y = {be, br, je, mi, pb} (beer,

bread, jelly, milk, peanut butter)

I be br je mi pb

x1 X X X

x2 X X

x3 X X X

x4 X X

x5 X X

For instance: a customer relaizing transaction x3 bought bread, milk, and

peanut butter.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †73

Support and confidence

Def. Support of A ⇒ B denoted by supp(A ⇒ B) and defined by

supp(A ⇒ B) =
|{x ∈ X | for each y ∈ A ∪B : 〈x, y〉 ∈ I}|

|X|
,

i.e. supp(A ⇒ B) · 100% of transactions contain A ∪B (percentage of trans-
actions where customers bought items from A ∪B).

Note that (in terms of FCA)

supp(A ⇒ B) =
|(A ∪B)↓|

|X|
.

Def. Confidence of A ⇒ B denoted by conf(A ⇒ B) and defined by

conf(A ⇒ B) =
|{x ∈ X | for each y ∈ A ∪B : 〈x, y〉 ∈ I}|
|{x ∈ X | for each y ∈ A : 〈x, y〉 ∈ I}|

,

i.e. conf(A ⇒ B) · 100% of transactions containing all items from A contain
also all items from B (percentage of customers which by also (all from) B if
they buy (all from) A.

Note that (in terms of FCA)

conf(A ⇒ B) =
|(A ∪B)↓|

A↓
.

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †74

We use both “support (confidence) is 0.3” and “support (confidence) is

30%”.

Lemma supp(A ⇒ B) ≤ conf(A ⇒ B).

Lemma conf(A ⇒ B) = 1 iff ||A ⇒ B||〈X,Y,I〉 = 1. That is, attribute implica-

tions which are true in 〈X, Y, I〉 are those which are fully confident.

More generally: for B ⊆ Y , put

supp(B) =
|(A ∪B)↓|

|X|
.

Example

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †75

What are association rules good for

main usage = marketing

usually, rules with large confidence (reliable) and smaller support are looked

for

see also applications part (REFERATY)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †76

Association rules problem

For prescribed values s and c, list all association rules with supp(A ⇒ B) ≥
s and conf(A ⇒ B) ≥ c. (interesting rules)

most common technique: via frequent itemsets

1. find all frequent itemsets (see later)

2. generate rules from frequent itemsets

Def. For given s, an itemset (set of attributes) B ⊆ Y is called frequent

(large) itemset if supp(B) ≥ s.

Example For s = 0.3 (30%),

L = {{be}, {br}, {mi}, {pb}, {br, pb}, }

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †77

How to generate interesting rules from large itemsets?

input

<X,Y,I>, L (set of all frequent itemsets), s (support), c

(confidence)

output

R (set of all asociation rules satisfying s and c)

algorithm (ARGen)

R:=O; //empty set

for each l in L do

for each nonempty proper subset k of l do

if supp(l)/supp(k) >= c then

add rule k=>(l-k) to R

Observe: supp(l)/supp(k) = conf(k ⇒ l − k)

Example (previous cntd.) consider c = 0.8, take l = {br, pb}; there are
two nonempty subsets k of l: k = {br} and k = {pb} then br ⇒ pb IS NOT
interesting since

supp({br, pb})/supp({br}) = 0.6/0.8 = 0.75 6≥ c

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †78

while pb ⇒ br IS interesting since

supp({pb, br})/supp({pb}) = 0.6/0.6 = 1.0 ≥ c.

(efficient implementation later)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †79

How to generate frequent itemsets (Apriori algorithm)

Lemma Any subset of a frequent itemset is frequent. If an itemset is not
frequent then no of its supersets is frequent.
Proof Obvious.

basic idea of apriori algorithm: Li . . . set of all frequent itemsets of size i

(i.e. with i items), Ci . . . set of all itemsets of size i which are candidates for
being frequent

1. in step i, Ci from Li−1 (if i = 1, put C1 = {{y} | y ∈ Y });

2. scanning 〈X, Y, I〉, generate Li, the set of all those candidates from Ci

which are frequent

How to get candidates Ci from frequent items Li−1?

1. what means “a candidate”: an itemset B ⊆ Y is considered a candidate
(for being frequent) if all of its subsets are frequent (in accordance with
above Lemma)

2. getting Ci from Li−1: find all B1, B2 ∈ Li−1 such that |B1 − B2| = 1 and
|B2 −B1| = 1 (i.e. |B1 ∩B2| = i− 2), and add B1 ∪B2 to Ci

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †80

Lemma If Li−1 is the set of all frequent itemsets of size i − 1 then B is a

candidate (i.e., all subsets of B are frequent) of size i iff B = B1 ∪B2 where

B1, B2 ∈ Li−1 are such that |B1 − B2| = 1 and |B2 − B1| = 1. Moreover,

|B1 −B2| = 1 and |B2 −B1| = 1 iff |B1 ∩B2| = i− 2.

Example (previous cntd.) consider s = 0.3, c = 0.5

step 1:

C1 = {{br}, {br}, {je}, {mi}, {pb}}
L1 = {{br}, {br}, {mi}, {pb}}

step 2:

C2 = {{be, br}, {be, mi}, {be, pb}, {br, mi}, {br, pb}, {mi, pb}}
L2 = {{br, pb}}

stop (not itemset of size 3 can be frequent)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †81

Algorithms

input

L(i-1) //all frequent itemsets of size i-1

output

C(i) //candidates of size i

algorithm (Apriori-Gen)

C(i):=O; //empty set

for each B1 from L(i-1) do

for each B2 from L(i-1) different from B1 do

if intersection of B1 and B2 has just i-2 elements then

add union of B1 and B2 to C(i)

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †82

down(B) means B↓

input

<X,Y,I> //data table

s //prescribed support

output

L //set of all frequent itemsets

algorithm (Apriori)

k:=0; //scan (step) number

L:=O; //emptyset

C(0):={ {y} | y from Y}

repeat

k:=k+1;

L(k):=O;

for each B from C(k) do

if |down(B)| >= s x |X| do // B is frequent

add B to L(k)

add all B from L(k) to L;

C(k+1):=Apriori-Gen(L(k))

until C(k+1)=O; \\empty set

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †83

ke zkousce z assoc. rules: to, co je na slajdech; dalsi veci (efektivni algoritmy,

priklady) pristi semestr

Radim Bělohlávek, Concept Lattices and Formal Concept Analysis †84

