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Goals of the Course

• selected methods
{ Clustering

{ Rules from data (association rules, database dependencies)

{ Formal concept analysis

{ Classi˛cation

• selected aspects
{ Algorithms

{ Theory

{ Problem of large data

{ Current research issues

• further
{ Implementation issues

{ Applications

{ Software

{ Commercial use
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Some useful free sources

• free software for DM: GUHA (http://www.cas.cz/research/software.shtml),
KDD Package (http://neuron.tuke.sk/ paralic/KDD),
LISp-Miner http://lispminer.vse.cz

• further: Rosetta (Norway), Sipina (France), Weka (New Zealand), Yale
(Germany), SumatraTT (Prague), Data Minin Advisor (Univ. Porto)

• several commercial systems

• referential data:
Machine Learning Repository http://www1.ics.uci.edu/ mlearn/MLRepository.html,
UCI KDD Archive http://kdd.ics.uci.edu,

• books: Hájek P., Havránek T.: Mechanizing Hypothesis Formation. Sprin-
ger, 1978 (http://www.cs.cas.cz/ hajek/guhabook/)

• Michie D. et al. (Eds.): Machine Learning, Neural and Statistical Classi˛-
cation. Ellis Horwood, 1994
(http://www.amsta.leeds.ac.uk/ charles/statlog/)

• ľíma J., Neruda R.: Teoretické otázky neuronových sítí. MatFyzPress,
1996. (http://www.cs.cas.cz/ sima/kniha.html)
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OBJECT-ATTRIBUTE DATA
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Object-Attribute Data

no. name age married satis˛ed language . . .
1 Smith 39 Yes 1 E . . .
2 Novak 58 No 0.8 E, F . . .
3 Braun 23 Yes 0.1 E, S, G . . .
4 Kim 36 Yes 0.5 E, F . . .
... ... ... ... ... ... ...
134560 Lewis 31 Yes 0.8 E . . .

objects xi

• X = {x1, . . . , xn}

• correspond to data items (records, . . . )

• correspond to rows in table (agreement: xi ≈ i-th row)

• distinct objects = distinct rows

attributes yj

• Y = {y1, . . . , ym}

• alternative names: properties (features, . . . )
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• correspond to columns in table (agreement: yj ≈ j-th column)

• val(yj) . . . set of values of attribute yj (or val(yj))

table entries T(xi, yj)

• T(xi, yj) ∈ val(yj) . . . entry at position (i, j)

• alternative notation: T(i, j), yj(xi), . . . (di¸ers in literature)
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Object-Attribute Data

De˛nition Object-attribute data table (OAD) is a structure T = 〈X,Y, T 〉
where

• X 6= ∅ (objects);

• Y 6= ∅ (attributes), for each y ∈ Y , val(y) 6= ∅ (attribute values);

• T : X × Y →
⋃

y∈Y val(y) s.t. T (x, y) ∈ val(y) (table entries).

Types of attributes

• numeric, i.e. val(y) ⊆ R (age, weight, . . . )

• categoric, i.e. val(y) = {c1, . . . , ck} (type of car, education, . . . )

• logical,
{ bivalent, i.e. val(y) = {0, 1} (married, got patent, . . . )
{ fuzzy, i.e. val(y) ⊆ [0, 1] (expensive, large, . . . )

• others (several ontologies possible)
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Analysis of Object-Attribute Data

part of Data Mining, i.e. extraction of potentially useful information from

data

characteristics of Data Mining

• alternative names: Knowledge Discovery in Databases, Bussiness Intelli-
ence, (Exploratory) Data Analysis

• history: 1990s, but several methods developed earlier

• conferences: ACM KDD, IEEE DM, PAKDD, PKDD

• journals: Data Mining and Knowledge Discovery (Kluwer), IEEE Trans.
Data and Knowledge Engineering (IEEE), other computer science journals

• applications: USA, Europe (both lare and small industries)

• ÈR: èasopis Data Mining Magazine (Adastra), spoleènosti zabývající se
data mining, projekty u vìtźích ˛rem
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Magagerial look on Data Mining

• problem speci˛cation

• collecting data

• selection of methods

• data preprocessing

• data mining

• interpretation of results

Technological look on Data Mining

• original data ⇒ (selection)

• selected data ⇒ (preprocessing)

• preprocessed data ⇒ (transformation)

• transformed data ⇒ (data mining)

• extracted information ⇒ (interpretation)
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• knowledge

What do we want to know?

• fundamental question

• user usually does not know

• expert needs to assist

Basic methods of analysis

• clasical statitistical (regression, testing of hypotheses, analysis of variance,
. . . )

• classi˛cation (prediction about membership to classes; decision trees, neu-
ral networks, Bayesian classi˛cation, . . . )

• patterns in data (descriptive; patterns: clusters, rules from data, . . . )

• . . .
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FORMAL CONCEPT ANALYSIS

see slides to FCA
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ASSOCIATION RULES

see slides to FCA
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CLUSTERING
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Clustering

basic facts:

• main aim of clustering: ˛nding (interesting) groups/clusters in data

• people do in everyday life; one cannot survive without clustering and clas-
si˛cation

• data = collection of objects; objects described by their attributes

• cluster = collection of objects which are pairwise similar (and which are
dissimilar to objects outside the cluster); vague de˛nition but . . .

• important aspects: clusters should be interesting groups (understandable);
computational tractability; applicability to large data (but clustering)

• similarity/distance of objects: crucial role, usually computed from data
table (metric, ultrametric)

• basic types: hierarchic and non-hierarchic clustering

further aspects

• relatively old (1960s-1970s), gained interest in connection with data mining
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• signi˛cant area which contributed to development of clustering: clustering
of biological species (Numerical taxonomy, Mathematical taxonomy)

• availability of data for clustering: (1) objects with teir descriptions available
(stored in a data table); (2) objects appear one at a time (incremental

methods)

• sometimes two di¸erent objectives are emphasized:
{ cluster analysis = to see whether data is composed of natural subclus-

ters and what they are (the user might have no clue in advance)

{ segmentation = objects need to be partitioned for some practical pur-

poses into some number of clusters (example: segmentation of custo-

mers in marketing; shirt manufacturer, clusters of customers: one shirt

size for each cluster)

• \was clustering useful?" is a di‹cult-to-answer question; application de-
pendent, the user judges (as with most of exploratory data analysis tech-

niques)

typical process

• selection of method (what types of clusters do we look for?)
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• selection of method parameters (measure of similarity/distance of objects,
etc.)

• clustering data (run clustering algorithm on data)

• evaluation of clusters (are clusters interesting/useful?); but if clustering is
used as a preprocessing step, evaluation may be omitted

• further processing (e.g. if used as a preprocessing step)
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Basic types of clusterings

First: several meanings of \clustering"

• clustering as a method

• clustering as a particular algorithm

• clustering as the collection of clusters in data
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Central question: what are THE right clusters?
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Similarity/distance measures for clusterings

input data: T = 〈X,Y, T 〉
(data table, attributes numeric, categorical, logical)

T (x, y) . . . value of attribute y on object x

main aim: assign any two objects x1 and x2 a quantity (usually a real number)

describing their similarity or distance

similarity vs. dissimilarity (distance): the larger the similarity, the smaller the

dissimilarity (and vice versa); most often: S = 1−D (similarity S, dissimilarity

D)

(dis)similarities assigned to

{ pairs of objects, e.g. D(x1, x2) = 0.7
{ pairs of groups of objects, e.g. D({x1, x2}, {x1, x3, x5}) = 0.9
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Dissimilarity, metric and ultrametric

represent distance

Def. A dissimilarity on a set X is a function d : X ×X → [0,∞) satisfying:
{ d(x, x) = 0,
{ d(x1, x2) = d(x2, x1) (symmetry).

for each x, x1, x2 ∈ X (sometimes additional conditions, e.g. d(x1, x2) ≤ 1).

Def. A metric on a set X is a function d : X ×X → [0,∞) satisfying:
{ d(x1, x2) = 0 if and only if x1 = x2,

{ d(x1, x2) = d(x2, x1) (symmetry),
{ d(x1, x3) ≤ d(x1, x2) + d(x2, x3) (triangle inequality),

for each x1, x2, x3 ∈ X.

A pseudometric: ˛rst condition replaced by d(x, x) = 0.

Def. An ultrametric on a set X is a function d : X ×X → [0,∞) satisfying:
{ d(x1, x2) = 0 if and only if x1 = x2,

{ d(x1, x2) = d(x2, x1) (symmetry),
{ d(x1, x3) ≤ max(d(x1, x2), d(x2, x3)) (ultrametric inequality),
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for each x1, x2, x3 ∈ X.

Notes Metric well-known (calculus). Ultrametric not. Carefully! Ultrametric

has some unusual properties, e.g.

{ for any three objects x1, x2, x3, at least two of them have the same distance;

{ de˛ne B(x, a) = {x′ ∈ X ; u(x, x′) ≤ a} (ball with center x and diameter a); then

for any any two balls B1, B2, there are only two possibilities: (1) one of them

contains the other one (B1 ⊆ B2 or B2 ⊆ B1), or (2) are disjoint B1 ∩B2 = ∅!
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Similarity and dissimilarity of objects

Dissimilarity measures { numerical attributes

• Euclidean metric

d(x1, x2) = [
∑
y∈Y

(T (x1, y)− T (x2, y))
2]
1
2

• Manhattan (city-block) metric

d(x1, x2) =
∑
y∈Y

|T (x1, y)− T (x2, y)|

the name: streets and avenues on Manhattan (NY) are perpendicular to
each other; If x1 and x2 are two crossing points (of streets on Manhattan)
with coordinates 〈y11, y12〉 and 〈y21, y22〉 (that is, y11 and y12 are the x- and
y-coordinates of x1, y21 and y22 are the x- and y-coordinates of x2) then
the (walking) distance between x1 and x2 is just the Manhattan metric
d(x1, x2) = |y11 − y21| + |y12 − y22|.

• L∞ metric

d(x1, x2) = max
y∈Y

|T (x1, y)− T (x2, y)|
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• Lλ metric: generalization of Euclidean (λ = 2), Manhattan (λ = 1), L∞
(λ →∞)

dλ(x1, x2) = [
∑
y∈Y

|T (x1, y)− T (x2, y)|λ]
1
λ

{ sometimes used: ∆λ(x1, x2) = dλ(x1, x2)/|Y |
1
λ

{ then ∆1(x1, x2) ≤ ∆2(x1, x2) ≤ ∆1(x1, x2) ≤ · · ·

• weights: we might have real coe‹cients wy ∈ R assigned to attributes
y ∈ Y which express importance of attributes (higher weight means more

importance, practical meaning: small di¸erence in higly important attri-

bute can increase distance more than a larger di¸erence in less important

attribute); distance measures modi˛ed by weights as

dw,λ(x1, x2) = [
∑
y∈Y

wy · |T (x1, y)− T (x2, y)|λ]
1
λ

• statistically based distance measures (eliminate the in‚uence of correlated
attributes)

{ Mahalanobis distance

{ correlation coe‹cient
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• further dissimilarity measures:
{ non-metric coe‹cient (Lance, Williams) for T (x, y) ≥ 0

d(x1, x2) =

∑
y∈Y |T (x1, y)− T (x2, y)|∑
y∈Y T (x1, y) + T (x2, y)

{ Canberra metric for T (x, y) ≥ 0

d(x1, x2) =
∑
y∈Y

|T (x1, y)− T (x2, y)|
T (x1, y) + T (x2, y)
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Similarity measures { logical (binary) attributes

for each x ∈ X, y ∈ Y : T (x, y) ∈ {0, 1}

contingency table: for a data table T = 〈X ,Y , T 〉 with binary attributes, a
contingency table for objects x1, x2 is a table

T (x2, y) = 1 T (x2, y) = 0
∑

T (x1, y) = 1 a11 a10 a1
T (x1, y) = 0 a01 a00 a0∑

a 1 a 0 |Y |

akl = |{y; T (x1, y) = k and T (x2, y) = l}|, i.e.

a00 . . .#attributes for which x1 has value 0 and x2 has value 0

. . .

a11 . . .#attributes for which x1 has value 1 and x2 has value 1

a 1 . . .#attribute for which x2 has value 1, etc.

shortly
1 0

1 a11 a10
0 a01 a00

or the like
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more often: similarity rather than dissimilarity measures are considered for
binary data

a family of similarity measures of the form

s(x1, x2) = S(a00, a01, a10, a11)

where S comes from intuition/expert opinion

common requirements: S(a00, a01, a10, a11) is
{ nondecreasing in a00 and a11
{ nonincreasing in a01 and a10
{ symmetric in a01 and a10: S(a00, b, c, a11) = S(a00, c, b, a11)

Examples of similarity measures

• simple matching coe‹cient

s(x1, x2) =
a11 + a00

a00 + a01 + a10 + a11
{ 1− s(x1, x2) is the (normalized) Hamming distance of x1 and x2

• Jaccard coe‹cient

s(x1, x2) =
a11

a01 + a10 + a11
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{ for situations where non-presence of any attribute should not in‚uence

similarity

• Dice coe‹cient

s(x1, x2) =
2a11

a01 + a10 + 2a11
{ extends the argument fo Jaccard coef.: presence of attribute in both

objects is twice as important as its presence in only one object

{ example of weighted coe‹cient

• more generally one could take weights wu
00, . . . , w

u
11 and wl

00, . . . , w
l
11 and have

sw(x1, x2) =
wu
00a00 + wu

01a01 + wu
10a10 + wu

11a11

wl
00a00 + wl

01a01 + wl
10a10 + wl

11a11
,

• weights for attributes wy (y ∈ Y ) and consider e.g.

d(x1, x2) =

∑
y∈Y wy · |T (x1, y)− T (x2, y)|∑

y∈Y wy

which is a normalized weighted Hamming distance; the corresponding si-

milarity is sw = 1− dw
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Example: data table with binary attributes, contingency table, . . .

fund type 1 2 3 4 5 6 7 8 9
1 CPI Penezniho trhu money 1 0 0 0 1 0 0 1 0
2 CSOB Akciovy stock 1 0 0 0 0 1 0 0 1
3 CSOB Bond mix bond 0 1 0 1 0 0 0 1 0
4 IKS Dluhopisovy bond 0 1 0 1 0 0 1 0 0
5 IKS Globalni mixed 0 1 0 0 1 0 0 1 0
6 IKS Penezni trh money 1 0 0 0 1 0 0 1 0
7 ISCS Sporoinvest money 1 0 0 0 1 0 0 1 0
8 ISCS Sporotrend stock 0 0 1 0 0 1 0 0 1
9 ISCS Trendbond bond 0 0 1 1 0 0 1 0 0
10 ISCS Vynosovy mixed 0 0 1 0 1 0 0 1 0

attributes: 1 - rating for 1 week <= 0, 5, 2 - rating for 1 week > 0, 5 and <= 1, 3
- rating for 1 week > 1, 4 - rating for 26 weeks <= 0, 5, 5 - rating for 26 weeks
> 0, 5 and <= 4, 6 - rating for 26 weeks > 4, 7 - rating for 52 weeks <= 0, 5, 8
- rating for 56 weeks > 0, 5 and <= 10, 9 - rating for 56 weeks > 10

contingency table for x1 = 3, x2 = 4:
1 0

1 2 1
0 1 5
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Execrice: compute various similarity measures for x1, x2; take one similarity

measure and compute the similarity matrix (X ×X matrix ˛lled with s(xi, xj))
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Similarity measures { categoric attributes

several possibilities, e.g. (the most simple)

s(x1, x2) = S(a, b) where

a . . .#attributes for which x1 and x2 have the same value

b . . .#attributes for which x1 and x2 have di¸erent values
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Similarity and dissimilarity of groups of objects

we assume A, B ⊆ X (sets of objects)

we are interested in s(A, B) (similarity) and d(A, B) (dissimilarity)

basic intuitive requirements:

s(A, B) = s(B, A) ≥ 0
d(A, B) = d(B, A) ≥ 0

Measures using (dis)similarity on objects

assume s is a similarity on objects (see above), and de˛ne similarity on sets of

objects (de˛ned also s):

• s(A, B) = min{s(x1, x2); x1 ∈ A, x2 ∈ B}

• s(A, B) = 1
|A|·|B|

∑
x1∈A

∑
x2∈B s(x1, x2)

• s(A, B) = max{s(x1, x2); x1 ∈ A, x2 ∈ B}

and similarly for dissimilarity measures

Measures using numeric attributes
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for a cluster A, one can take the center xA =
1
|A|

∑
x∈A x

and then

s(A, B) = S(xA, xB)

with S being a suitable similarity function

Measures using categoric attributes

for A ⊆ X, y ∈ Y , c ∈ val(y), put

pA
y,c =

|{x ∈ A; T (x, y) = c}|
|A|

. . . frequency of objects from A havin value of y equal c

then (e.g. Sokal+Sneath):

s(A, B) =
1
|Y |

∑
y∈Y

∑
c∈val(y)

pA
y,c · pB

y,c

observe that ∑
c∈val(y)

pA
y,c · pB

y,c
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can be seen as the probability that selecting randomly x1 ∈ A and x2 ∈ B, x1
and x2 will agree on attribute y

⇒ s(A, B) can be seen as the probability that selecting randomly x1 ∈ A and

x2 ∈ B, and selecting an attribute y ∈ Y , x1 and x2 will agree on y
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Basic types of clustering { an overview

several taxonomies of clusterings possible, based e.g. on

• types of clusters: crisp (clusters are ordinary sets) vs. fuzzy (clusters are
fuzzy sets)

• relationship between clusters: non-overlapping (di¸erent clusters have no
objects in common) vs. overlapping (di¸erent clusters may have onjects

in common)

• hierarchic (clusters may be subgouprs of other clusters; namely, those
which are more general) vs. non-hierachic (the other case)

and we may have hierarchic clusters which are fuzzy sets, hierarchic clusters

which are crisp sets, etc.

In the following we present selected clustering types.
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Preliminaries for clustering (recalling well-known facts)

R ⊆ X ×X . . . a binary relation on X

R is called a

{tolerance if it is re‚exive and symmetric

equivalence if it is re‚exive, symmetric, and transitive

{class of R induced by x ∈ X: a set [x]R = {x′ ∈ X ;
〈
x, x′

〉
∈ R}

a system Π of subsets of X, i.e. Π = {Ci; i ∈ I, Ci ⊆ X} is called a
{covering of X if (1) each Ci ∈ Π is nonempty; (2) each x ∈ X belongs to

some Ci ∈ Π
{partition of X if (1) each Ci ∈ Π is nonempty; (2) each x ∈ X belongs to

some Ci ∈ Π; any two distinct Ci, Cj ∈ Π are disjoint, i.e. Ci ∩ Cj = ∅

there is a one-to-one relationship between equivalence relations and par-

titions on X:

{from equivalence R to partition ΠR: ΠR = {[x]R; x ∈ X} (partition consists of
classes of R)

{from partition Π to equivalence RΠ:
〈
x, x′

〉
∈ RΠ i¸ there is Ci ∈ Π such that

x, x′ ∈ Ci
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Hierarchic clustering

• useful if we want nested/hierachically ordered clusters

• result is a tree (hierarchy; or an indexed tree, so-called dendrogram) with
nodes labeled by clusters of objects (subsetes of X)

• root is labeled by X (largest cluster), leaves labeled by {x} (smallest
clusters, singletons for each x ∈ X)

• for clusters A, B ⊆ X: A ⊆ B i¸ the node labeled by A is a descendant of a
node labeled by B

• basic algorithms for obtaining dendrograms:
{ agglomerative: starts with singleton clusters {x}, in each step selects
two most similar clusters and joins them, repeats until the largest cluster
X is obtained

{ divisive (less used, computatinoally more demanding): start with the
largest cluster X which is split into smaller clusters, division is repea-
ted until singleton clusters are obtained; two approaches to division of
clusters: monothetic (one attribute is used to determine division) and
polythetic (all attributes are used)

• well-elaborated theoretical foundations (ultrametrics, )
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Algorithms for hierarchic clustering: agglomerative

INPUT: data table T = 〈X,Y, T 〉, a similarity measure S : X ×X → [0,∞)

based on S, select an extension of S to a similarity on groups of objects, i.e.

a function assigning to any A, B ⊆ X a number S(A, B) ∈ [0,∞) (see later)

AGGLOMERATIVE ALGORITHM

1. (initialization) Π0 = {{x}; x ∈ X} (partition with singleton classes); h0 := 0;
t := 1;

2. (closest clusters) take distinct C1, C2 ∈ Πt−1 for which

S(C1, C2) = max
C,C ′∈Πt−1,C 6=C ′

S(C, C ′);

3. (merging clusters) Πt := Πt−1 − {C1, C2} ∪ {C1 ∪ C2}; ht := 1− S(C1, C2).

4. (termination test) if Πt contains more than one cluster, put t := t + 1 and
go to step 2; otherwise stop.

OUTPUT: usually considered as C = {C; C ∈ Πt for some t} (collection of
resulting clusters) or alternatively C = {〈C, ht〉 ; t = min{t′; C ∈ Πt′}}.
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Now:

ordering C by set inclusion gives a partial order
the Hasse diagram of the partial order is a tree (we label nodes by C ∈ C or by
〈C, ht〉 ∈ C)

Remarks to agglomerative algorithm

(1) We get so-called single-linkage version for

S(A, B) = max{S(x1, x2); x1 ∈ A, x2 ∈ B},

and so-called complete linkage version for

S(A, B) = min{S(x1, x2); x1 ∈ A, x2 ∈ B}.

Single-linkage and complete linkage are two boundary cases. In addition to

these, there are various \average-linkage" versions (average similarity of two

clusters instead of maximal or minimal).

(2) Can be equivalently formulated using dissimilarity D instead of S (replace

S by D and interchange min and max).
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Agglomerative algorithm: example

data table:

fund type 1 2 3 4 5 6 7 8 9
1 CPI Penezniho trhu money 1 0 0 0 1 0 0 1 0
2 CSOB Akciovy stock 1 0 0 0 0 1 0 0 1
3 CSOB Bond mix bond 0 1 0 1 0 0 0 1 0
4 IKS Dluhopisovy bond 0 1 0 1 0 0 1 0 0
5 IKS Globalni mixed 0 1 0 0 1 0 0 1 0
6 IKS Penezni trh money 1 0 0 0 1 0 0 1 0
7 ISCS Sporoinvest money 1 0 0 0 1 0 0 1 0
8 ISCS Sporotrend stock 0 0 1 0 0 1 0 0 1
9 ISCS Trendbond bond 0 0 1 1 0 0 1 0 0
10 ISCS Vynosovy mixed 0 0 1 0 1 0 0 1 0

attributes: 1 - rating for 1 week <= 0, 5, 2 - rating for 1 week > 0, 5 and <= 1, 3
- rating for 1 week > 1, 4 - rating for 26 weeks <= 0, 5, 5 - rating for 26 weeks
> 0, 5 and <= 4, 6 - rating for 26 weeks > 4, 7 - rating for 52 weeks <= 0, 5, 8
- rating for 56 weeks > 0, 5 and <= 10, 9 - rating for 56 weeks > 10
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we use dissimilarity: (non-normalized) weighted Hamming distance

Dw(xi, xj) =
∑
y∈Y

wy · |T (xi, y)− I(xj, y)|, (1)

with w1, . . . , w9 (weights for attributes 1{9) equal to 0.4, 0.3, 0.3, 0.3, 0.5,

0.2, 0.2, 0.6, 0.2, respectively

dissimilarity coe‹cients:

1 2 3 4 5 6 7 8 9 10
1 0 1.4 0.7 1.5 1.5 0.8 0.8 2.1 1.5 1.5
2 1.4 0 2.1 1.7 2.1 1.4 1.4 0.7 1.7 2.1
3 0.7 2.1 0 0.8 0.8 1.5 1.5 2 1.4 1.4
4 1.5 1.7 0.8 0 1.6 2.3 2.3 1.6 0.6 2.2
5 1.5 2.1 0.8 1.6 0 0.7 0.7 2 2.2 0.6
6 0.8 1.4 1.5 2.3 0.7 0 0 2.1 2.3 0.7
7 0.8 1.4 1.5 2.3 0.7 0 0 2.1 2.3 0.7
8 2.1 0.7 2 1.6 2 2.1 2.1 0 1 1.4
9 1.5 1.7 1.4 0.6 2.2 2.3 2.3 1 0 1.6
10 1.5 2.1 1.4 2.2 0.6 0.7 0.7 1.4 1.6 0
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by agglomerative hierarchical clustering (single-linkage), we get a collection

of nested partitions Π1, . . . ,Π5 and the corresponding equivalence relations ≡1
, . . . ,≡5:

Π1 = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {9}, {10}},
Π2 = {{1}, {2}, {3}, {4}, {5}, {8}, {9}, {10}, {6, 7}},
Π3 = {{1}, {2}, {3}, {8}, {4, 9}, {5, 10}, {6, 7}},
Π4 = {{4, 9}, {1, 3}, {2, 8}, {5, 6, 7, 10}},
Π5 = {{2, 8}, {1, 3, 4, 5, 6, 7, 9, 10}},
Π6 = {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}}.
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corresponding dendrogram:
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Resolving ties

tie = situation when there are more then one candidate pairs of clusters to

merge (step 2. of agglomerative algorithm)

So suppose in step 2 that we have

s = max
C,C ′∈Πt−1,C 6=C ′

S(C, C ′) = S(Cl1, Cr1) = · · · = S(Clk
, Crk)

Common ways to resolve ties:

1. Each Cli is merged with at most (and if possible, with exactly) one cluster

C for which S(Cli, C) = s. If there are more possibilities to choose merges,

select the merges at random.

2. Each Cli is merged with each Cu with S(Cli, Cu) = s, then each of these

Cu’s is merged with again with all Cv’s with S(Cu, Cv) = s, etc. In other

words, the newy formed clusters are the components of a graph where

clusters C and D are linked by an edge i¸ S(C, D) ≥ s. (note: contrary

to the above approach, this is one yields a unique solution to ties; the

resulting dendrogram need not be binary)
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Example: Clusters are C1, . . . , C6, S(C1, C2) = S(C3, C4) = S(C3, C5) = s. Then

method 1 yields clusters C1 ∪ C2, C3 ∪ C4, C5, C6 or C1 ∪ C2, C3 ∪ C5, C4, C6,

method 2 yields clusters C1 ∪ C2, C3 ∪ C4 ∪ C5, C6.

Single-linkage is more robust w.r.t. the way ties are resolved. We will not go

into this issue in more detail. Assuming ties makes theoretical consideration

more di‹cult. In the following we assume that no ties occur.
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Foundations of hierarchical clustering: dendrograms and ul-
trametrics

Def. A hierarchy on a set X (objects) is a system H ⊆ 2X of subsets of X

such that for any two distinct A, B ∈ H we have A ∩B = ∅ od A ⊆ B or B ⊆ A.

A ∈ H are called classes of H.

Rem. (1) For a hierarchy H, the pair 〈H,⊆〉 (i.e. hierarchy equipped with
subsethood) is a tree order, i.e. an order for which its Hasse diagram is a

tree.

(2) A hierarchy H is called binary if each A ∈ H has either no or just two

successors (in the corresponding tree); complete if X ∈ H and {x} ∈ H for
each x ∈ X (we will mostly aaume that we deal with complete hierarchies).

(3) The output C = {C; C ∈ Πt for some t} of the agglomerative algorithm is a
complete hierarchy.

Def. A dendrogram is a pair 〈H, h〉 where H is a hierarchy and h : H → [0,∞)
is a function (index function) satisfying: (a) for each A, B ∈ H, A ⊂ B implies

h(A) < h(B); (b) h(A) = 0 i¸ for each x1, x2 ∈ A, x1 and x2 have the same

attribute values.
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Rem. (1) visualization of 〈H, h〉: draw a tree corresponding to H, along with
a vertical axis for values of h such that each A ∈ H is drawn at the level h(A)
on the vertical axis.

(2) dendrogram from the agglomerative algorithm: The hierarchy is H := C =
{C; C ∈ Πt for some t}; h is given by

h(A) = ht where t = min{t′; C ∈ Πt′}.

(3) Each hierarchy H cen be made into a dendrogram 〈H, h〉. Indeed, take
any dissimilarity d on X. Then both h(A) := maxx1,x2∈A d(x1, x2) and h(A) :=∑

x1,x2∈A d(x1, x2) are index functions for H.

(4) A ∈ H is a class of level a (a ≥ 0) if h(A) ≤ a and there is no B ⊃ A with
h(A) ≤ a.

(5) If 〈H, h〉 is a dendrogram with H being a complete hierarchy, then for each
a ≥ 0, the system

Π(a) = {A ∈ H; A is a class of level a}
is a partition, so-called partition of level a. Geometric interpretation: In the
tree corresponding to 〈H, h〉, draw a horizontal line at the level a; elements of
Π(a) are just the classes right below the line.
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Theorem (induced ultrametric) For a dendrogram D = 〈H, h〉 with a com-
plete hierarchy H, put

uD(x1, x2) = min{h(A); A ∈ H, x1, x2 ∈ A}

for any x1, x2 ∈ X. Then uD is an ultrametric.

Rem. uD(x1, x2) is the level of the least class containing both x1 and x2 (x1
and x2 meet in A).

Proof (of Theorem) uD(x, x) = 0 is true since {x} ∈ H and h({x}) = 0.
uD(x1, x2) = uD(x2, x1) is obvious.
uD(x1, x3) ≤ max(uD(x1, x2), uD(x2, x3)): Let uD(x1, x2) = h(A) and uD(x2, x3) = h(B).
Since x2 ∈ A ∩ B, we have A ∩ B 6= ∅ and so, since H is a hierarchy, A ⊆ B

or B ⊆ A. Suppose A ⊆ B (for B ⊆ A we can proceed analogously). Then

x1, x2, x3 ∈ B and so the least class C containing both x1 and x3 is contained in

B, whence uD(x1, x3) = h(C) ≤ h(B) = max(h(A), h(B)) = max(uD(x1, x2), uD(x2, x3)).
2
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From ultrametric to dendrogram: Let u be an ultrametric on X. Recall: For

x ∈ X, a ≥ 0, Bu(x, a) = {x′; u(x, x′) ≤ a} (a ball with center x and diameter a).

Any two balls are either disjoint or one contains the other.

For A ⊆ X, the u-diameter of A is de˛ned by

u(A) = max{u(x1, x2); x1, x2 ∈ A}.

Furthermore: From ultrametric inequality we easily see that: (1) The diameter

of a ball is equal to its radius, i.e. u(B(x, a)) = a; (2) any point of a ball is its

center, i.e. for each x′ ∈ B(x, a) we have B(x, a) = B(x′, a).

For an ultrametric u, put

Hu = {B(x, a); x ∈ X, a ≥ 0}

(system of all u-balls) and for A ∈ Hu,

hu(A) = u(A).

Radim Bìlohlávek: Reasoning about Object-Attribute Data: Algorithms and Foundations † 49



Theorem (induced dendrogram) For an ultrametric u, Du = 〈Hu, hu〉 is a
dendrogram with a complete hierarchy Hu.

Proof First, Hu is a complete hierarchy. Hu is a hierarchy because of the

properties of ultrametric balls. Hu is complete since X = B(x,∞) (for any
x ∈ X), and {x} = B(x, 0) for each x ∈ X. Second, hu is an index for Hu: directly

by de˛nition. 2

Lemma For a dendrogram D = 〈H, h〉 and A ∈ H we have

A = BuD(x, h(A)) for any x ∈ A, (2)

h(A) = uD(A). (3)

Proof (2): Take any x′ ∈ X ane let C be the least C ∈ H where x and x′

meet. If x′ ∈ A then C is included in A and so uD(x, x′) = h(C) ≤ h(A), i.e.
x′ ∈ B(x, h(A)). Conversely, if x′ ∈ B(x, h(A)) then uD(x, x′) = h(C) ≤ h(A). Now,
since x ∈ A∩C and h(C) ≤ h(A), we must have C ⊆ A (since D is a dendrogram;

namely, A ∩ C 6= ∅ and A ⊂ C cannot be the case because of h(C) ≤ h(A)). But
then x′ ∈ C yields x′ ∈ A. We proved that A is an uD-ball.

(3): Follows from (2) and the fact that the diameter and radius of a ball are

the same. 2
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Theorem (dendrograms vs. ultrametrics) Let D = 〈H, h〉 be a dendrogram
with a complete hierarchy, u be an ultrametric (both on a set X). Then

(1) uD is an ultrametric;

(2) Du is a dendrogram with a complete hierarchy;

(3) D = DuD and u = uDu
.

Rem.: (3) says that the mappings D 7→ uD and u 7→ Du are mutually inverse bi-

jective mappings between the set of all dendrograms with complete hierarchies

on X and the set of all ultrametrics on X. Loosely speaking, dendrograms with

complete hierarchies and ultrametrics describe the same phenomenon.

Proof (of Theorem) For (1) and (2), see the above theorems. (3): We prove

D = DuD.

First, \H ⊆ HuD": Let A ∈ H. We have to show A ∈ HuD, i.e. we have to show

that A is an uD-ball. This fact follows from Lemma.

Second, \H ⊇ HuD": Let A = B(x, a) ∈ HuH be an uD-ball, let r = r(A) = uD(A)
be the radius/diameter of A. Then A = B(x, r) and r = uD(x, x′) for some
x, x′ ∈ A (by de˛nition of diameter). By de˛nition of uD, we have r = h(C) (C
is the least one from H where x and x′ meet). Since C is an element of H and
h(C) = r, we can show as above that C = B(x, r), i.e. A = C which means that

A ∈ H.
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We have shown H ⊇ HuD. The fact h = huD follows by huD(A) = uD(A) = h(A),
see (3). 2
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Optimal hierarchies

PROBLEM

We are given a set X objects with a (dis)similarity function (matrix) d : X×X →
[0,∞). Alternatively, d is computed from object-attribute data table 〈X, Y, I〉.
The aim is to construct a dendrogram D. Why a dendrogram (and not just d)?
Because it is a \user-friendly" graphical way to look at the data. Intuitively,
we want the dendrogram to represent the (dis)similarity structure given by d
as close as possible. We know that a dendrogram corresponds to a unique
ultrametric u. u can be thougt of as representing the dissimilarity structure
contained in the dendrogram D. Therefore, starting from a dissimilarity d, we
construct an ultrametric u. In a sense, constructing \a good" D from d is to
look for an ultrametric u which approximates d well enough.

In the following, we show selected results along this line.

For two functions di : X × X → [0,∞) (i = 1, 2) we put d1 ≤ d2 i¸ for every
x1, x2 ∈ X we have d1(x1, x2) ≤ d2(x1, x2) (coordinatewise partial order).

Maximal dominated ultrametric u−

The problem is to ˛nd an ultrametric u− which
{ is dominated by d (i.e. u− ≤ d), and
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{ dominates any other ultrametric dominated by d (i.e. if u ≤ d for some

ultrametric u then u ≤ u−).

To make the dependence on d explicit, u− will also be denoted by u−(d). Put
U−(d) = {u; u is an ultrametric and u ≤ d}.

Lemma (existence of u−) Given a dissimilarity d on X, u− is given by u−(x1, x2) =
supu∈U−(d) u(x1, x2).

Proof We have to show that u− as de˛ned above is an ultrametric and that
u− ≤ d. The fact u− ≤ d follows from u ≤ d for each u ∈ U−(d). In order to
show that u− is an ultrametric, we need to verify the ultrametric inequality
(the other conditions are obvious): We have u−(x1, x3) = supu∈U−(d) u(x1, x3) ≤
supu∈U−(d)max(u(x1, x2), u(x2, x3)) = max(supu∈U−(d) u(x1, x3), supu∈U−(d) u(x3, x2)) =

max(u−(x1, x3), u−(x3, x2)). 2

Theorem (single linkage gives u−(d)) Let d be a dissimilarity, D = 〈H, h〉
the dendrogram obtained by single linkage agglomerative algorithm, uD be the

ultrametric corresponding to D. Then uD = u−(d).

Proof Nebude pozadovan.
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Minimal dominating ultrametric u+

The problem is to ˛nd an ultrametric u+ which

{ dominates d (i.e. u+ ≥ d), and

{ is minimal among all ultrametrics dominating d (i.e. if u+ ≥ u ≥ d for some

ultrametric u then u = u+).

Put U+(d) = {u; u is an ultrametric and u ≥ d}.

Note: u+ nedd not be unique. Using an analogical formula (to that for u−),
i.e. u+(x1, x2) = infu∈U+(d) u(x1, x2), we do not obtain an ultrametric.

There is in general not \the least" dominating ultametric. Example: Consider

X = {x, y, z} and dissimilarity d (it is not an ultrametric) given by

d(x, y) = 0.1, d(y, z) = 0.2, d(x, z) = 0.3.

Consider u1, u2 given by

u1(x, y) = 0.1, u1(y, z) = 0.3, u1(x, z) = 0.3,

u2(x, y) = 0.3, u2(y, z) = 0.2, u2(x, z) = 0.3.

One can see that both u1 and u2 are minimal ultrametrics dominating d but

they are incomparable.
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Theorem (complete linkage gives u+) Let d be a dissimilarity, D = 〈H, h〉 the
dendrogram obtained by complete linkage agglomerative algorithm, uD be the

ultrametric corresponding to D. Then uD = u+, i.e. uD is a minimal ultrametric

dominating d (on of the possibly several minimal dominating ultrametrics).

Proof Nebude pozadovan.

Corollary If the dissimilarity matrix which inputs the agglomerative algorithm

is an ultrametric then both single-linkage and complete-linkage algorithms yield

the same dendrogram.
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Disjoint clustering

• results into a partition of objects

• many particular approaches

• usually: user has to know (expected) number of clusters

• we focus only on: competition learning

• we do not discuss statistically-based clustering procedures, e.g. EM clus-
tering (expectation maximization); theyr are well-elaborated
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Competition learning: neural clustering

• set of points that need to be clustered: T = {xp ∈ Rn; p ∈ P}; xp =〈
x

p
1, . . . , x

p
n
〉

• \neural network" scheme: n input neurons x1, . . . , xn, m output neurons

y1, . . . , ym

• each output neuron represents one cluster

• parameters (weights) wij ∈ R (i = 1, . . . , n, j = 1, . . . ,m): cluster correspon-
ding to j-th neuron is represented by a point with coordinates

〈
w1j, . . . , wnj

〉
• PROBLEM: ˛nd good parameters wij
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LEARNING ALGORITHM

INPUT: T , m

OUTPUT: wij ∈ R (i = 1, . . . , n, j = 1, . . . ,m)

1. set t = 0 (time/step)

2. w0ij ∈ R (i = 1, . . . , n, j = 1, . . . ,m) at random (or by some heuristic based on
knowledge of T)

3. set ν (learning rate, usually 0 < ν < 1)

4. for each p ∈ P : select the output neuron closest to xp (winner): that with

index j∗ for which d(xp, wt
j) is minimal

5. update weights: wt+1
ij∗ := wt

ij∗ + ν(xp
i − wt

ij∗) for i = 1, . . . , n

6. if clusters did not change in the last update cycle for p ∈ P , STOP;

otherwise t := t + 1 and go to 4.

usually: d(xp, w j) =
∑n

i=1(x
p
i − wij)

2
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Remarks

• meaning of weights update: New weight wt+1
j∗ (as a point in R

n) is obtained

by moving from the old weight wt
j∗ along the vector xp − wt

j∗. Parameter

ν says how far we move.

• meaning of \if clusters did not change in the last update cycle for p ∈ P":

in every step t, every point xp is assigned its corresponding winner j∗(t, p)
(step 4). \Clusters did not change" means that for each point xp ∈ T , the

winners j∗(t, p) and j∗(t− 1, p) are the same.

• What is the resulting clustering? It is a partition Π of T into m classes

given by the output neurons by the \winner takes all" principle:

Π = {{xp ∈ T ; neuron j is the winner for xp}; j = 1 . . . , m}.
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CLASSIFICATION
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Classi˛cation

pristi semestr
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